Что такое зубчатое колесо. Зубчатое колесо. Основные параметры. Чертеж. Зубчатые конические колёса

Ни один хороший механизм не может быть построен без такой детали, как зубчатое колесо (или, иначе, шестерня). Правильное понимание того, как шестерни влияют на такие параметры, как крутящий момент и скорость вращения, очень важно. Ниже будет рассказано об азах зубчатых передач и о том, как правильно их использовать.

Механическое преимущество: крутящий момент против скорости вращения

Зубчатые передачи работают по принципу механического преимущества. Это значит, что с помощью использования шестерен различных диаметров вы можете изменять скорость вращения выходного вала и вращающий момент, развиваемый приводным двигателем.

Любой электродвигатель имеет определенную скорость вращения и соответствующий его мощности крутящий момент. Но, к сожалению, для многих механизмов предлагаемые на рынке и подходящие по стоимости асинхронные двигатели обычно не обладают желаемым соотношением между скоростью и моментом (исключением являются сервоприводы и мотор-редукторы с высоким моментом). Например, вы действительно хотите, чтобы колеса вашего робота-уборщика вращались со скоростью 3000 об/мин при низком крутящем моменте? Нет конечно, поэтому последний зачастую предпочтительнее скорости.

Уравнение зубчатой передачи

Она обменивает высокую входную скорость на больший выходной крутящий момент. Этот обмен происходит по очень простому уравнению, которое можно записать так:

Момент входной * Скорость входная = Момент выходной * Скорость выходная

Скорость входную можно найти, просто просматривая табличку приводного электродвигателя. Момент входной легко определить по этой скорости и механической мощности из той же таблички. Затем просто подставим выходную скорость или требуемый крутящий момент в правую часть уравнения.

Например, предположим, что ваш асинхронный двигатель при моменте на выходном валу 0,5 Н∙м имеет скорость 50 об/с, но вы хотите только 5 об/с. Тогда ваше уравнение будет выглядеть так:

0,5 Н∙м * 50 об/с = Момент выходной * 5 об/с.

Ваш выходной крутящий момент будет 5 Н∙м.

Теперь предположим, что с тем же мотором вам нужно 5 Н∙м, но при этом требуется минимальная скорость 10 об/с. Как бы узнать, способен ли на это ваш мотор вместе с зубчатой передачей (т. е., по сути, мотор-редуктор)? Обратимся снова к нашему уравнению

0,5 Н∙м * 50 об/с = 5 Н∙м * Скорость выходная,

Скорость выходная = 5 об/с.

Итак, вы определили, используя простое уравнение, что при показателе Момент выходной =5 Н∙м обеспечить скорость выходную в 10 об/с ваша зубчатая передача не способна. Вы только что сохранили себе кучу денег, так как не потратили их на механизм, который никогда не заработал бы.

Передаточное число зубчатой передачи

Мы записали уравнения, но как механически поменять местами крутящий момент и скорость? Для этого нужны две шестерни (иногда больше) различных диаметров, чтобы иметь конкретное передаточное число. В любой паре шестерен большее зубчатое колесо будет двигаться более медленно, чем меньшее, но оно будет передавать на выходной вал больший крутящий момент. Таким образом, чем больше величина разницы (или передаточное число) между двумя колесами, тем больше разница их скоростей и передаваемых крутящих моментов.

Передаточное число показывает, во сколько раз зубчатая передача изменяет скорость и вращающий момент. Для него, опять же, имеется очень простое уравнение.

Предположим, что передаточное число равно 3/1. Это будет означать, что вы увеличиваете ваш крутящий момент втрое, а скорость втрое снижаете.

Момент входной = 1,5 Н∙м, Скорость входная = 100 об/с,

Передаточное число = 2/3

Скорость выходная = Скорость входная * 3/2 = 150 об/с.

Итак, на выходе передачи момент в полтора раза вырос, а скорость точно так же снизилась.

Достижение определенного передаточного числа

Если вы хотите достичь простой его величины, скажем 2 к 1, вы должны использовать две шестерни, одна из которых вдвое больше другой. Это не что иное, как отношение их диаметров. Если диаметр зубчатого колеса в 3 раза больше, чем у сцепленного с ним другого, то вы получите передаточное число 3/1 (или 1/3).

Для гораздо более точного способа вычислить передаточное число подсчитайте отношение зубьев на шестернях. Если одна из них имеет 28 зубьев и другая - 13, вы получите передаточное число 28 / 13 = 2,15 или 13 / 28 = 0,46. Подсчет зубьев всегда будет давать вам наиболее точную величину.

Эффективность передач

К сожалению, в зубчатой передаче вы имеете определенные энергетические потери. Это обусловлено очевидными причинами, такими как трение, рассогласование углов давления, смазкой, зазорами (расстоянием между сцепленными зубьями двух шестерен), а также угловыми моментами и т. д. Различные типы передач, разные виды зубчатых колес, различные материалы и износ шестерен, - все это будет влиять на КПД передачи. Возможные их комбинации дадут слишком большой список, поэтому точную величину КПД передачи, которые вы используете, вы сможете найти в документации на нее.

Предположим, что вы используете два цилиндрических зубчатых колеса. Обычное КПД такой передачи примерно ~ 90%. Умножьте это число на вашу скорость выходную и момент выходной, чтобы получить истинные выходные величины передачи.

Если (из предыдущего примера):

Передаточное число = 2/3

Момент выходной = Момент входной * 2/3 = 1 Н∙м,

Скорость выходная = Скорость входная * 3/2 = 150 об/с,

то тогда:

Истинный Момент выходной = 1 Н∙м * 0,9= 0,9 Н∙м,

Истинная Скорость выходная = 150 об/с * 0,9 = 135 об/с.

Направление вращения шестерен

Разрабатывая любую зубчатую передачу, нужно понимать, как она изменяет направление вращения выходного вала. Две сцепленные шестерни всегда будут вращаться в противоположных направлениях. Это означает, что если одна вращается по часовой стрелке, то другая всегда будет вращаться против нее. Это вполне очевидно. Но что делать, если у вас есть передача, скажем, из шести сцепленных шестерен? Правило здесь следующее: входной и выходной валы у передач с нечетным числом шестерен всегда вращаются в одном направлении, а при четном числе шестерен - в противоположном.

Конструкция и параметры зубчатого колеса

Оно содержит венец с зубьями, диск и ступицу. Имеется три наиболее важных его параметра: модуль, диаметр делительной окружности и количество зубьев. Какую же делительную окружность имеет зубчатое колесо? Чертеж цилиндрического колеса с типовыми эвольвентными зубьями показан ниже.

Делительная окружность показана на нем пунктиром. По ней принято определять окружной шаг зубьев p (шаг зацепления), т. е. часть ее длины, приходящуюся на один зуб, и модуль шестерни m - часть диаметра делительной окружности d , приходящуюся на один зуб. Чтобы его вычислить, просто используйте формулу ниже:

m = d /z = p /3,14, мм.

Например, зубчатое колесо с 22 зубьями и диаметром 44 мм имеет модуль m = 2мм. Сцепленные шестерни должны обе иметь один модуль. Значения их стандартизованы, и как раз на делительной окружности модуль данного колеса принимает свое стандартное значение.

Высота головки зуба одного колеса меньше высоты ножки зуба второго, зацепляющегося с ним, благодаря чему образуется радиальный зазор c .

