Что изучают биологические науки: список прикладных предметов. Изучаем биологию

Биология – совокупность или система наук о живых системах. Понятие «живые системы» здесь важно подчеркнуть, поскольку жизнь не существует сама по себе, а является свойством определенных систем.

Классификация наук - многоступенчатое, разветвленное деление наук, использующее на разных этапах деления разные основания.

Предмет изучения биологии – все проявления жизни, а именно:

· строение и функции живых существ и их природных сообществ;

· распространение, происхождение и развитие новых существ и их сообществ;

· связи живых существ и их сообществ друг с другом и с неживой природой.

Биология является системой наук, которые могут быть классифицированы различным образом.

1. По предмету изучения: ботаника, зоология, микробиология и т.д.

2. По общим свойствам живых организмов:

· генетика (закономерности наследственности)

· биохимия (превращения вещества и энергии)

· экология (взаимоотношения живых существ и их природных сообществ с окружающей средой) и т.п.

3. По уровню организации живой материи, на котором рассматриваются живые системы:

· молекулярная биология;

· цитология;

· гистология и т.п.

Приведенные классификации, разумеется, не носят абсолютного характера. Так, например, исследование клетки (цитология) в настоящее время немыслимо без изучения биохимии клетки.

Можно также говорить о трех магистральных направлениях биологии или, по образному выражению трех образах биологии:

1. Традиционная или натуралистическая биология. Ее объектом изучения является живая природа в ее естественном состоянии и нерасчлененной целостности – «Храм природы», как называл ее Эразма Дарвина. Истоки традиционной биологии восходят к средним векам, хотя вполне естественно здесь вспомнить и работы Аристотеля, который рассматривал вопросы биологии, биологического прогресса, пытался систематизировать живые организма («лестница Природы»). Оформление биологии в самостоятельную науку – натуралистическую биологию приходится на 18-19 века. Первый этап натуралистической биологии ознаменовался созданием классификаций животных и растений. К ним относятся известная классификация К. Линнея (1707 – 1778), являющаяся традиционной систематизацией растительного мира, а также классификация Ж.-Б. Ламарка, применившего эволюционный подход к классифицированию растений и животных. Традиционная биология не утратила своего значения и в настоящее время. В качестве доказательства приводят положение экологии среди биологических наук а также во всем естествознании. Ее позиции и авторитет в настоящее время чрезвычайно высоки, а она в первую очередь основывается в принципах традиционной биологии, поскольку исследует взаимоотношений организмов между собой (биотические факторы) и со средой обитания (абиотические факторы).



2. Функционально-химическая биология, отражающая сближение биологии с точными физико-химическими науками. Особенность физико-химической биологии – широкое использование экспериментальных методов, которые позволяют исследовать живую материю на субмикроскопическом, надмолекулярном и молекулярном уровнях. Одним из важнейших разделов физико-химической биологии является молекулярная биология – наука изучающая структуру макромолекул, лежащих в основе живого вещества. Биологию нередко называют одной из лидирующих наук 21-го века.

К важнейшим экспериментальным методам, использующимся в физико-химической биологии, относятся метод меченых (радиоактивных) атомов, метолы рентгеноструктурного анализа и электронной микроскопии, методы фракционирования (например, разделение различных аминокислот), использование ЭВМ и др.

3. Эволюционная биология. Это направление биологии изучает закономерности исторического развития организмов. В настоящее время концепция эволюционизма стала, фактически, платформой, на которой происходит синтез разнородного и специализированного знания. В основе современной эволюционной биологии лежит теория Дарвина. Интересно и то, что Дарвину в свое время удалось выявить такие факты и закономерности, которые имеют универсальное значение, т.е. теория созданная им, приложима к объяснению явлений, происходящих не только в живой, но и неживой природе. В настоящее время эволюционный подход взят на вооружение всем естествознанием. Вместе с тем, эволюционная биология – самостоятельная область знания, с собственными проблемами, методами исследования и перспективой развития.

В настоящее время предпринимаются попытки синтеза этих трех направлений («образов») биологии и оформления самостоятельной дисциплины – теоретической биологии.

4. Теоретическая биология. Целью теоретической биологии является познание самых фундаментальных и общих принципов, законов и свойств, лежащих в основе живой материи. Здесь разные исследования выдвигают различные мнения по вопросу о том, что должно стать фундаментом теоретической биологии.

Система биологических наук чрезвычайно многопланова, что обусловлено как многообразием проявлений жизни, так и разнообразием форм, методов и целей исследования живых объектов, изучением живого на разных уровнях его организации. Всё это определяет условность любой системы биологических наук. Одними из первых в Биологии сложились науки о животных - зоология и растениях - ботаника, а также анатомия и физиология человека - основа медицины. Другие крупные разделы Биологии выделяемые по объектам исследования, - микробиология - наука о микроорганизмах, гидробиология - наука об организмах, населяющих водную среду, и т.д. Внутри Биологии сформировались более узкие дисциплины; в пределах зоологии - изучающие млекопитающих - териология, птиц - орнитология, пресмыкающихся и земноводных - герпетология, рыб и рыбообразных - ихтиология, насекомых - энтомология, клещей - акарология, моллюсков - малакология, простейших - протозоология;внутри ботаники - изучающие водоросли - альгология, грибы - микология, лишайники - лихенология, мхи - бриология, деревья и кустарники - дендрология и т.д. Подразделение дисциплин иногда идёт ещё глубже. Многообразие организмов и распределение их по группам изучают систематика животных и систематика растений. Биологии можно подразделить на неонтологию, изучающую современный органический мир, и палеонтологию - науку о вымерших животных (палеозоология) и растениях (палеоботаника).

Другой аспект классификации биологических дисциплин - по исследуемым свойствам и проявлениям живого. Форму и строение организмов изучают морфологические дисциплины; образ жизни животных и растений и их взаимоотношения с условиями внешней среды - экология; изучение разных функций живых существ - область исследований физиологии животных и физиологии растений; предмет исследований генетики - закономерности наследственности и изменчивости; этологии - закономерности поведения животных; закономерности индивидуального развития изучает эмбриология или в более широком современном понимании - биология развития;закономерности исторического развития - эволюционное учение. Каждая из названных дисциплин делится на ряд более частных (например, морфология - на функциональную, сравнительную и др.). Одновременно происходит взаимопроникновение и слияние разных отраслей Биологии с образованием сложных сочетаний, например гисто-, цито- или эмбриофизиология, цитогенетика, эволюционная и экологическая генетика и др. Анатомия изучает строение органов и их систем макроскопически; микроструктуру тканей изучает гистология, клеток - цитология, а строение клеточного ядра - кариология. В то же время и гистология, и цитология, и кариология исследуют не только строение соответствующих структур, но и их функции и биохимические свойства.

