Что такое ускорение

Если мгновенная скорость движущегося тела растет, то движение называют ускоренным, если мгновенная скорость уменьшается, то движение называют замедленным.

Скорость в различных неравномерных движениях изменяется по разному. Например, товарный поезд, отходя от станции, движется ускоренно; на перегоне - то ускоренно, то равномерно, то замедленно; подходя к станции, он движется замедленно. Пассажирский поезд также движется неравномерно, но его скорость изменяется быстрее, чем у товарного поезда. Скорость пули в канале ствола винтовки возрастает от нуля до сотен метров в секунду за несколько тысячных долей секунды; при попадании в препятствие скорость пули уменьшается до нуля также очень быстро. При взлете ракеты ее скорость растет сначала медленно, а потом все быстрее.

Среди разнообразных ускоренных движений встречаются движения, в которых мгновенная скорость за любые равные промежутки времени увеличивается на одну и ту же величину. Такие движения называют равноускоренными. Шарик, начинающий скатываться по наклонной плоскости или начинающий свободно падать на Землю, движется равноускоренно. Заметим, что равноускоренный характер этого движения нарушается трением и сопротивлением воздуха, которые пока учитывать не будем.

Чем больше угол наклона плоскости, тем быстрее растет скорость скатывающегося по ней шарика. Еще быстрее растет скорость свободно падающего шарика (примерно на 10 м/с за каждую секунду). Для равноускоренного движения можно количественно охарактеризовать изменение скорости с течением времени, вводя новую физическую величину - ускорение.

В случае равноускоренного движения ускорением называют отношение приращения скорости к промежутку времени, за который это приращение произошло:

Ускорение будем обозначать буквой . Сравнивая с соответственным выражением из § 9, можно сказать, что ускорение есть скорость изменения скорости.

Пусть в момент времени скорость была , а в момент она стала равной , так что за время приращение скорости составляет . Значит, ускорение

(16.1)

Из определения равноускоренного движения следует, что эта формула даст одно и то же ускорение, какой бы промежуток времени ни выбрать. Отсюда видно также, что при равноускоренном движении ускорение численно равно приращению скорости за единицу времени. В СИ единица ускорения есть метр на секунду в квадрате (м/с2), т. е. метр в секунду за секунду.

Если путь и время измерены в других единицах, то и для ускорения надо принимать соответственные единицы измерения. В каких бы единицах ни выражать путь и время, в обозначении единицы ускорения в числителе стоит единица длины, а в знаменателе - квадрат единицы времени. Правило перехода к другим единицам длины и времени для ускорения аналогично правилу для скоростей (§11). Например,

1 см/с^2=36 м/мин^2.

Если движение не является равноускоренным, то можно ввести, пользуясь той же формулой (16.1), понятие среднего ускорения. Оно охарактеризует изменение скорости за определенный промежуток времени на пройденном за этот промежуток времени участке пути. На отдельных же отрезках этого участка среднее ускорение может иметь разные значения (ср. со сказанным в § 14).

Если выбирать такие малые промежутки времени, что в пределах каждого из них среднее ускорение остается практически неизменным, то оно будет характеризовать изменение скорости на любой части этого промежутка. Найденное таким образом ускорение называют мгновенным ускорением (обычно слово «мгновенное» опускают, ср. § 15). При равноускоренном движении мгновенное ускорение постоянно и равно среднему ускорению за любой промежуток времени.

«Класс!ная физика» переехала с "народа"!
«Класс!ная физика» - это сайт для тех, кто любит физику, учится сам и учит других.
«Класс!ная физика» - всегда рядом!
Интересные материалы по физике для школьников, учителей и всех любознательных.

Исходный сайт "Класс!ная физика" (class-fizika.narod.ru) с 2006 года входит в выпуски каталога «Образовательные ресурсы сети-интернет для основного общего и среднего (полного) общего образования», одобрено Министерством образования и науки РФ, Москва.


Читай, познавай, исследуй!
Мир физики интересен и увлекателен, он приглашает всех любознательных в путешествие по страницам сайта «Класс!ная физика».

А для начала - наглядная карта физики, которая показывает, откуда берут начало и как связаны между собой различные области физики, что они изучают, и для чего они нужны.
Карта Физики создана по видеоролику The Map of Physics от Доминика Вилиммана канала Domain of Science.