Для обеспечения бокового зазора δ между двумя сцепленными зубьями сумма ихтолщин принимается меньше их окружного шага p . Радиальный и боковойзазоры предусматриваются для создания необходимых условий смазки, нормальной работы передачи при неизбежных неточностях изготовления и сборки, тепловом увеличении размеров передачи и т. п.

Расчет зубчатого колеса

Он всегда ведется в составе расчета конкретной зубчатой передачи. Исходными данными для него обычно являются мощность (или крутящий момент), угловые скорости (или скорость одного вала и передаточное число), условия работы (характер нагрузки) и срок службы передачи.

Дальнейший порядок относится к закрытой цилиндрической прямозубой передаче.

1. Определение передаточного числа u .

2. Выбор материалов колес в зависимости от условий работы, назначение термообработки и значения твердости рабочих поверхностей зубьев.

3. Расчет зубьев передачи на изгиб.

4. Расчет зубьев передачи на контактную прочность (прочности контактирующих поверхностей зубьев).

5. Определение межосевого расстояния a W из условия контактной прочности и округление его значения до стандартного.

6. Задание модуля из соотношения m = (0,01 - 0,02) х a W и округление его значения до ближайшего стандартного. При этом в силовых передачах желательно иметь m ≥1,5 - 2 мм.

7. Определение суммарного числа зубьев передачи, числа зубьев шестерни и колеса.

8. Выбор коэффициентов формы зубьев для шестерни и колеса.

9. Проверка прочности зубьев по напряжениям изгиба.

10. Проведение геометрического расчета передачи.

11. Определение окружной скорости колеса и назначение соответствующей точности зацепления.

Расчет зубчатого колеса в составе открытой зубчатой передачи несколько отличается от приведенного, но в основном последовательность его такая же.

Как обозначается точность изготовления зубчатых колес

При изготовлении любые их виды имеют ряд погрешностей, среди которых выделяют четыре основные:

  • кинематическую погрешность, связанную в основном с радиальным биением зубчатых венцов;
  • погрешность плавности работы, вызываемую отклонениями шага и профиля зубьев;
  • погрешность контакта зубьев в передаче, которая характеризует полноту прилегания их поверхностей в зацеплении;
  • боковой зазор между неработающими поверхностями зубьев.

Для контроля первых трех погрешностей стандартами установлены специальные показатели - степени точности от 1 до 12, причем точность изготовления увеличивается с уменьшением показателя. Для контроля четвертой погрешности изготовления имеются два показателя:

  • вид сопряжения зубчатых колес - обозначается литерами A, B, C, D, E, H;
  • допуск на боковой зазор - обозначается литерами x, y, z, a, b, c, d, e, h.

Для обоих показателей бокового зазора обозначения даны в порядке убывания его величины и допуска на него.

Условно точность зубчатых колес обозначается двумя способами. Если степень точности по первым трем погрешностям одинакова, то ставится один общий для них численный показатель степени точности, за которыми стоят литеры обозначения вида сопряжения и допуска на боковой зазор. Например:

8-Ас ГОСТ 1643 - 81.

Если точности по первым трем погрешностям разные, то в обозначении ставятся три численных показателя последовательно. Например:

5-4-3-Са ГОСТ 1643 - 81.

Типы зубчатых передач

Любое зубчатое колесо, независимо от его типа, делается и работает по одним и тем же вышеприведенным принципам. Однако различные их типы позволяют выполнить разные задачи. Некоторые виды передач обладают или высоким КПД, или высоким передаточным отношением, или же работают с непараллельными осями вращения шестерен, к примеру. Ниже приведены основные общие типы. Это не полный список. Также возможно и сочетание нижеприведенных типов.

Примечание: Приведены только типичные КПД передач. Из-за многих других возможных факторов приводимые КПД должны использоваться только в качестве справочных величин. Часто производители приводят ожидаемые КПД в паспортах для своих передач. Помните, что износ и смазка будут также существенно влиять на эффективность передач.

Цилиндрические прямозубые колеса (КПД ~ 90%)

Цилиндрическое зубчатое колесо имеет зубья, расположенные на цилиндрической поверхности. Передачи с ними являются наиболее часто используемыми типами благодаря своей простоте и максимальной эффективности среди всех других. Передаточное число для одной пары u ≤ 12,5. Не рекомендуется для очень высоких нагрузок, так как прямые зубья зубчатого колеса довольно легко ломаются.

Цилиндрические косозубые колеса (КПД ~ 80%)

Они работают так же, как цилиндрические прямозубые, для передачи момента между параллельными валами, но у такой передачи более плавно происходит зацепление. Вследствие этого они создают меньше шума при работе и имеют меньшие габариты. У них большая нагрузочная способность. К сожалению, из-за сложной формы зубьев они, как правило, более дорогие.

Цилиндрические шевронные колеса

Являются разновидностью предыдущего вида. Чем отличается такое зубчатое колесо. Чертеж его показан ниже. Видно, что по ширине его венца расположены зубья с правым и левым наклоном, так что такие составные зубья зубчатого колеса по форме напоминает «шевроны». Эти колеса обладают всеми преимуществами косозубого их вида, плюс отсутствием осевых нагрузок. Они способны самоцентрироваться и не нуждаются в дорогостоящих радиально-упорных подшипниках для восприятия осевых нагрузок.

Конические зубчатые колеса (КПД ~ 70%)

Зубья этих колес, располагающиеся на конических поверхностях, выполняют прямыми, косыми, круговыми (дугообразными). Эти передачи применяют для передачи момента между перекрещивающимися под разными углами валами. К сожалению, их КПД довольно низок, поэтому следует избегать их применения, если возможно.

Червячные передачи (КПД ~ 70%)

Это передача с винтом-червяком на одном валу и червячным колесом на втором, перпендикулярном первому, валу. Они имеют очень высокое передаточное число. В расчетах принимают во внимание то, что у червяка (однозаходного) имеется только один зуб (виток).

Еще одним преимуществом червячной передачи является то, что у нее только одно направление вращения. Это означает, что только приводной двигатель может вращать такую передачу, в то время как сила тяжести или другие сторонние силы не вызовут каких-либо вращений. Это бывает полезно, например, для стопорения груза на высоте.

Зубчатой передачей называется меха­низм, служащий для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек.

Зубчатое колесо, сидящее на передающем вращение валу, называется веду­щим, а на получающем вращение - ведомым. Меньшее из двух колес со­пряженной пары называют шестерней; большее - колесом; тер­мин «зубчатое колесо» относится к обеим деталям передачи.

Зубчатые передачи представляют собой наиболее распространенный вид передач в современном машиностроении. Они очень надежны в работе, обеспечивают постоянство передаточного числа, компактны, имеют высо­кий КПД, просты в эксплуатации, долговечны и могут передавать любую мощность (до 36 тыс. кВт).

К недостаткам зубчатых передач следует отнести: необходимость высо­кой точности изготовления и монтажа, шум при работе со значительными скоростями, невозможность бесступенчатого изменения передаточного числа.

В связи с разнообразием условий эксплуатации формы элементов зубча­тых зацеплений и конструкции передач весьма разнообразны.

Зубчатые передачи классифицируются по признакам, приведенным ниже.