Можно выделить в Биологии дисциплины, связанные с использованием определённых. методов исследования, например биохимию, изучающую основные жизненные процессы химическими методами и подразделяемую на ряд разделов (биохимия животных, растений и т.п.), биофизику, вскрывающую значение физических закономерностей в процессах жизнедеятельности и также подразделяемую на ряд отраслей. Биохимическое и биофизическое направления исследований зачастую тесно переплетаются как между собой (например, в радиационной биохимии), так и с другими биологическими дисциплинами (например, в радиобиологии). Важное значение имеет биометрия, в основе которой лежат математическая обработка биологических данных с целью вскрытия зависимостей, ускользающих при описании единичных явлений и процессов, планирование эксперимента и др.; теоретическая и математическая Биологии позволяют, применяя логические построения и математические методы, устанавливать более общие биологические закономерности.

Биология как наука.

Биология – наука, изучающая свойства живых систем.

Наука – это сфера человеческой деятельности по получению, систематизации объективных знаний о действительности.

Объект – науки – биологии является жизнь во всех ее проявлениях и формах, а также на разных уровнях. Носитель жизни – живые тела. Все, что связано с их существованием, изучает биология.

Метод – это путь исследования, который проходит ученый, решая какую – либо научную задачу, проблему.

Основные методы науки :

1.Моделирование

метод, при котором создается некий образ объекта, модель с помощью которой ученые получают необходимые сведения об объекте.

Создание из пластмассовых элементов модели ДНК

2.Наблюдение

метод, с помощью которого исследователь собирает информацию об объекте

Наблюдать можно визуально, например за поведением животных. Можно наблюдать с помощью приборов за изменениями происходящими в живых объектах, например при снятии кардиограммы в течении суток. Наблюдать можно за сезонными изменениями в природе, например за линькой животных.

3.Эксперимент (опыт)

метод, с помощью которого проверяют результаты наблюдений, выдвинутые предположения – гипотезы. Это всегда получение новых знаний с помощью поставленного опыта.

Скрещивание животных или растений с целью получения нового сорта или породы, проверка нового лекарства.

4.Проблема

вопрос, задача, требующие решения. Решение проблемы ведер к получению нового знания. Научная проблема всегда скрывает какое-то противоречие между известным и неизвестным. Решение проблемы требует от ученого сбора фактов, их анализа, систематизации.

Пример проблемы: «Как возникает приспособленность организмов к окружающей среде?» или «Каким образом можно подготовиться к серьезным экзаменам»

5.Гипотеза

предположение, предварительное решение поставленной проблемы. Выдвигая гипотезы, исследователь ищет взаимосвязи между фактами, явлениями, процессами. Именно поэтому гипотеза чаще всего имеет форму предположения: «если…тогда».

«Если растения на свету выделяют кислород, то мы сможем его обнаружить с помощью тлеющей лучины, т.к. кислород должен поддерживать горение»

6.Теория

это обобщение основных идей в какой – либо научной области знания

Теория эволюции обобщает все достоверные научные данные, полученные исследователями на протяжении многих десятилетий. Со временем теория дополняется новыми данными, развивается. Некоторые теории могут опровергаться новыми фактами. Верные научные теории подтверждаются практикой.

Частные методы в биологии :

Генеалогический метод

Применяется при составлении родословных людей, выявление характера наследования некоторых признаков

Исторический метод

Установление взаимосвязей между фактами, процессами, явлениями, происходящими на протяжении исторически длительного времени (несколько миллиардов лет).

Палеонтологический метод

Позволяет выяснить родство между древними организмами, останки которых находятся в земной коре, в разных геологических слоях.

Центрифугирование

Разделение смесей на составные части под действием центробежной силы. Применяется при разделении органоидов клетки, легких и тяжелых фракций органических веществ.

Цитологический или цитогенетический метод

Исследование строения клетки, ее структур с помощью различных микроскопов.

Биохимический метод

Исследование химических процессов, происходящих в организме.

Близнецовый метод

Используется для выяснения степени наследственной обусловленности исследуемых признаков. Метод дает ценные результаты при изучении морфологических и физиологических признаков.

Гибридологический метод

Скрещивание организмов и анализ потомства

Науки

Палеонтология

наука об ископаемых останках растений и животных

Молекулярная биология

комплекс биологических наук, изучающих механизмы хранения, передачи и реализации генетической информации, строение и функции нерегулярных биополимеров (белков и нуклеиновых кислот).

Сравнительная физиология

раздел физиологии животных, изучающий методом сравнения особенности физиологических функций у различных представителей животного мира.

Экология

наука о взаимодействиях живых организмов и их сообществ между собой и с окружающей средой.

Эмбриология

это наука, изучающая развитие зародыша.

Селекция

наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов.

Физиология

наука о сущности живого и жизни в норме и при патологиях, то есть о закономерностях функционирования и регуляции биологических систем разного уровня организации, о пределах нормы жизненных процессов и болезненных отклонений от неё

Ботаника

Наука о растениях

Цитология

раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.

Генетика

наука о закономерностях наследственности и изменчивости.

Систематика

раздел биологии , призванный создать единую стройную систему живого на основе выделения системы биологических таксонов и соответствующих названий, выстроенных по определенным правилам (номенклатура)

Морфология

изучает как внешнее строение (форму, структуру, цвет, образцы) организма , таксона или его составных частей, так и внутреннее строение живого организма

Ботаника

Наука о растениях

Анатомия

раздел биологии, изучающий морфологию человеческого организма, его систем и органов.

Психология

наука о поведении и психических процессах

Гигиена

наука, изучающая влияние факторов внешней среды на организм человека с целью оптимизации благоприятного и профилактики неблагоприятного воздействия.

Орнитология

раздел зоологии позвоночных, изучающий птиц, их эмбриологию, морфологию, физиологию, экологию, систематику и географическое распространение.

Микология

Наука о грибах

Ихтиология

Наука о рыбах

Фенология

Наука о развитии живой природы

Зоология

Наука о животных

Микробиология

Наука о бактериях

Вирусология

Наука о вирусах

Антропология

совокупность научных дисциплин, занимающихся изучением человека, его происхождения, развития, существования в природной (естественной) и культурной (искусственной) средах.

Медицина

область научной и практической деятельности по исследованию нормальных и патологических процессов в организме человека, различных заболеваний и патологических состояний, их лечению, сохранению и укреплению здоровья людей

Гистология

Наука о тканях

Биофизика

это наука о физических процессах, протекающих в биологических системах разного уровня организации и о влиянии на биологические объекты различных физических факт

Биохимия

наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности

Бионика

прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги.

Сравнительная анатомия

биологическая дисциплина, изучающая общие закономерности строения и развития органов и систем органов при помощи их сравнения у животных разных таксонов на разных этапах эмбриогенеза.

Теория эволюции

Наука о причинах, движущих силах, механизмах и общих закономерностях эволюции живой природы

Синэкология

раздел экологии, изучающий взаимоотношения организмов различных видов внутри сообщества организмов.

Биогеография

наука на стыке биологии и географии; изучает закономерности географического распространения и распределения животных, растений и микроорганизмов

Аутоэкология

раздел экологии, изучающий взаимоотношения организма с окружающей средой.