Физика и секреты художников

Тайны мумий фараонов и изобретения Ребрандта, подделки шедевров и секреты папирусов Древнего Египта - искусство скрывает в себе много тайн, но современные физики с помощью новых методов и приборов находят объяснения все большему числу удивительных секретов прошлого......... читать

Азбука физики

Всемогущее трение

Оно - всюду, да куда без него и денешься?
А вот три помощника-богатыря: графит, молебденит и тефлон. Эти удивительные вещества, обладающие очень высокой подвижностью частиц, применяются в настоящее время в качестве великолепной твердой смазки......... читать


Воздухоплавание

"Так поднимаются к звездам!" - начертано на гербе основателей воздухоплавания братьев Монгольфье.
Известный писатель Жюль Верн летал на воздушном шаре всего лишь 24 минуты, но это помогло ему создать увлекательнейшие художественные произведения......... читать


Паровые двигатели

"Этот могучий исполин был трёхметрового роста: гигант с лёгкостью тянул фургон с пятерыми пассажирами. На голове у Парового Человека была труба дымохода, откуда валил густой чёрный дым... всё, даже лицо, было сделано из железа, и все это непрерывно скрежетало и грохотало..." О ком это? Кому эти дифирамбы? ......... читать


Тайны магнита

Фалес Милетский наделял его душой, Платон сравнивал его с поэтом, Орфей находил его подобным жениху... В эпоху Возрождения магнит считали отображением неба и приписывали ему способность искривлять пространство. Японцы считали, что магнит - это сила, которая поможет повернуть к вам фортуну......... читать


По ту сторону зеркала

Знаете ли Вы, сколько интересных открытий может подарить "зазеркалье"? У изображения Вашего лица в зеркале правая и левая половины переставлены местами. А ведь лица редко бывают полностью симметричными, поэтому окружающие видят Вас совершенно иным. Задумывались ли Вы над этим? ......... читать


Секреты обыкновенного волчка

"Сознание того, что чудесное было рядом с нами, приходит слишком поздно." - А.Блок.
Знаете ли Вы, что малайцы могут часами завороженно наблюдать за вращением волчка. Однако, требуется немалое умение, чтобы правильно раскрутить его, ведь вес малайского волчка может достигать нескольких килограммов......... читать


Изобретения Леонардо да Винчи

" Я хочу создавать чудеса!"-говорил он и спрашивал себя: "Но скажи мне, сделано ли тобою хоть что-нибудь?" Леонардо да Винчи писал свои трактаты тайнописью с помощью обыкновенного зеркала, поэтому его зашифрованные рукописи впервые смогли прочитать лишь три столетия спустя.........

Равноускоренное движение - это движение с ускорением, вектор которого не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту.

Рассмотрим последний случай более подробно. В любой точке траектории на камень действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.

Движение тела, брошенного под углом к горизонту, можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y - равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формула для скорости при равноускоренном движении:

Здесь v 0 - начальная скорость тела, a = c o n s t - ускорение.

Покажем на графике, что при равноускоренном движении зависимость v (t) имеет вид прямой линии.

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a = v - v 0 t = B C A C

Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v 0 = - 2 м с; a = 0 , 5 м с 2 .

Для второго графика: v 0 = 3 м с; a = - 1 3 м с 2 .

По данному графику можно также вычислить перемещение тела за время t . Как это сделать?

Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .

Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .

s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + (v - v 0) 2 t .

Мы знаем, что v - v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:

s = v 0 t + a t 2 2

Для того, чтобы найти координату нахождения тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты при равноускоренном движении выражает закон равноускоренного движения.

Закон равноускоренного движения

Закон равноускоренного движения

y = y 0 + v 0 t + a t 2 2 .

Еще одна распространенная задача, которая возникает при анализе равноускоренного движения - нахождение перемещения при заданных значениях начальной и конечной скоростей и ускорения.

Исключая из записанных выше уравнений t и решая их, получаем:

s = v 2 - v 0 2 2 a .

По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:

v = v 0 2 + 2 a s .

При v 0 = 0 s = v 2 2 a и v = 2 a s

Важно!

Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

1. Ускорением называют величину, характеризующую изменение скорости в единицу времени. Зная ускорение тела и его начальную скорость, можно найти скорость тела в любой момент времени.

2. При любом неравномерном движении изменяется скорость. Как ускорение характеризует это изменение?

2. Если ускорение тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет ее (при торможении).

3. Чем отличается «замедленное» прямолинейное движение от «ускоренного»?

3. Движение с возрастающей по модулю скоростью называют «ускоренным» движением. Движение с убывающей скоростью «замедленным» движением.

4. Что такое равноускоренное движение?

4. Движение тела, при котором его скорость за любые промежутки времени изменяется одинаково, называется равноускоренным движением.

5. Может ли тело двигаться с большой скоростью, но с малым ускорением?

5. Может. Так как ускорение не зависит от значения скорости, а характеризует только ее изменение.

6. Как направлен вектор ускорения при прямолинейном неравномерном движении?

6. При прямолинейном неравномерном движении вектор ускорения а лежит на одной прямой с векторами V 0 и V .

7. Скорость - векторная величина, и изменяться может как модуль скорости, так и направление вектора скорости. Что именно изменяется при прямолинейном равноускоренном движении?

7. Модуль скорости. Так как векторы V и a лежат на одной прямой и знаки их проекций совпадают.

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

Рис. 1.8. Среднее ускорение. В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

V 2 > v 1

а направление вектора ускорения совпадает с вектором скорости

Если скорость тела по модулю уменьшается, то есть

V 2 < v 1

то направление вектора ускорения противоположно направлению вектора скорости Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).



Понравилась статья? Поделитесь ей
Наверх