  1. По взаимному расположению осей колес : с па­раллельными осями (цилиндрическая передача - рис. 172, I-IV); с пере­секающимися осями (коническая передача - рис. 172, V, VI); со скрещива­ющимися осями (винтовая передача - рис. 172, VII; червячная передача - рис. 172, VIII).
  2. В зависимости от относительного вращения колес и расположения зубьев различают передачи с внеш­ним и внутренним зацеплением. В первом случае (рис. 172, I-III) враще­ние колес происходит в противоположных направлениях, во втором (рис. 172, IV) - в одном направлении. Реечная передача (рис. 172, IX) служит для преобразования вращательного движения в поступательное.
  3. По форме профиля различают зубья эвольвентные (рис. 172, I, II) и неэвольвентные, например цилиндрическая передача Новикова, зу­бья колес которой очерчены дугами окружности.
  4. В зависимости от расположения теоретичес­кой линии зуба различают колеса с прямыми зубьями (рис. 173, I), косыми (рис. 173, II), шевронными (рис. 173, III) и винтовыми (рис. 173, IV). В непрямозубых передачах возрастает плавность работы, уменьшается износ и шум. Благодаря этому непрямозубые передачи большей частью применяют в установках, требующих высоких окружных скоростей и пере­дачи больших мощностей.
  5. По конструктивному оформлению различают закры­тые передачи, размещенные в специальном непроницаемом корпусе и обес­печенные постоянной смазкой из масляной ванны, и открытые, работаю­щие без смазки или периодически смазываемые консистентными смазками (рис. 174).
  6. По величине окруж­ной скорости различают: тихо­ходные передачи (v равной до 3 м/с), среднескоростные (v равной от 3... 15 м/с) и быстроходные (v более 15 м/с).

Рис. 172

Рис. 173


Рис. 174

Основы теории зацепления

Боковые грани зубьев, соприкасаю­щиеся друг с другом во время враще­ния колес, имеют специальную кри­волинейную форму, называемую про­филем зуба. Наиболее распространен­ным в машиностроении является эвольвентный профиль (рис. 175).

Рис. 175

Придание профилям зубьев зубча­тых зацеплений таких очертаний не является случайностью. Чтобы зубья двух колес, находящихся в зацепле­нии, могли плавно перекатываться один по другому, необходимо было вы­брать такой профиль для зубьев, при котором не происходило бы перекосов и защемления головки одного зуба во впадине другого.

На рис. 176 изображена пара зубчатых колес, находящихся в зацепле­нии. Линия, соединяющая центры колес О 1 и О 2 называется линией центров или межосевым расстоянием - a w .

Рис. 176

Точка Р касания начальных окружностей d W 1 и d W 2 - полюс - все­гда лежит на линии центров. Начальными называются окружнос­ти, касающиеся друг друга в полюсе зацепления, имеющие общие с зуб­чатыми колесами центры и перекатывающиеся одна по другой без сколь­жения.

Если проследить за движением пары зубьев двух колес с момен­та, когда они впервые коснутся друг друга до момента, когда они выйдут из зацепления, то ока­жется, что все точки касания их в процессе движения будут лежать на одной прямой NN. Прямая NN, проходящая через полюс за­цепление Р и касательная к ос­новным* окружностям db 1 , db 2 , двух сопряженных колес, назы­вается линией зацепле­ния . Отрезок g a линии зацепле­ния, отсекаемый окружностями выступов сопряженных колес, - активная часть линии зацепле­ния, определяющая начало и ко­нец зацепления пары сопряжен­ных зубьев.

Линия зацепления представ­ляет собой линию давления со­пряженных профилей зубьев в процессе эксплуатации зубча­той передачи.

Угол? w между линией зацеп­ления и перпендикуляром к ли­нии центров O 1 О 2 называется углом зацепления. В основу профилирования эвольвентных зубьев и инструмента для их на­резания положен стандартный по ГОСТ 13755-81 исходный контур так называемой рейки, равный 20°.

Во время работы цилиндри­ческой прямозубой передачи сила давления Р n ведущей шес­терни O 1 в начале зацепления передается ножкой зуба на со­пряженную боковую поверх­ность (контактную линию) головки ведомого колеса О 2 . Чем больше пара зубьев одновременно находится в зацеплении, тем более плавно работает передача, тем меньшую нагрузку воспринимает на себя каждый зуб.

Стремление сделать зубчатую передачу более компактной вызывает не­обходимость применять зубчатые колеса с возможно меньшим числом зубь­ев. Изменение количества зубьев зубчатого колеса влияет на их форму (рис. 177). При увеличе­нии числа зубьев до бесконечно­сти колесо превращается в рейку и зуб приобретает пря­молинейное очертание. С умень­шением числа зубьев одновре­менно уменьшается толщина зу­ба у основания и вершины, а так­же увеличивается кривизна эвольвентного профиля, что приводит к уменьшению проч­ности зуба на изгиб. При умень­шении числа зубьев, когда z < z mim , происходит так называе­мое подрезание зубьев, то есть явление, когда зубья большого колеса при вращении заходят в область ножки меньшего колеса (см. заштрихованная площадь на рис. 177), тем самым ослабляя зуб в самом опасном сечении, увеличивая износ зубьев и снижая КПД передачи.

Рис. 177

На практике подрезку зубьев предотвращают прежде всего выбором со­ответствующего числа зубьев. Наименьшее число зубьев (z min), при кото­ром еще не происходит подрезание, рекомендуется выбирать от 35 до 40 при равном 15° и от 18 до 25 при? w равном 20°.

В отдельных случаях приходится выполнять передачу с числом зубьев меньшим, чем рекомендуется, при этом производят исправление, или, как говорят, корригирование формы зубьев. Один из таких способов заключает­ся в изменении высоты головки и ножки зуба до h a = 0,8m; h f = m. Этот спо­соб исключает подрезку, но увеличивает износ зубьев.

Теперь обратимся к изложению основной теоремы зацепления: общая нормаль (линия зацепления NN) к сопряженным профилям зубьев делит межосевое расстояние (? w = О 1 О 2) на отрезки (О 1 Р и 0 2 Р), обратно пропор­циональные угловым скоростям (w 1 и w 2). Если положение точки Р (полю­са зацепления) неизменно в любой момент зацепления, то передаточное от­ношение - отношение частоты вращения ведущего колеса к частоте враще­ния ведомого - будет постоянным.

0 2 Р / O 1 P = w 1 /w 2 = i = const.

4.3. Основные элементы зубчатых зацеплений. При изменении осевого расстояния? w = О 1 О 2 пары зубчатых колес будет меняться и положение по­люса зацепления Р на линии центров, а следовательно, и величина диаметров начальных окружностей, то есть у пары сопряженных зубчатых колес может быть бесчисленное множество начальных окружностей. Следует отметить, что понятие начальные окружности относится лишь к паре со­пряженных зубчатых колес. Для отдельно взятого зубчатого колеса нельзя говорить о начальной окружности.

Если заменить одно из колес зубчатой рейкой, то для каждого зубчатого колеса найдется только одна окружность, катящаяся по начальной прямой рейке без скольжения, - эта окружность называется делительной .

Примечание. В настоящей книге рассматриваются зубчатые передачи, у которых на­чальные и делительные окружности совпадают.

Так как у каждого зубчатого колеса имеется только одна делительная ок­ружность, то она и положена в основу определения основных параметров

зубчатой передачи по ГОСТ 16530- 83 и ГОСТ 16531-83 (рис. 178)

Рис. 178

Основные параметры зубчатых колес:

1. Делительными окружностя­ми пары зубчатых колес называ­ются соприкасающиеся окружно­сти, катящиеся одна по другой без скольжения. Эти окружности, на­ходясь в зацеплении (в передаче), являются сопряженными. На чер­тежах диаметр делительной ок­ружности обозначают буквой d.