Протистология

наука, изучающая одноклеточные эукариотические организмы, относящиеся к типу простейших

Бриология

Наука о мхах

Альгология

наука о морфологии, физиологии, генетике, экологии и эволюции макро и микроскопических одно и многоклеточных водорослей

Признаки и свойства живого

Единство элементного химического состава

В состав живого входят те же элементы, что и в состав неживой природы, но в других количественных соотношениях; при этом примерно 98% приходится на углевод, водород, кислород, азот.

Единство биохимического состава

Все живые организмы состоят в основном из белков, липидов, углеводов и нуклеиновых кислот.

Единство структурной организации

Единицей строения, жизнедеятельности, размножения, индивидуального развития является клетка; вне клетки жизни нет.

Дискретность и целостность

Любая биологическая система состоит из отдельных взаимодействующих частей (молекулы, органоиды, клетки, ткани, организмы, виды и т.д.), которые вместе образуют структурно – функциональное единство.

Обмен веществ и энергии (метаболизм)

Обмен веществ состоит из двух взаимосвязанных процессов: ассимиляции (пластического обмена) – синтеза органических веществ в организме (за счет внешних источников энергии – света, пищи) и диссимиляции (энергетического обмена) – процесса распада сложных органических веществ с выделением энергии, которая затем расходуется организмом.

Саморегуляция

Любые живые организмы обитают в постоянно изменяющихся условиях окружающей среды. Благодаря способности к саморегуляции в процессе метаболизма сохраняются относительное постоянство химического состава и интенсивность течения физиологических процессов, т.е. поддерживается гомеостаз.

Открытость

Все живые системы являются открытыми, потому что в процессе их жизнедеятельности между ними и окружающей средой происходит постоянный обмен веществом и энергией.

Размножение

Это способность организмов воспроизводить себе подобных. В основе воспроизведения лежат реакции матричного синтеза, т.е. образование новых молекул и структур на основе информации, заложенной в последовательности нуклеотидов ДНК. Это свойство обеспечивает непрерывность жизни и преемственность поколений.

Наследственность и изменчивость

Наследственность – способность организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Основой наследственности является относительное постоянство строения молекул ДНК.

Изменчивость – свойство, противоположное наследственности; способность живых организмов существовать в различных формах, т.е. приобретать новые признаки, отличные от качеств других особей того же вида. Изменчивость, обусловленная изменениями наследственных задатков – генов, создает разнообразный материал для естественного отбора, т.е. отбора особей, наиболее приспособленных к конкретным условиям существования в природе. Это приводит к появлению новых форм жизни, новых видов организмов.

Рост и развитие

Индивидуальное развитие, или онтогенез, - развитие живого организма от зарождения до момента смерти. В процессе онтогенеза постепенно и последовательно проявляются индивидуальные свойства организма. В основе этого лежит поэтапная реализация наследственных программ. Индивидуальное развитие обычно сопровождается ростом.

Историческое развитие, или филогенез, - необратимое направленное развитие живой природы, сопровождающееся образованием новых видов и прогрессивным усложнением жизни.

Раздражимость

Способность организма избирательно реагировать на внешние и внутренние воздействия, т.е. воспринимать раздражение и отвечать определенным образом. Ответная реакция организма на раздражение, осуществляемая при участии нервной системы, называется рефлексом.

Организмы, у которых отсутствует нервная система, отвечают на воздействие изменением характера движения и роста, например листья растений, поворачиваются к свету.

Ритмичность

Суточные и сезонные ритмы направлены на приспособление организмов к меняющимся условиям существования. Наиболее известным ритмическим процессом в природе является чередование периодов сна и бодрствования.

Уровни организации живой природы

Уровень организации

Биологическая система

Элементы, образующие систему

Значение уровня в органическом мире

1.Молекулярно - генетический

Ген (макромолекула)

Макромолекулы нуклеиновых кислот, белков, АТФ

Кодирование и передача наследственной информации, обмен веществ, превращение энергии

2.Клеточный

Клетка

Структурные части клетки

Существование клетки лежит в основе размножения, роста и развития живых организмов, биосинтеза белка.

3.Тканевый

Ткань

Совокупность клеток и межклеточного вещества

Разные виды тканей у животных и растений отличаются строением и выполняют различные функции. Изучение этого уровня позволяет проследить эволюцию и индивидуальное развитие тканей.

4.Органный

Орган

Клетки, ткани

Позволяет изучать строение, функции, механизм действия, происхождение, эволюцию и индивидуальное развитие органов растений и животных.

5.Организменный

Организм (особь)

Клетки, ткани, органы и системы органов с их уникальными жизненными функциями

Обеспечивает функционирование органов в жизнедеятельности организма, приспособительные изменения и поведение организмов в различных экологических условиях.

6.Популяционно - видовой

Популяция

Совокупность особей одного вида

Осуществляется процесс видообразования.

7.Биогеоценотический (экосистемный)

Биогеоценоз

Исторически сложившаяся совокупность организмов разного ранга в сочетании с факторами окружающей среды

Круговорот веществ и энергии

8.Биосферный

Биосфера

Все биогеоценозы

Здесь происходят все круговороты веществ и энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле.

Ученые – биологи

Гиппократ

Создал научную медицинскую школу. Считал, что у каждой болезни есть естественные причины, и их можно узнать, изучая строение и жизнедеятельность человеческого организма.

Аристотель

Один из основателей биологии как науки, впервые обобщил биологические знания, накопленные до него человечеством.

Клавдий Гален

Заложил основы анатомии человека.

Авиценна

В современной анатомической номенклатуре сохранил арабские термины.

Леонардо да Винчи

Описал многие растения, изучал строение человеческого тела, деятельность сердца и зрительную функцию.

Андреас Визалия

Работа «О строении человеческого тела»

Уильям Гарвей

Открыл кровообращение

Карл Линней

Предложил систему классификации живой природы, ввел бинарную номенклатуру для наименования видов.

Карл Бэр

Изучал внутриутробное развитие, установил, что зародыши всех животных на ранних этапах развития схожи, сформулировал закон зародышевого сходства, основатель эмбриологии.

Жан Батист Ламарк

Первым попытался создать стройную и целостную теорию эволюции живого мира.

Жорж Кювье

Создал науку палеонтологию.

Теодор Шванн и Шлейден

Создали клеточную теорию

Ч Дарвин

Эволюционное учение.

Грегор Мендель

Основоположник генетики

Роберт Кох

Основатель микробиологии

Луи Пастер и Мечников

Основатели иммунологии.

И.М. Сеченов

Заложил основы изучения высшей нервной деятельности

И.П. Павлов

Создал учение об условных рефлексах

Гуго де Фриза

Мутационная теория

Томас Морган

Хромосомная теория наследственности

И.И. Шмальгаузен

Учение о факторах эволюции

В.И. Вернадский

Учение о биосфере

А. Флеминг

Открыл антибиотики

Д. Уотсон

Установил структурц ДНК

Д.И. Ивановский

Открыл вирусы

Н.И. Вавилов

Учение о многообразии и происхождении культурных растений

И.В. Мичурин

Селекционер

А.А. Ухтомский

Учение о доминанте

Э.Геккель и И.Мюллер

Создали биогенетический закон

С.С. Четвериков

Исследовал мутационные процессы

И.Янсен

Создал первый микроскоп

Роберт Гук

Первым обнаружил клетку

Антониа Левенгук

Увидел в микроскоп микроскопических организмов

Р.Броун

Описал ядро растительной клетки

Р.Вирхов

Теория целлюлярной патологии.

Д.И.Ивановский

Открыл возбудителя табачной мозаики (вирус)

М.Кальвин

Химическая эволюция

Г.Д.Карпеченко

Селекционер

А.О.Ковалевский

Основоположник сравнительной эмбриологии и физиологии

В.О.Ковалевский

Основоположник эволюционной палеонтологии

Н.И.Вавилов

Учение о биологических основах селекции и учение о центрах происхождения культурных растений.

Х.Кребс

Изучал метаболизм

С.Г.Навашин

Открыл двойное оплодотворение у покрытосеменных

А.И.Опарин

Теория самозарождения жизни

Д.Холдейн

Создал учение о дыхании человека

Ф.Реди

А.С.Северцов

Основатель эволюционной морфологии животных

В.Н.Сукачев

Основоположник биогеоценологии

А.Уоллес

Сформулировал теорию естественного отбора, которая совпала с Дарвиным

Ф.Крик

Изучал животные организмы на молекулярном уровне

К.А.Темирязев

Раскрыл закономерности фотосинтеза

Биология – как наука.

Часть А.

1.Биология как наука изучает 1) общие признаки строения растений и животных; 2) взаимосвязь живой и неживой природы; 3) процессы, происходящие в живых системах; 4) происхождение жизни на Земле.

2.И.П. Павлов в своих работах по пищеварению применял метод исследования: 1) исторический; 2) описательный; 3) экспериментальный; 4) биохимический.

3.Предположение Ч.Дарвина о том, что у каждого современного вида или группы видов были общие предки – это 1) теория; 2) гипотеза; 3) факт; 4) доказательство.

4.Эмбриология изучает 1) развитие организма от зиготы до рождения; 2) строение и функции яйцеклетки; 3) послеродовое развитие человека; 4) развитие организма от рождения до смерти.

5.Количество и форма хромосом в клетке устанавливается методом исследования 1) биохимическим; 2) цитологическим; 3) центрифугированием; 4) сравнительным.

6.Селекция как наука решает задачи 1) создание новых сортов растений и пород животных; 2) сохранение биосферы; 3) создание агроценозов; 4) создание новых удобрений.

7.Закономерности наследования признаков у человека устанавливаются методом 1) экспериментальным; 2) гибридологическим; 3) генеалогическим; 4) наблюдения.

8.Специальность ученого, изучающего тонкие структуры хромосом, называется: 1) селекционер; 2) цитогенетик; 3) морфолог; 4) эмбриолог.

9.Систематика – это наука, занимающаяся 1) изучением внешнего строения организмов; 2) изучением функций организма 3) выявлением связей между организмами; 4) классификацией организмов.

10.Способность организма отвечать на воздействия окружающей среды называют: 1) воспроизведением; 2) эволюцией; 3) раздражимостью; 4) нормой реакции.

11.Обмен веществ и превращение энергии – это признак, по которому: 1) устанавливают сходство тел живой и неживой природы; 2) живое можно отличить от неживого; 3) одноклеточные организмы отличаются от многоклеточных; 4) животные отличаются от человека.

12.Для живых объектов природы, в отличие от неживых тел, характерно: 1) уменьшение веса; 2) перемещение в пространстве; 3) дыхание; 4) растворение веществ в воде.

13.Возникновение мутаций связано с таким свойством организма, как: 1) наследственность; 2) изменчивость; 3) раздражимость; 4) самовоспроизведение.

14.Фотосинтез, биосинтез белка – это приметы: 1) пластического обмена веществ; 2) энергетического обмена веществ; 3) питания и дыхания; 4) гомеостаза.

15.На каком уровне организации живого происходят генные мутации: 1) организменном; 2) клеточном; 3) видовом; 4) молекулярном.

16.Строение и функции молекул белка изучают на уровне организации живого:1) организменном; 2) тканевом; 3) молекулярном; 4) популяционном.

17.На каком уровне организации живого осуществляется в природе круговорот веществ?

1) клеточном; 2) организменном; 3) популяционно – видовом; 4) биосферном.

18.Живое от неживого отличается способностью: 1) изменять свойства объекта под воздействием среды; 2) участвовать в круговороте веществ; 3) воспроизводить себе подобных; 4) изменять размеры объекта под воздействием среды.

19.Клеточное строение – важный признак живого, характерный для:1) бактериофагов; 2)вирусов; 3) кристаллов; 4) бактерий.

20.Поддержание относительного постоянства химического состава организма называется:

1) метаболизм; 2) ассимиляция; 3) гомеостаз; 4) адаптация.

21.Одергивание руки от горячего предмета – это пример: 1) раздражимости;2) способности к адаптации; 3) наследования признаков от родителей; 4) саморегуляции.

22.Какой из терминов является синонимом понятия «обмен веществ»:1) анаболизм; 2) катаболизм; 3) ассимиляция; 4) метаболизм.

23.Роль рибосом в процессе биосинтеза белка изучают на уровне организации живого:

1) организменном; 2) клеточном; 3) тканевом; 4) популяционном.

24.На каком уровне организации происходит реализация наследственной информации:

1) биосферном; 2) экосистемном; 3) популяционном; 4) организменном.

25.Уровень, на котором изучают процессы биогенной миграции атомов называется:

1) биогеоценотический; 2) биосферный; 3) популяционно – видовой; 4) молекулярно – генетический.

26. На популяционно – видовом уровне изучают: 1) мутации генов; 2) взаимосвязи организмов одного вида; 3) системы органов; 4) процессы обмена веществ в организме.

27.Какая из перечисленных биологических систем образует наиболее высокий уровень жизни?

1) клетка амебы; 2) вирус оспы; 3) стадо оленей; 4) природный заповедник.

28.Какой метод генетики используют для определения роли факторов среды в формировании фенотипа человека? 1) генеалогический; 2) биохимический; 3) палеонтологический;

4) близнецовый.

29.Генеалогический метод используют для 1) получение генных и геномных мутаций; 2) изучение влияния воспитания на онтогенез человека; 3) исследования наследственности и изменчивости человека; 4) изучения этапов эволюции органического мира.

30. Какая наука изучает отпечатки и окаменелости вымерших организмов? 1) физиология; 2) экология; 3) палеонтология; 4) селекция.

31.Изучением многообразия организмов, их классификацией занимается наука 1) генетика;

2) систематика; 3) физиология; 4) экология.

32.Развитие организма животного от момента образования зиготы до рождения изучает наука

1) генетика; 2) физиология; 3) морфология; 4) эмбриология.

33.Какая наука изучает строение и функции клеток организмов разных царств живой природы?