2. Окружной шаг зубьев Р t - расстояние (мм) между одноимен­ными профильными поверхностя­ми соседних зубьев. Шаг зубьев, как нетрудно представить, равен делительной окружности, разде­ленной на число зубьев z.

3. Длина делительной окруж­ности. Модуль. Длину делитель­ной окружности можно выразить через диаметр и число зубьев: Пd = P t r. Отсюда диаметр делитель­ной окружности d = (Рt z)/П.

Отношение P t /П называется модулем зубчатого зацепления и обозначается буквой т. Тогда диаметр дели­тельной окружности можно выразить через модуль и число зубьев d = m z. Отсюда m = d/z.

Значение модулей для всех передач - вели­чина стандартизированная.

Для понимания зависимости между вели­чинами Р t т и d приведена схема на рис. 178, II, где условно показано размещение всех зубь­ев 2 колеса по диаметру ее делительной окруж­ности в виде зубчатой рейки.

4. Высота делительной головки зуба h a - расстояние между делительной окружностью колеса и окружностью вершин зубьев.

5. Высота делительной ножки зуба h f - расстояние между делительной окружностью колеса и окружностью впадин.

6. Высота зуба h - расстояние между ок­ружностями вершин зубьев и впадин цилинд­рического зубчатого колеса h = h a + h f . .

7. Диаметр окружности вершин зубьев d a - диаметр окружности, ограничивающей вершины головок зубьев.

8. Диаметр окружности впадин зубьев d f - диаметр окружности, прохо­дящей через основания впадин зубьев.

При конструировании механизма конструктор рассчитывает величину модуля т для зубчатой передачи и, округлив, подбирает модуль по таблице стандартизированных величин. Затем он определяет величины остальных геометрических элементов зубчатого колеса.

Зубчатые передачи с зацеплением M.Л. Новикова

В этом зацепле­нии профиль зубьев выполняется не по эвольвенте, а по дуге окружности или по кривой, близкой к ней (рис. 179).

Рис. 179

При зацеплении выпуклые зубья одного из колес контактируют с вогнуты­ми зубьями другого. Поэтому площадь соприкосновения одного зуба с другим в передаче Новикова значительно больше, чем в эвольвентных передачах. Касание сопряженных профилей теоретически происходит в точке, поэтому данный вид зацепления называют точечным .

При одинаковых с эвольвентным зацеплением параметрах точечная систе­ма зацепления с круговым профилем зуба обеспечивает увеличение контакт­ной прочности, что в свою очередь позволяет повысить нагрузочную способ­ность передачи в 2...3 раза по сравнению с эвольвентной. Взаимодействие зу­бьев в сравниваемых передачах также различно: в эвольвентном зацеплении преобладает скольжение, а в зацеплении Новикова - качение. Это создает благоприятные условия для увеличения масляного слоя между зубьями, уменьшения потерь на трение и увеличения сопротивления заеданию.

К достоинствам зацепления Новикова относятся возможность примене­ния его во всех видах зубчатых передач: с параллельными, пересекающи­мися и скрещивающимися осями колес, с внешним и внутренним зацепле­нием, постоянным и переменным передаточным отношением. Потери на трение в этой системе зацепления примерно в 2 раза меньше потерь в эвольвентном зацеплении, что увеличивает КПД передачи.

К основным недостаткам передач с зацеплением Новикова относятся: технологическая трудоемкость изготовления колес, ширина колес должна быть не менее 6 модулей и др. В настоящее время передачи с зацеплением Новикова находят применение в редукторах больших размеров.

ТИПЫ ЗУБЧАТЫХ ПЕРЕДАЧ

По сути, шестерни это устройства, которые передают вращательное движение от одной оси к другой. Некоторые типы передач могут осуществлять и поступательные движения. Существуют десятки различных типов передач в промышленности, лишь некоторые из которых показаны здесь.

ЦИЛИНДРИЧЕСКИЕ ШЕСТЕРНИ

Цилиндрические зубчатые колеса работают на валах оси которых параллельны

Одним из побочных эффектов пар цилиндрических зубчатых колес является то, что выходные оси вращается в противоположном направлении, от входной оси, эффект, который можно ясно увидеть в анимации

КОНИЧЕСКИЕ ЗУБЧАТЫЕ КОЛЕСА

Конические шестерни работают на осях, которые не являются параллельными. Конические шестерни могут быть сделаны специально для осей практически под любым углом

ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ

Червячных передач (или винт) можно рассматривать как передачу одного зуба

Червячные передачи имеют некоторые особые свойства, которые делают их отличимых от других передач. Во-первых, они могут достичь очень высоких передач произведенных за одну движение. Потому что большинство червячных передач имеет только один нагруженный зуб, передаточное отношение это просто число зубьев на соединение передач. Например, червячных пара передач в паре с 40- зубый цилиндрический редуктор имеет соотношение 40:1. Во-вторых, червячные передачи имеют гораздо более высокие трения (и ниже эффективность), чем другие типы передач. Это потому, что профиль зуба червячных передач постоянно скользят по зубам сопряженных передач. Это трение становится выше, тем больше нагрузка на передачу. Наконец, червячая передача не может работать с обратным эффектом. В анимации ниже, червячные передачи на зеленой оси ведет синие зубчатое колесо на красной оси. Но если вы включите красную ось в качестве ведущей, то червячных передач не получится. Это свойство передачи может применяться для остановки -блокировки вещи на определенном месте, без скатывания назад, например ворота гаража.

ЛИНЕЙНЫЕ ПЕРЕДАЧИ

Это средство преобразования вращательного движения от оси вращения или шестерни в поступательное движение зубчатой рейки. Шестерня вращается, и толкает рейку вперед, поскольку в ней перемещаются зубы шестерни. Регулируется например меньшим количеством зубов на ведущей шестерни и большим на рейке. движение в рейки будет пропорционально количеству зубьев на шестерне

ДИФЕРЕНЦИАЛЬНАЯ ПЕРЕДАЧА

Дифференциал - это механическое устройство, которое передает крутящий момент с одного источника на два независимых потребителя таким образом, что угловые скорости вращения источника и обоих потребителей могут быть разными относительно друг друга. Такая передача момента возможна благодаря применению так называемого планетарного механизма. В автомобилестроении, дифференциал является одной из ключевых деталей трансмиссии. В первую очередь он служит для передачи момента от коробки передач к колёсам ведущего моста.

Почему для этого нужен дифференциал? В любом повороте, путь колеса оси, двигающегося по короткому (внутреннему) радиусу, меньше, чем путь другого колеса той же оси, которое проходит по длинному (внешнему) радиусу. В результате этого, угловая скорость вращения внутреннего колёса должна быть меньше угловой скорости вращения внешнего колеса. В случае с не ведущим мостом, выполнить это условие достаточно просто, так как оба колеса могут не быть связанными друг с другом и вращаться независимо. Но если мост ведущий, то необходимо передавать крутящий момент одновременно на оба колеса (если передавать момент только на одно колесо, то возможность управления автомобилем по современным понятиям будет очень плохой). При жесткой же связи колёс ведущего моста и передачи момента на единую ось обоих колёс, автомобиль не мог бы нормально поворачивать, так как колеса, имея равную угловую скорость, стремились бы пройти один и тот же путь в повороте. Дифференциал позволяет решить эту проблему: он передаёт крутящий момент на раздельные оси обоих колёс (полуоси) через свой планетарный механизм с любым соотношением угловых скоростей вращения полуосей. В результате этого, автомобиль может нормально двигаться и управляться как на прямом пути, так и в повороте.