1) экология; 2) генетика; 3) селекция; 4) цитология.

34.Сущность гибридологического метода заключается в 1) скрещивании организмов и анализе потомства; 2) искусственном получении мутаций; 3) исследовании генеалогического древа; 4) изучении этапов онтогенеза.

35.Какой метод позволяет избирательно выделять и изучать органоиды клетки? 1) скрещивание;

2) центрифугирование; 3) моделирование; 4) биохимический.

36.Какая наука изучает жизнедеятельность организмов? 1) биогеография; 2) эмбриология; 3) сравнительная анатомия; 4) физиология.

37.Какая биологическая наука исследует ископаемые остатки растений и животных?

1) систематика; 2) ботаника; 3) зоология; 4) палеонтология.

38.С какой биологической наукой связана такая отрасль пищевой промышленности, как сыроделие?

1) микологией; 2) генетикой; 3) биотехнологией; 4) микробиологией.

39.Гипотеза – это 1) общепринятое объяснение явления; 2) то же самое, что и теория; 3) попытка объяснить специфическое явление; 4) устойчивые отношения между явлениями в природе.

40.Выберите правильную последовательность этапов научного исследования

1) гипотеза-наблюдение-теория-эксперимент; 2) наблюдение-эксперимент-гипотеза-теория; 3) наблюдение-гипотеза-эксперимент-теория; 4) гипотеза-эксперимент-наблюдение-закон.

41.Какой метод биологических исследований самый древний? 1) экспериментальный; 2) сравнительно-описательный; 3) мониторинг; 4) моделирование.

42.Какая часть микроскопа относится к оптической системе? 1) основание; 2) тубусодержатель; 3) предметный столик; 4) объектив.

43.Выберите правильную последовательность прохождения световых лучей в световом микроскопе

1) объектив-препарат-тубус-окуляр; 2) зеркало-объектив-тубус-окуляр; 3) окуляр-тубус-объектив-зеркало; 4) тубус-зеркало-препарат-объектив.

44.Пример какого уровня организации живой материи представляет собой участок соснового леса?

1) организменный; 2) популяционно-видовой; 3) биогеоценотический; 4) биосферный.

45.Что из перечисленного не является свойством биологических систем? 1) способность отвечать на стимулы окружающей среды; 2) способность получать энергию и использовать ее; 3) способность к воспроизведению; 4) сложная организация.

46.Какая наука изучает в основном надорганизменные уровни организации живой материи?

1) экология; 2) ботаника; 3) эволюционное учение; 4) биогеография.

47.На каких уровнях организации находится хламидомонада? 1) только клеточном; 2) клеточном и тканевом; 3) клеточном и организменном; 4) клеточном и популяционно-видовом.

48.Биологические системы являются 1) изолированными; 2) закрытыми; 3) замкнутыми; 4) открытыми.

49.Какой метод следует использовать для изучения сезонных изменений в природе? 1) измерение; 2) наблюдение; 3) эксперимент; 4) классификацию.

50.Созданием новых сортов полиплоидных растений пшеницы занимается наука 1) селекция; 2) физиология; 3) ботаника; 4) биохимия.

Часть В. (выбрать три правильных ответа)

В1.Укажите три функции, которые выполняет современная клеточная теория 1) экспериментально подтверждает научные данные о строении организмов; 2) прогнозирует появление новых фактов, явлений; 3) описывает клеточное строение разных организмов; 4) систематизирует, анализирует и объясняет новые факты о клеточном строении организмов; 5) выдвигает гипотезы о клеточном строении всех организмов; 6) создает новые методы исследования клетки.

В2.Выберите процессы происходящие на молекулярно – генетическом уровне: 1) репликация ДНК; 2) наследование болезни Дауна; 3) ферментативные реакции; 4) строение митохондрий; 5) структура клеточной мембраны; 6) кровообращение.

Часть В. (уставить соответствие)

В3.Соотнесите характер адаптации организмов с условиями, к которым они вырабатывались:

Адаптации Уровни жизни

А) яркая окраска самцов павианов 1)защита от хищников

Б) пятнистая окраска молодых оленей 2)поиск полового партнера

В) борьба двух лосей

Г) сходство палочников с сучками

Д) ядовитость пауков

Е) сильный запах у кошек

Часть С.

1.Какие приспособления растений обеспечивают им размножение и расселение?

2.Что общего и в чем заключаются различия между разными уровнями организации жизни?

3.Распределите уровни организации живой материи по принципу иерархичности. В основе какой системы лежит тот же самый принцип иерархичности? Какие отрасли биологии изучают жизнь на каждом из уровней.?

4.Каковы, по вашему мнению, степень ответственности ученых за социальные и моральные последствия их открытий?


Биология (от греческих слов bios - жизнь и logos - наука) - совокупность наук о живой природе. Биология изучает все проявления жизни, строение и функции живых существ и их сообществ, распространение, происхождение и развитие живых организмов, связи их друг с другом и с неживой природой.

Для живой природы характерны разные уровни организации ее структур, между которыми существует сложное соподчинение. Все живые организмы вместе с окружающей средой образуют биосферу, которая складывается из биогеоценозов. В них, в свою очередь, входят биоценозы, состоящие из популяций. Популяции составляют отдельные особи. Особи многоклеточных организмов состоят из органов и тканей, образованных различными клетками. Для каждого уровня организации жизни характерны свои закономерности. Жизнь на каждом уровне изучают соответствующие отрасли современной биологии.

Для изучения живой природы биологи применяют различные методы: наблюдение, позволяющее описать то или иное явление; сравнение, которое дает возможность установить закономерности, общие для разных явлений в живой природе; эксперимент, или опыт, когда исследователь сам искусственно создает ситуацию, помогающую выявить те или иные свойства биологических объектов. Исторический метод позволяет на основе данных о современном органическом мире и его прошлом познавать процессы развития живой природы. Кроме этих основных методов применяется много других.

Биология берет свое начало в глубокой древности. Описания животных и растений, сведения об анатомии и физиологии человека и животных были необходимы для практической деятельности людей. Одними из первых попытки осмыслить и привести в систему явления жизни, обобщить накопленные биологические знания и представления сделали древнегреческие, а позже древнеримские ученые и врачи Гиппократ, Аристотель, Гален и другие. Эти воззрения, развитые учеными эпохи Возрождения, положили начало современным ботанике и зоологии, анатомии и физиологии и другим биологическим наукам.

В XVI-XVII вв. в научных исследованиях наряду с наблюдением и описанием стал широко применяться эксперимент. В это время блестящих успехов достигает анатомия. В трудах известных ученых XVI в. А. Везалия и М. Сервета были заложены основы представлений о строении кровеносной системы животных. Это подготовило великое открытие XVII в. - учение о кровообращении, созданное англичанином У. Гарвеем (1628). Через несколько десятилетий итальянец М. Мальпиги открыл при помощи микроскопа капилляры, что позволило понять путь крови от артерий к венам.

Создание микроскопа расширило возможности изучения живых существ. Открытия следовали одно за другим. Английский физик Р. Гук открывает клеточное строение растений, а голландец А. Левенгук - одноклеточных животных и микроорганизмы.

В XVIII в. было накоплено уже много знаний о живой природе. Назрела необходимость классифицировать все живые организмы, привести их в систему. В это время закладываются основы науки систематики. Важнейшим достижением в этой области была «Система природы» шведского ученого К. Линнея (1735).

Дальнейшее развитие получила физиология - наука о жизнедеятельности организмов, их отдельных систем, органов и тканей и процессах, протекающих в организме.

Англичанин Дж. Пристли показал в опытах на растениях, что они выделяют кислород (1771 -1778). Позже швейцарский ученый Ж. Сенебье установил, что растения под действием солнечного света усваивают углекислый газ и выделяют кислород (1782). Это были первые шаги на пути исследования центральной роли растений в преобразовании веществ и энергии в биосфере Земли, первый шаг в новой науке - физиологии растений.

А. Лавуазье и другие французские ученые выяснили роль кислорода в дыхании животных и образовании животного тепла (1787-1790). В конце XVIII в. итальянский физик Л. Галь-вани открыл «животное электричество», что привело в дальнейшем к развитию электрофизиологии. В это же время итальянский биолог Л. Спалланцани провел точные опыты, опровергавшие возможность самозарождения организмов.

В XIX в. в связи с развитием физики и химии в биологию проникают новые методы исследования. Богатейший материал для изучения природы дали сухопутные и морские экспедиции в малодоступные прежде районы Земли. Все это привело к формированию многих специальных биологических наук.

На рубеже века возникла палеонтология, изучающая ископаемые остатки животных и растений - свидетельства последовательного изменения - эволюции форм жизни в истории Земли. Основоположником ее был французский ученый Ж. Кювье.

Большое развитие получила эмбриология - наука о зародышевом развитии организма. Еще в XVII в. У. Гарвей сформулировал положение: «Все живое из яйца». Однако лишь в XIX в. эмбриология стала самостоятельной наукой. Особая заслуга в этом принадлежит ученому-естествоиспытателю К. М. Бэру, открывшему яйцо млекопитающих и обнаружившему общность плана строения зародышей животных разных классов.

В результате достижений биологических наук в первой половине XIX в. широко распространилась идея родства живых организмов, их происхождения в ходе эволюции. Первую целостную концепцию эволюции - происхождения видов животных и растений в результате их постепенного изменения от поколения к поколению - предложил Ж. Б. Ламарк.

Крупнейшим научным событием века стало эволюционное учение Ч. Дарвина (1859). Теория Дарвина оказала огромное влияние на все дальнейшее развитие биологии. Делаются новые открытия, подтверждающие правоту Дарвина, в палеонтологии (А. О. Ковалевский), в эмбриологии (А. О. Ковалевский), в зоологии, ботанике, цитологии, физиологии. Распространение эволюционной теории на представления о происхождении человека привело к созданию новой отрасли биологии - антропологии. На основе эволюционной теории немецкие ученые Ф. Мюллер и Э. Геккель сформулировали биогенетический закон.

Еще одно выдающееся достижение биологии XIX в. - создание немецким ученым Т. Шванном клеточной теории, доказавшей, что все живые организмы состоят из клеток. Тем самым была установлена общность не только макроскопического (анатомического), но и микроскопического строения живых существ. Так возникла еще одна биологическая наука - цитология (наука о клетках) и как следствие ее - учение о строении тканей и органов - гистология.

В результате открытий французского ученого Л. Пастера (микроорганизмы являются причиной спиртового брожения и вызывают многие болезни) самостоятельной биологической дисциплиной стала микробиология. Работы Пастера окончательно опровергли представления о самозарождении организмов. Исследование микробной природы холеры птиц и бешенства млекопитающих привело Пастера к созданию иммунологии как самостоятельной биологической науки.

Существенный вклад в ее развитие внес в конце XIX в. русский ученый И. И. Мечников.

Во второй половине XIX в. многие ученые пытались умозрительно решить загадку наследственности, раскрыть ее механизм. Но только Г. Менделю удалось установить на опыте закономерности наследственности (1865). Так были заложены основы генетики, ставшей самостоятельной наукой уже в XX в.

В конце XIX в. были открыты митоз - деление клеток с точным и равным разделением хромосом между дочерними клетками и мейоз - образование из диплоидных клеток с двойным набором хромосом гаплоидных половых клеток - гамет с одинарным набором хромосом.

Важнейшее значение имело открытие вирусов русским ученым Д. И. Ивановским (1892).

В конце XIX в. большие успехи сделаны в биохимии. Швейцарский врач Ф. Мишер открыл нуклеиновые кислоты (1869), выполняющие, как было установлено в дальнейшем, функции хранения и передачи генетической информации. К началу XX в. было выяснено, что белки состоят из аминокислот, соединенных друг с другом, как показал немецкий ученый Э. Фишер, пептидными связями.

Физиология в XIX в. развивается в разных странах мира. Особенно существенными были работы французского физиолога К. Бернара, создавшего учение о постоянстве внутренней среды организма - гомеостазе. В Германии прогресс физиологии связан с именами И. Мюллера, Г. Гельмгольца, Э. Дюбуа-Реймона. Гельмгольц развил физиологию органов чувств, Дюбуа-Реймон стал основоположником изучения электрических явлений в физиологических процессах. Выдающийся вклад в развитие физиологии в конце XIX - начале XX в. внесли русские ученые: И. М. Сеченов, Н. Е. Введенский, И. П. Павлов, К. А. Тимирязев.

Генетика сформировалась как самостоятельная биологическая наука, изучающая наследственность и изменчивость живых организмов. Еще из работ Менделя следовало, что существуют материальные единицы наследственности, впоследствии названные генами. Это открытие Менделя было оценено лишь в начале XX в. в результате исследований X. де Фриза в Голландии, Э. Чермака в Австрии, К. Корренса в Германии. Американский ученый Т. Морган, исследуя гигантские хромосомы мухи дрозофилы, пришел к выводу, что гены находятся в клеточных ядрах, в хромосомах. Он, а также другие ученые разработали хромосомную теорию наследственности. Тем самым генетика в значительной мере объединилась с цитологией (цитогенетика) и стал понятен биологический смысл митоза и мейоза.

С начала нашего века началось быстрое развитие биохимических исследований во многих странах мира. Основное внимание было уделено путям превращения веществ и энергии во внутриклеточных процессах. Было установлено, что эти процессы в принципе одинаковы у всех живых существ - от бактерий до человека. Универсальным посредником в превращении энергии в клетке оказалась аденозинтрифосфорная кислота (АТФ). Советский ученый В. А. Энгельгардт открыл процесс образования АТФ при поглощении клетками кислорода. Открытие и исследование витаминов, гормонов, установление состава и строения всех основных химических компонентов клетки выдвинули биохимию на одно из ведущих мест в ряду биологических наук.