ПЕРЕДАЧА С ПЕРЕКЛЮЧЕНИЕМ ШЕСТЕРЕН

Движущей кольцо, в сочетании с парой промежуточных шестерен, которые не зафиксированы на своей оси, обладают функцией, включать и выключать шестерни в работу.

Анимация показывает, работу шестерни, на отключение или или для того что бы обеспечить сцепление шетерен с помощью промежуточной шестерни. Движущееся кольца показаны красным цветом. , оси соединены с серой осью с белыми дисками которые скользит по пазам основной оси. Движущей белое кольцо вращается вместе с осями. Сначала , движущиеся кольцо отключено так как темно-серая и зеленая передача не зацеплены. Движущиеся кольцо, приходит в зацепление с зеленым и тем самым приводит в движение синюю передачу. Движущиеся кольцо не использует зубьев, а использует четыре конических пальца, существует значительный зазор между кольцом и пальцами. Что позволяет подключать кольцо на холостом ходу или когда шестерни вращаются с разными скоростями

РЕГУЛИРУЕМЫЙ РОТОР

ЗУБЧАТЫЕ ПЕРЕДАЧИ

П л а н л е к ц и и

1. Общие сведения.

2. Классификация зубчатых передач.

3. Геометрические параметры зубчатых колес.

4. Точность преобразования параметров.

5. Динамические соотношения в зубчатых зацеплениях.

6. Конструкция колес. Материалы и допускаемые напряжения.

1. Общие сведения

Зубчатая передача – это механизм, который с помощью зубчатого зацепления передает или преобразует движение с изменением угловых скоростей и моментов. Зубчатая передача состоит из колес с зубьями, которые сцепляются между собой, образуя ряд последовательно работающих кулачковых механизмов.

Зубчатые передачи применяют для преобразования и передачи вращательного движения между валами с параллельными, пересекающимися или перекрещивающимися осями, а также для преобразования вращательного движения в поступательное и наоборот.

Достоинства зубчатых передач:

1. Постоянство передаточного отношения i .

2. Надежность и долговечность работы.

3. Компактность.

4. Большой диапазон передаваемых скоростей.

5. Небольшое давление на валы.

6. Высокий КПД.

7. Простота обслуживания.

Недостатки зубчатых передач:

1. Необходимость высокой точности изготовления и монтажа.

2. Шум при работе со значительными скоростями.

3. Невозможность бесступенчатого регулирования передаточного отно-

шения i .

2. Классификация зубчатых передач

Зубчатые передачи, применяемые в механических системах, разнообразны. Они используются как для понижения, так и для повышения угловой скорости.

Классификация конструкций зубчатых преобразователей группирует передачи по трем признакам:

1. По виду зацепления зубьев . В технических устройствах применяются передачи с внешним (рис. 5.1, а ), с внутренним (рис. 5.1, б ) и с реечным (рис. 5.1, в ) зацеплением.

Передачи с внешним зацеплением применяются для преобразования вращательного движения с изменением направления движения. Передаточное отношение колеблется в пределах –0,1 i –10. Внутреннее зацепление применяется в том случае, если требуется преобразовывать вращательное движение с сохранением направления. По сравнению с внешним зацеплением передача имеет меньшие габаритные размеры, бóльший коэффициент перекрытия и повышенную прочность, но более cложна в изготовлении. Реечное зацепление применяется при преобразовании вращательного движения в поступательное и обратно.

2 . По взаимному расположению осей валов различают передачи цилиндрическими колесами с параллельными осями валов (рис. 5.1, а), коническими колесами с пересекающимися осями (рис. 5.2), колесами со скрещивающимися осями (рис. 5.3). Передачи c коническими колесами обладают меньшим передаточным отношением (1/6 i 6), более сложны в изготовлении и эксплуатации, имеют дополнительные осевые нагрузки. Винтовые колеса работают с повышенным скольжением, быстрее изнашиваются, имеют малую нагрузочную способность. Эти передачи могут обеспечивать различные передаточные отношения при одинаковых диаметрах колес.

3 . По расположению зубьев относительно образующей обода колеса

различают передачи прямозубые (рис. 5.4, а ), косозубые (рис. 5.4, б ), шевронные (рис. 5.5) и с круговыми зубьями.

Косозубые передачи имеют боль-

шую плавность зацепления, меньше

технологически

равноценны

прямозубым, но в передаче возникают

дополнительные

нагрузки.

Сдвоенная косозубая со

встречными

наклонами зубьев (шевронная) переда-

ча имеет все преимущества косозубой

и уравновешенные осевые силы. Но

передача несколько сложнее в изготов-

лении и монтаже. Криволинейные

зубья чаще всего применяются в кони-

передачах

повышения

нагрузочной способности,

плавности

работы при высоких скоростях.

3. Геометрические параметры зубчатых колес

К основным геометрическим параметрам зубчатых колес (рис. 5.6) относятся: шаг зуба Р t , модуль m (m = P t /), число зубьев Z , диаметр d делительной окружности, высота h a делительной головки зуба, высота h f делительной ножки зуба, диаметры d a и d f окружностей вершин и впадин, ширина зубчатого венца b .

df 1

db 1

dw 1 (d1 )

da 1

df 2

dw 2 (d2 )

da 2

db 2

Диаметр делительной окружности d = mZ . Делительной окружностью зуб колеса делится на делительную головку и делительную ножку, соотношение размеров которых определяется относительным положением заготовки колеса и инструмента в процессе нарезания зубьев.

При нулевом смещении исходного контура высота делительной головки и ножки зуба колеса соответствует таковым у исходного контура, т. е.

ha = h a * m; hf = (h a * + c* ) m,

где h a * – коэффициент высоты головки зуба; c * – коэффициент радиального

Для колес с внешними зубьями диаметр окружности вершин

da = d + 2 ha = (Z + 2 h a * ) m.

Диаметр окружности впадин

df = d – 2 hf = (Z – 2 h a * – 2 c* ) m.

При m ≥ 1 мм h a * = 1, c * = 0,25, d a = (Z – 2,5)m .

Для колес с внутренними зубьями диаметры окружностей вершин и впадин следующие:

da = d – 2 ha = (Z – 2 h a * ) m;

df = d + 2 hf = (Z + 2 h a * + 2 c* ) m.

Для колес, нарезанных со смещением, диаметры вершин и впадин определяются с учетом величины коэффициента смещения по более сложным зависимостям.

Если два колеса, нарезанные без смещения, ввести в зацепление, то их делительные окружности будут касаться, т. е. совпадут с начальными окружностями. Угол зацепления при этом будет равен углу профиля исходного контура, т. е. начальные ножки и головки совпадут с делительными ножками и головками. Межосевое расстояние будет равняться делительному межосевому расстоянию, определяемому через диаметры делительных окружностей:

aw = a = (d1 + d2 )/2 = m(Z1 + Z2 )/2.

Для колес, нарезанных со смещением, имеется различие для начальных и делительных диаметров, т. е.

d w 1 ≠ d 1 ; d w 2 ≠ d 2 ; a w ≠ a ; αw = α.