Еще на рубеже XIX и XX вв. профессор Московского университета А. А. Колли поставил вопрос о молекулярном механизме передачи признаков по наследству. Ответ на вопрос дал в 1927 г. советский ученый Н. К. Кольцов, выдвинув матричный принцип кодирования генетической информации (см. Транскрипция, Трансляция).

Матричный принцип кодирования был разработан советским ученым Н. В. Тимофеевым-Ресовским и американским ученым М. Дельбрюком.

В 1953 г. американец Дж. Уотсон и англичанин Ф. Крик использовали этот принцип при анализе молекулярной структуры и биологических функций дезоксирибонуклеиновой кислоты (ДНК). Так на основе биохимии, генетики и биофизики возникла самостоятельная наука - молекулярная биология.

В 1919 г. в Москве был основан первый в мире Институт биофизики. Эта наука исследует физические механизмы преобразования энергии и информации в биологических системах. Существенная проблема биофизики - выяснение роли различных ионов в жизни клетки. В этом направлении работали американский ученый Ж. Леб, советские исследователи Н. К. Кольцов, Д. Л. Рубинштейн. Эти исследования привели к установлению особой роли биологических мембран. Неравновесное распределение ионов натрия и калия по обе стороны мембраны клетки, как показали английские ученые А. Л. Ходжкин, Дж. Экле и А. Ф. Хаксли, является основой распространения нервного импульса.

Значительных успехов добились науки, изучающие индивидуальное развитие организмов - онтогенез. Были разработаны, в частности, методы искусственного партеногенеза.

В первой половине XX в. советский ученый В. И. Вернадский создал учение о биосфере Земли. В это же время В. Н. Сукачев заложил основы представлений о биогеоценозах.

Изучение взаимодействия отдельных особей и их совокупностей с окружающей средой привело к формированию экологии - науки о закономерностях взаимоотношений организмов со средой обитания (термин «экология» предложил в 1866 г. немецкий ученый Э. Геккель).

Самостоятельной биологической наукой стала этология, изучающая поведение животных.

В XX в. получила дальнейшее развитие теория биологической эволюции. Благодаря развитию палеонтологии и сравнительной анатомии было выяснено происхождение большинства крупных групп органического мира, вскрыты морфологические закономерности эволюции (советский ученый А. Н. Северцов). Огромное значение для развития эволюционной теории имел синтез генетики и дарвинизма (работы советского ученого С. С. Четверикова, английских ученых С. Райта, Р. Фишера, Дж. Б. С. Холдейна), приведший к созданию современного эволюционного учения. Ему посвящены труды американских ученых Ф. Г. Добржанского, Э. Майра, Дж. Г. Симпсона, англичанина Дж. Хаксли, советских ученых И. И. Шмалъ-гаузена, Н. В. Тимофеева-Ресовского, немецкого ученого Б. Ренша.

Советский ученый Н. И. Вавилов на основании достижений эволюционной теории и генетики и в результате собственных многолетних исследований создал теорию центров происхождения культурных растений. А. И. Опарин распространил эволюционные представления на «предбиологический» период существования Земли и выдвинул теорию происхождения жизни.

Зоологи и ботаники в XX в. продолжали изучение жизни животных и растений в различных условиях обитания. Большие успехи были достигнуты в изучении отдельных групп животных и растений - орнитологии (птицы), энтомологии (насекомые), герпетологии (пресмыкающиеся), альгологии (водоросли), лихенологии (лишайники) и др. Выдающийся вклад в развитие зоологии внесли советские ученые М. А. Мензбир, С. И. Огнев, А. Н. Формозов, В. А. Догель, Л. А. Зенкевич, К. И. Скрябин, М. С. Гиляров и другие; ботаники - М. И. Голенкин, К. И. Мейер, А. А. Уранов, Л. И. Курсанов, В. Л. Комаров и другие.

Физиология животных развивалась под сильным влиянием трудов советских ученых И. П. Павлова, Л. А. Орбели, А. А. Ухтомского, А. Ф. Самойлова, английского ученого Ч. Шеррингтона и многих других.

Основное внимание было уделено физиологии центральной нервной системы, механизмам передачи сигналов по нерву и с нерва на мышцу.

В результате изучения регуляции формообразования, роста и развития животных в отдельную биологическую дисциплину выделилась эндокринология - наука о гормонах, имеющая важное значение для медицины.

Советский ученый М. М. Завадовский выдвинул концепцию взаимодействия эндокринных органов по принципу обратных связей (см. Эндокринная система).

Физиология растений добилась успехов в познании природы фотосинтеза, изучении участвующих в нем пигментов, и прежде всего хлорофилла.

С выходом человека в космическое пространство появилась новая наука - космическая биология. Основная задача ее - жизнеобеспечение людей в условиях космического полета, создание искусственных замкнутых биоценозов на космических кораблях и станциях, поиск возможных проявлений жизни на других планетах, а также подходящих условий для ее существования.

В 70-е гг. возникла новая отрасль молекулярной биологии - генная инженерия, задача которой - активная и целенаправленная перестройка генов живых существ, их конструирование, т. е. управление наследственностью. В результате этих работ стало возможным введение генов, взятых из одних организмов или даже искусственно синтезированных, в клетки других организмов (например, введение гена, кодирующего синтез инсулина у животных, в клетки бактерий). Стала возможной гибридизация клеток разных видов - клеточная инженерия. Разработаны методы, позволяющие выращивать организмы из отдельных клеток и тканей (см. Культура клеток и тканей). Это открывает огромные перспективы в размножении копий - клонов ценных индивидуумов.

Все эти достижения имеют чрезвычайно важное практическое значение - они стали основой новой отрасли производства - биотехнологии. Уже сейчас осуществляется биосинтез лекарств, гормонов, витаминов, антибиотиков в промышленных масштабах. А в будущем таким путем мы сможем получить основные компоненты пищи - углеводы, белки, липиды. Использование солнечной энергии по принципу фотосинтеза растений в биоинженерных системах разрешит проблему обеспечения энергией основных потребностей людей.

Значение биологии в наши дни неизмеримо возросло и в связи с проблемой сохранения биосферы из-за бурного развития промышленности, сельского хозяйства, роста населения Земли.

Появилось важное практическое направление биологических исследований - изучение среды обитания человека в широком смысле и организация на этой основе рациональных способов ведения народного хозяйства, охраны природы.

Другое важнейшее практическое значение биологических исследований - использование их в медицине. Именно успехи и открытия в биологии определили современный уровень медицинской науки. С ними связан и дальнейший прогресс медицины. О многих задачах биологии, связанных со здоровьем людей, вы прочтете в нашей книге (см. Иммунитет, Бактериофаг, Наследственность и др.).

Биология в наши дни становится реальной производительной силой. По уровню биологических исследований можно судить о материально-техническом развитии общества.

Накоплению знаний в новых и классических областях биологии способствует применение новых методов и приборов, например появление электронной микроскопии.

В нашей стране растет число биологических научно-исследовательских институтов, биостанций, а также заповедников и национальных парков, играющих важную роль как «природные лаборатории».