4. Точность преобразования параметров

В процессе эксплуатации зубчатой передачи теоретически постоянное передаточное отношение претерпевает непрерывные изменения. Эти изменения вызываются неизбежными погрешностями изготовления размеров и формы зубьев. Проблема изготовления зубчатых зацеплений с малой чувствительностью к погрешностям решается в двух направлениях:

а) применение специальных видов профилей (например, часовое зацепление);

б) ограничение погрешностей изготовления.

В отличие от таких простых деталей, как валы и втулки, зубчатые колеса являются сложными деталями, и погрешности выполнения их отдельных элементов не только сказываются на сопряжении двух отдельных зубьев, но и оказывают влияние на динамические и прочностные характеристики зубчатой передачи в целом, а также на точность передачи и преобразования вращательного движения.

Погрешности зубчатых колес и передач в зависимости от их влияния на эксплуатационные показатели передачи можно разделить на четыре группы:

1) погрешности, влияющие на кинематическую точность, т. е. точность передачи и преобразования вращательного движения;

2) погрешности, влияющие на плавность работы зубчатой передачи;

3) погрешности пятна контакта зубьев;

4) погрешности, приводящие к изменению бокового зазора и влияющие на мертвый ход передачи.

В каждой из этих групп могут быть выделены комплексные погрешности, наиболее полно характеризующие данную группу, и поэлементные, частично характеризующие эксплуатационные показатели передачи.

Такое разделение погрешностей на группы положено в основу стандартов на допуски и отклонения зубчатых передач: ГОСТ 1643–81 и ГОСТ 9178–81.

Для оценки кинематической точности передачи, плавности вращения, характеристики контакта зубьев и мертвого хода в рассматриваемых стандартах установлено 12 степеней точности изготовления зубчатых колес

и передач. Степени точности в порядке убывания обозначаются числами 1–12. Степени точности 1 и 2 по ГОСТ 1643–81 для m > 1 мм и по ГОСТ 9178–81 для 0,1 < m < 1 являются перспективными, и для них в стандартах численные значения допусков нормируемых параметров не приводятся. Стандартом устанавливаются нормы кинематической точности, плавности, пятна контакта и бокового зазора, выраженные в допустимых погрешностях.

Допускается использование зубчатых колес и передач, группы погрешностей которых могут принадлежать к различным степеням точности. Однако ряд погрешностей, принадлежащих к различным группам по своему влиянию на точность передачи, взаимосвязаны, поэтому устанавливаются ограничения на комбинирование норм точности. Так, нормы плавности могут быть не более чем на две степени точнее или на одну степень грубее норм кинематической точности, а нормы контакта зубьев можно назначать по любым степеням, более точным, чем нормы плавности. Комбинирование норм точности позволяет проектировщику создавать наиболее экономичные передачи, выбирая при этом такие степени точности на отдельные показа-

тели, которые отвечают эксплуатационным требованиям, предъявляемым к данной передаче, не завышая затрат на изготовление передачи. Выбор степеней точности зависит от назначения, области применения колес и окружной скорости вращения зубьев.

Рассмотрим более подробно погрешности зубчатых колес и передач, влияющие на их качество.

5. Динамические соотношения в зубчатых зацеплениях

Зубчатые передачи преобразуют не только параметры движения, но и параметры нагрузки. В процессе преобразования механической энергии часть мощности P тр , подводимой к входу преобразователя, расходуется на преодоление трения качения и скольжения в кинематических парах зубчатых колес. В результате мощность на выходе уменьшается. Для оценки потери

мощности используется понятие коэффициента полезного действия (КПД), определяемого как отношение мощности на выходе преобразователя к мощности, подводимой к его входу, т. е.

η = P вых /P вх .

Если зубчатая передача преобразует вращательное движение, то соответственно мощности на входе и выходе можно определить как

Обозначим ωвых /ωвх через i , а величину T вых /T вх через i м , которое назовем передаточным отношением моментов. Тогда выражение (5.3) примет вид

η = i м .

Величина η колеблется в пределах 0,94–0,96 и зависит от типа передачи и передаваемой нагрузки.

Для зубчатой цилиндрической передачи КПД можно определить из зависимости

η = 1 – cf π(1/Z 1 + 1/Z 2 ),

где с – поправочный коэффициент, учитывающий уменьшение КПД с уменьшением передаваемой мощности;

20Т вых 292mZ 2

20Т вых 17,4mZ 2

где Т вых – момент на выходе, H мм; f – коэффициент трения между зубьями. Для определения действительных усилий на зубья передачи рассмот-

рим процесс преобразования нагрузки (рис. 5.7). Пусть движущий входной момент T 1 приложен к ведущему зубчатому колесу 1 с диаметром начальной окружности d w l , а момент сопротивления T 2 ведомого колеса 2 направлен в сторону, противоположную вращению колеса. В эвольвентном зубчатом зацеплении точка контакта находится всегда на линии, являющейся общей нормалью к соприкасаемым профилям. Следовательно, сила давления зуба F ведущего колеса на зуб ведомого будет направлена по нормали. Перенесем силу по линии действия в полюс зацепления P и разложим ее на две составляющие.

Ft ’

Ft ’

Касательная составляющая F t называется

окружной силой. Она

совершает полезную работу, преодолевая момент сопротивления T и приводя в движение колеса. Ее величину можно вычислить по формуле

F t = 2T /d w .

Составляющая по вертикали называется радиальной силой и обозначается F r . Эта сила работы не совершает, она только создает дополнительную нагрузку на валы и опоры передачи.

При определении величины обеих сил можно пренебречь силами трения между зубьями. В этом случае между полным усилием давления зубьев и его составляющими существуют следующие зависимости:

F n = F t /(cos α cos);

F r = F t tg α/ cos ,

где α – угол зацепления.

Зацепление цилиндрических прямозубых колес имеет ряд существенных динамических недостатков: ограниченные значения коэффициента перекрытия, значительный шум и удары при высоких скоростях. Для уменьшения габаритов передачи и уменьшения плавности работы часто прямозубое зацепление заменяют косозубым, боковые профили зубьев которого представляют собой эвольвентные винтовые поверхности.

В косозубых передачах полное усилие F направлено перпендикулярно зубу. Разложим эту силу на две составляющие: F t – окружное усилие колеса и F a – осевая сила, направленная вдоль геометрической оси колеса;

F a = F t tg β,

где – угол наклона зуба.

Таким образом, в косозубом зацеплении в отличие от прямозубого действуют три взаимно перпендикулярные силы F a , F r , F t , из которых только F t совершает полезную работу.

6. Конструкция колес. Материалы и допускаемые напряжения

Конструкция колес. При изучении принципов конструирования зубчатых передач основной целью является усвоение методики определения формы и основных параметров колес по условиям работоспособности и эксплуатации. Достижение указанной цели возможно при решении следующих задач:

а) выбор оптимальных материалов колес и определение допускаемых механических характеристик;

б) расчет размеров колес по условиям контактной и изгибной прочности;

в) разработка конструкции зубчатых колес.

Зубчатые передачи являются типовыми преобразователями, для которых разработано достаточно много обоснованных конструктивных оптимальных вариантов. Обобщающая схема конструкции зубчатого колеса может быть представлена как сочетание трех основных конструктивных элементов: зубчатого венца, ступицы и центрального диска (рис. 5.9). Форму и размеры зубчатого колеса определяют в зависимости от числа зубьев, модуля, диаметра вала, а также от материала и технологии изготовления колес.

На рис. 5.8 показаны примеры конструкций зубчатых колес механизмов. Размеры колес рекомендуется брать в соответствии с указаниями ГОСТ 13733–77.

Зубчатые передачи широко распространены и в промышленных агрегатах, и в бытовых приборах. Они выступают промежуточным звеном между источником вращательно-поступательного движения и узлом, выступающим конечным потребителем этой энергии. Причем передаваемая мощность может исчисляться как ничтожно малыми единицами (часовые механизмы и измерительные приборы), так и огромными усилиями (турбины электростанций).

Виды передачи движения

Двигатель, генерирующий энергию, и конечный агрегат, ее потребляющий, часто отличаются по таким характеристикам, как скорость вращения, мощность, угол приложения усилия. Кроме того, один источник вращательной энергии может служить для приведения в действие сразу нескольких различных узлов или агрегатов. Чтобы обеспечить доставку крутящего момента в таких условиях, необходимы промежуточные модули, которые бы передавали это усилие с минимальными потерями.

Если в результате такой раздачи или преобразования обороты ведущего вала становятся больше, чем у ведомого, то принято говорить о понижающей передаче. В этом случае потеря скорости компенсируется увеличением нагрузки на ведомой оси и приростом мощности потребляющего узла. В случае, когда в конечном итоге наблюдается увеличение количества оборотов, такая передача будет повышающей. Соответственно, это будет сопровождаться снижением усилия на ведомом валу.

Особенности зубчатого механизма

Ременная передача предполагает наличие между шкивами на связанных валах промежуточного звена - гибкого ремня. Зубчатый механизм от такого соединения отличается наличием на поверхности сопряженных деталей зубьев зацепления. По профилю и размеру они идентичны.

Головка зуба колеса входит в зацепление с повторяющей ее профиль впадиной на шестерне. При вращении ведущего вала ведомый проворачивается в противоположную сторону. Между ними конструктивно предусмотрен минимально возможный зазор, обеспечивающий скольжение, тепловое расширение и смазку для недопущения заклинивания. При этом ведущая часть парного механизма называется колесом, а ведомая - шестерней.

У ременной передачи плоскость зацепления ремня со шкивом составляет не менее трети длины окружности. В зубчатом механизме между ведущим колесом и ведомой шестерней под нагрузкой в постоянном контакте находится одна пара зубьев. Колеса и шестерни на валах обычно монтируются на шпоночном соединении.

Преимущества

Зубчатые передачи имеют широкое распространение. Они долговечны и надежны в работе при соблюдении допустимых уровней нагрузок и надлежащем уровне обслуживания. Малогабаритный механизм обеспечивает высокий коэффициент полезного действия и может применяться для широкого круга изменения скоростей.

Наличие зубьев зацепления позволяет добиваться постоянства передаточных отношений между сопряженными валами из-за отсутствия возможности их проскальзывания. При этом нагрузки на валы не превышают допустимых пределов.

Недостатки

Зубчатые передачи имеют и ряд особенностей, которые могут быть отнесены к их недостаткам. В плане эксплуатации - такой механизм шумит при высокой скорости вращения. Он не может гибко реагировать на изменяющуюся нагрузку, так как представляет собой жесткую конструкцию с точной регулировкой.

В технологическом плане - это сложность изготовления пар колес зацепления. Для такого вида передач требуется повышенная точность, так как зубья находятся в зацеплении при постоянно изменяющемся напряжении. В таких условиях возможны усталостные разрушения материала.

Это происходит при превышении допустимых нагрузок. Зубья могут выкрашиваться, частично или полностью ломаться. Отколовшиеся осколки попадают в механизм, повреждают соседние сопрягающиеся участки, что приводит к заклиниванию и выходу из строя всего узла.

Виды

Наибольшее распространение получила цилиндрическая зубчатая передача. Ее применяют в узлах и механизмах с параллельным расположением валов. По конструктивным особенностям различают зубья с прямым, косым и шевронным профилем.

Для перекрещивающихся валов используют червячную, винтовую цилиндрическую передачи, а для пересекающихся - коническую. Реечная передача отличается тем, что шестерня в общем парном механизме заменяется рабочей плоскостью. При этом на ней нарезаны зубья, идентичные по профилю колеса. В итоге вращательное движение преобразуется в поступательное.

Также разделяют передачи по скорости вращения: тихоходные, средние и скоростные. По назначению их делят на силовые и кинематические (не передающие значительной мощности). Кроме того, зубчатые передачи могут классифицироваться по величине передаточного числа, подвижности осей (рядовые и планетарные), числу степеней, точности зацепления (12 классов), способу изготовления. По форме профиля зуба могут быть эвольвентные, циклоидальные, цевочные, круговые.

Применение

Все виды зубчатых передач широко используются в различных отраслях промышленного производства. Годовое производство различных колесных пар исчисляется миллионами. Сфера их применения настолько обширна, что редкий прибор, механизм или агрегат, использующий в работе вращательное движение, не имеет в своем составе того или иного вида зубчатого подвижного соединения.

Цилиндрическая зубчатая передача используется для преобразования вращательного движения с понижающим или повышающим коэффициентом. Примеры: двигатели внутреннего сгорания, коробки перемены передач в подвижном составе, станкостроении, буровом, металлургическом, горнодобывающем производстве и всех видах промышленности.

Коническая зубчатая передача используется в меньшей степени из-за сложности в процессе изготовления колесных пар. Применяется в сложных и комбинированных механизмах, где присутствует вращательное движение с переменными углами и изменением нагрузок. В специальных редукторах обычно используются конические зубчатые передачи. Примеры: ведущие мосты автомобилей, сельхозтехники, локомотивов, колесные пары конвейеров, приводы различного промышленного оборудования.

Цилиндрические передачи

Применяются наиболее широко, так как технология изготовления колесных пар сравнительно проста и отработанна. Цилиндрическая зубчатая передача используется для передачи крутящего момента между валами, расположенными в параллельных плоскостях. Различаются по форме зубьев: с прямым расположением, косым и шевронным. В редких случаях при перекрещении валов и незначительных нагрузках используется винтовой профиль.

Зубья прямого расположения используются больше всего. Их применяют для передачи крутящего момента с незначительной или средней нагрузкой, а также в случаях, когда есть необходимость смещения колес в процессе работы вдоль оси вала. Косые зубья применяют для плавности хода. Их используют для ответственных механизмов и при повышенных нагрузках. Шевронный профиль (два ряда косых зубьев по краям, расположенных в форме елочки) отличается высокой уравновешенностью осевых сил смещения, которые являются недостатком косозубых колесных пар.

Прямозубые цилиндрические передачи могут быть открытого и закрытого типа. В последнем случае зубья одного из колес располагаются не на наружной, а на внутренней поверхности окружности.

Коническая передача

В условиях, когда крутящий момент от источника к потребляющему узлу нужно доставлять с угловым смещением, используют пересекающиеся валы. Их оси чаще всего находятся под углом 90 градусов. В таких случаях обычно применяется коническая зубчатая передача.

Называется так из-за конструктивных особенностей пар шестерен. Они имеют форму срезанного конуса и сопрягаются своими боковыми плоскостями, на которых нарезаются зубья. По профилю они выше у основания и уменьшаются по направлению к вершине.

Зубчатый венец может иметь прямую, тангенциальную или криволинейную нарезку. Если по профилю он выполнен в виде винтовой спирали, и валы кроме пересечения еще имеют и осевое смещение, то такая коническая передача называется гипоидной. Она обладает плавностью хода и низким уровнем шума, но имеет повышенную склонность к заеданию, поэтому для нее используются специальные смазочные материалы.