Большое число биологов разных специальностей готовят высшие учебные заведения (см. Биологическое образование в СССР). Многие из вас пополнят в будущем многочисленный отряд специалистов, перед которым стоят задачи решения важных биологических проблем.

В древности люди, собирая различные растения, охотясь на зверей и птиц, накапливали знания о них. Эти знания передавались из поколения в поколение и со временем послужили основой древнейшим биологическим наукам- ботанике и зоологии.

Люди болели, получали раны от зверей, врагов. Чтобы вылечиться, необходимо было знать анатомию человека, лекарственные средства. Так появились зачатки еще одной древней биологической науки - медицины.

Человек стал возделывать землю, приручать и одомашнивать зверей и птиц, выводить новые сорта растений и породы животных. Впоследствии из его наблюдений и знаний сложились основы сельскохозяйственных наук.

По мере роста человеческих знаний, расширения хозяйственных потребностей росла и развивалась семья биологических наук. Постоянное расширение и углубление биологических исследований со временем привело к делению древнейших биологических наук на новые самостоятельные науки, а некоторые из них, в свою очередь, разделились на новые направления. Например, ботаника подразделяется на альгологию - науку о водорослях, микологию - о грибах, лихенологию - о лишайниках, дендрологию - о древесных растениях, науку о высших и низших растениях и т. д.

В зависимости от целей познания изучаемых организмов применяются различные формы и методы исследований.

Появились новые биологические науки, связанные с новыми методами исследования,- биохимия растений и животных, биофизика , радиобиология и др. Изучение живых организмов на разных уровнях - целого организма, его органов, клеток, групп организмов - также породило новые биологические науки - молекулярную биологию, биогеоценологию.

Биологические науки имеют огромное значение для человека. Без их развития практически невозможен прогресс ни одной отрасли современного хозяйства. Например, развитие микробиологии много дало для пищевой, фармацевтической, медицинской промышленности, сельского хозяйства.

От прогресса биологических наук зависит решение важнейших вопросов нашего времени- охраны природы, повышения продуктивности растений, животных, почвы , создания безотходных типов производства, замкнутых биологических систем для длительных космических полетов и т. д.

Современные биологические науки сосредоточили свои усилия на решении нескольких главных проблем.

Одна из них-изучение строения и функций молекул, из которых построены живые организмы, процессов их образования, взаимодействия, реакции на внешние воздействия.

Другая важная проблема - познание процессов, происходящих в клетках организма, что дает возможность управлять ими. Управление этими процессами, а следовательно, развитием и состоянием самого организма, законами наследственности и изменчивости зависит от знания индивидуального и исторического развития организмов с учетом всего их многообразия и сложности существующих взаимосвязей в природе. Чтобы понять современные биологические процессы, историю формирования существующих жизненных форм и связей, возможных их изменений в будущем,необходимо продолжать исследования о происхождении жизни на Земле.

Бурное развитие хозяйственной деятельности человека, рост населения земного шара поставили перед всеми биологическими науками задачу изучения взаимоотношений между биосферой и человечеством, чтобы создать надежную систему охраны природы, разработать безвредную технологию производства, обеспечить благоприятные условия жизни для людей на Земле.


Следующее: БИОЛОГИЧЕСКИЕ ЧАСЫ
Предыдущее: БИОЛОГИЧЕСКАЯ ОЛИМПИАДА
Интересное:

Биология - наука о жизни. В настоящее время она представляет собой комплекс наук о живой природе. Объектом изучения биологии являются живые организмы - растения и животные. и изучают многообразие видов, строение тела и функции органов, развитие, распространение, их сообщества, эволюцию.

Первые сведения о живых организмах начал накапливать еще первобытный человек. Живые организмы доставляли ему пищу, материал для одежды и жилища. Уже в то время человек не мог обойтись без знаний о свойствах растений, местах их произрастания, сроках созревания плодов и семян, о местах обитания и повадках животных, на которых охотился, хищниках и ядовитых животных, которые могли угрожать его жизни.

Так постепенно накапливались сведения о живых организмах. Приручение животных и начало возделывания растений потребовали более глубоких сведений о живых организмах.

Первые основатели

Значительный фактический материал о живых организмах был собран великим врачом Греции - Гиппократом (460-377г. до н.э.). Им собраны сведения о строении животных и человека, дано описание костей, мышц, сухожилий, головного и спинного мозга.

Первый большой труд по зоологии принадлежит греческому естествоиспытателю Аристотелю (384-322г. до н.э.). Он описал более 500 видов животных. Аристотель интересовался строением и образом жизни животных, он заложил основы зоологии.

Первая работа по систематизации знаний о растениях (ботаника ) выполнена Теофрастом (372-287г. до н.э.).

Расширением знаний о строении человеческого тела (анатомия) древняя наука обязана врачу Галену (130-200г. до н.э.), производившему вскрытия обезьян и свиней. Труды его оказывали влияние на естествознание и медицину в течение нескольких веков.

В эпоху средневековья под гнетом церкви наука развивалась очень медленно. Важным рубежом в развитии науки явилась эпоха Возрождения, начавшаяся в XVв. Уже в XVIIIв. развивались как самостоятельные науки ботаника, зоология, анатомия человека, физиология.

Основные вехи в изучении органического мира

Постепенно накапливались сведения о многообразии видов, строении тела животных и человека, индивидуальном развитии, функциях органов растений и животных. На протяжении многовековой истории биологии крупнейшими вехами в изучении органического мира можно назвать:

  • Введение принципов систематики, предложенных К.Линнеем;
  • изобретение микроскопа;
  • создание Т.Шванном клеточной теории;
  • утверждение эволюционного учения Ч.Дарвина;
  • открытие Г.Менделем основных закономерностей наследственности;
  • применение электронного микроскопа для биологических исследований;
  • расшифровка генетического кода;
  • создание учения о биосфере.

К настоящему времени науке известно около 1 500 000 видов животных и около 500 000 видов растений. Изучение многообразия растений и животных, особенностей их строения и жизнедеятельности имеет большое значение. Биологические науки являются базой для развития растениеводства, животноводства, медицины, бионики, биотехнологии.

Одними из древнейших биологических наук являются анатомия и физиология человека, составляющие теоретический фундамент медицины. Каждому человеку следует иметь представление о строении и функциях своего организма, чтобы в случае необходимости уметь оказать первую помощь, сознательно беречь свое здоровье и выполнять гигиенические правила.

На протяжении веков ботаника, зоология, анатомия, физиология разрабатывались учеными как самостоятельные, изолированные науки. Лишь в XIXв. были обнаружены закономерности, общие для всех живых существ. Так возникли науки, изучающие общие закономерности жизни. К ним относятся:

  • Цитология - наука о клетке;
  • генетика - наука об изменчивости и наследственности;
  • экология - наука о взаимоотношениях организма со средой и в сообществах организмов;
  • дарвинизм - наука об эволюции органического мира и другие.

В учебном курсе они составляют предмет общей биологии.



Понравилась статья? Поделитесь ей
Наверх