В сравнение с цилиндрическими передачами конические могут обеспечить лишь 85% их несущей способности. По технологии изготовления и сборки они являются самыми сложными. Однако возможность передачи крутящего момента с угловым смещением делает их незаменимыми в сложных узлах и механизмах.

Реечная и ременная зубчатая передача

Когда нужно преобразовать вращательное движение в поступательное или наоборот, одно из колес заменяется плоскостью с нарезанными зубьями. Реечная передача отличаются простотой изготовления и монтажа, надежностью и хорошими нагрузочными характеристиками. Применяется в станкостроении и для приводов, где используется поступательное движение: долбежные станки, транспортеры с попеременной подачей.

Зубчато-ременная передача - это гибридная модель, вобравшая положительные качества обеих видов. Отличается постоянством передаточного числа из-за отсутствия проскальзывания. Тихая работа при высоких оборотах и нагрузках достигается путем использования гибких ремней с сердечником. Часто используются в приводах электродвигателей.

На парных шкивах узла агрегата и на эластичном ремне, их связующем, имеются идентичные по профилю зубья. Передача работает не по принципу трения, а используется механизм зацепления. При этом с одной стороны отпадает необходимость сильного натяжения между шкивами и точной регулировки, с другой - смазки между сопрягающимися металлическими деталями.

Материал

Зубчатые передачи должны обладать надежностью в роботе при разных скоростях и нагрузках, прочностью зубьев, их износостойкостью и способностью противостоять заеданию. В качестве основного материала для колесных пар выступает сталь. Она может подвергаться термообработке или иметь в своем составе легирующие добавки и примеси. Как материал для тихоходных механизмов, имеющих большие габариты и открытый тип конструкции, может выступать чугун.

Для предотвращения заедания парные колеса изготавливают из различного по крепости материала. Если для колеса и шестерни используется высокоуглеродистая сталь, то используют различную степень их термообработки. Также применяется бронза, латунь, капролон, текстолит, пластики и формальдегиды.

Изготовление

Заготовки для колесных пар зубчатых передач могут быть изготовлены методом литья или штамповкой. В дальнейшем они подвергаются дополнительной обработке, и производится нарезания зубьев. Используют для этого дисковые и пальцевые фрезы, фасонные шлифовальные круги.

Механизм зубчатой передачи конического типа нельзя изготовить методом чистовой прорезки фрезой или шлифовкой, так как профиль выступов и впадин не постоянен. Это можно делать лишь на начальном этапе черновой обработки. Дальнейшая доводка производится на станках в процессе обкатки с зацеплением. Для этого используется парное колесо из высокопрочного материала, повторяющего основной профиль. Оно выступает в роли режущего инструмента.

Углеродистые стали подвергают закалке, цементации, азотированию или цианированию. Для неответственных узлов термообработка может проводиться после нарезания зубьев. Для колесных пар высокой точности требуется дополнительная финишная шлифовка или обкатка.

Обслуживание

При нормальной работе зубчатый механизм работает плавно, а процесс сопровождается монотонным умеренным шумом. Наличие посторонних звуков и неравномерность вращения свидетельствуют об износе поверхностей, входящих в зацепление, или нарушении регулировки.

Во время проведения технического обслуживания при осмотре проверяют отсутствие трещин, поломок зубьев или их сколов. Особое внимание обращается на правильность зацепления колесных пар и отсутствие зазоров. При работе проверяют торцевое биение и контролируют поверхности трения.

Правильность зацепления определяют нанесением краски на зубья передачи. Пока она не засохла, валы проворачивают несколько раз и осматривают места соприкосновения рабочих поверхностей. По форме отпечатка (он должен быть в форме эллипса) определяют общее состояние передачи.

Обращают внимание на точки касания. Они должны быть приблизительно в средней части высоты зуба. Пятно краски должно занимать 70 - 80% его длины. Регулировка в основном сводится к увеличению или уменьшению толщины прокладок под подшипниками.

В зависимости от типа узла смазка открытого механизма может проводиться периодически вручную пластичным материалом. Для закрытых конструкций она осуществляться принудительно разбрызгиванием или окунанием части венца рабочего колеса в ванну со смазкой.

Параметры зубчатой передачи

Для характеристики механизма зацепления определяют диаметры делительной и основной окружности, межосевое расстояние и возможное смещение валов. Взаимосвязь количества зубьев ведущего и ведомого колеса определяет передаточное отношение. Оно по исходным данным позволяет вычислить обороты для пары зацепления.

Колесо зубчатой передачи изначально характеризуется числом зубьев и модулем. Он стандартизирован и отображает длину делительной окружности, приходящейся на один зуб. Определяют диаметры выступов и впадин. Рассчитывают общую длину, высоту и толщину зуба, а также отдельных его частей - головки и ножки.

Рассчитывается делительный диаметр. Используется коэффициент ширины зубчатого венца. В случае с косыми зубьями определяются с углом их наклона. Нужно учитывать, что в конических и цилиндрических передачах он разный.

Кроме перечисленного еще используется угол профиля, коэффициент торцевого перекрытия и смещения, линии зацепления. Для червячных передач рассчитывают число витков, диаметр и вид червяка.

Расчет зубчатой передачи

Перед проектированием следует изучить исходные данные и определиться с условиями планируемой эксплуатации механизма. Учитывается исходный контур, тип и вид передачи, ее расположение в узле, допустимые нагрузки, материал для колесных пар и их термообработка. На этом этапе берется во внимание частота вращения валов и их диаметры, крутящий момент, передаточное число.

Чтобы произвести расчет зубчатой передачи, нужно определиться с общим модулем зацепления, числом зубьев для шестерни и колеса, их профилем, углом наклона и расположением. Определяют межосевое расстояние, выбирается ширина зубчатых венцов пары.

Рассчитываются геометрические показатели станочного зацепления, для которого проектируется зубчатая передача. Чертеж должен отображать не менее двух проекций: фронтальный и боковой вид слева с нанесенными промерами. Дополнительно составляется таблица основных геометрических и конструктивных параметров, строятся графики.

Значения рассчитывают по формулам, таблицам, применяют коэффициенты и соотношения, при этом используются исходные данные колеса и шестерни. В алгоритме расчетов для отдельных передач может присутствовать до пятидесяти и более шагов и логических этапов. Оптимальным решением вопроса детального проектирования является использование специализированной компьютерной программы.

Размеры пазов под шпонки или шлицы подбирают по стандартам. На общем плане чертеж монтажа колес на валах разрабатывают отдельно.

Стандарты

Нормируются ли зубчатые передачи? ГОСТ, действующий в настоящее время, определяет допустимые отклонения для готовых колесных пар. Точность заготовок устанавливается в зависимости от технологических особенностей и может регулироваться для каждой отрасли или завода-изготовителя отдельно.

Для каждого вида зубчатых передач существуют нормы взаимозаменяемости. Отдельные стандарты утратили актуальность вообще, некоторые действуют лишь в отдельных регионах. Тем не менее, нормы, разработанные ранее, используются для общей терминологии, обозначений, порядка разработки документации и построения чертежей.

ГОСТы регулируют параметры расчетов геометрии зубчатых колесных пар, их модули, исходные контуры, степени точности и виды сопряжений. Другие нормативы устанавливают стандарты на отдельные элементы деталей, а третьи - на уже готовые узлы и агрегаты.



Понравилась статья? Поделитесь ей
Наверх