Что значит "линейная зависимость"

линейная зависимость

соотношение вида С1u1+С2u2+... +Сnun?0, где С1, С2,..., Сn - числа, из которых хотя бы одно? 0, а u1, u2,..., un - какие-либо математические объекты, напр. векторы или функции.

Линейная зависимость

(матем.), соотношение вида

C11u1 + C2u2 + ... + Cnun = 0, (*)

где С1, C2, ..., Cn ≈ числа, из которых хотя бы одно отлично от нуля, а u1, u2, ..., un ≈ те или иные матем. объекты, для которых определены операции сложения и умножения на число. В соотношение (*) объекты u1, u2, ..., un входят в 1-й степени, т. е. линейно; поэтому описываемая этим соотношением зависимость между ними называется линейной. Знак равенства в формуле (*) может иметь различный смысл и в каждом конкретном случае должен быть разъяснён. Понятие Л. з. употребляется во многих разделах математики. Так, можно говорить о Л. з. между векторами, между функциями от одного или нескольких переменных, между элементами линейного пространства и т. д. Если между объектами u1, u2, ..., un имеется Л. з., то говорят, что эти объекты линейно зависимы; в противном случае их называется линейно независимыми. Если объекты u1, u2, ..., un линейно зависимы, то хотя бы один из них является линейной комбинацией остальных, т. е.

u1 = a 1u1 + ... + a i-1ui-1 + a i+1ui+1 + ... + a nun.

Непрерывные функции от одного переменного

u1 = j 1(х), u2 = j 2(х), ..., un = j n(x) называются линейно зависимыми, если между ними имеется соотношение вида (*), в котором знак равенства понимается как тождество относительно х. Для того чтобы функции j 1(x), j 2(x), ..., j n(x), заданные на некотором отрезке а £ х £ b, были линейно зависимы, необходимо и достаточно, чтобы обращался в нуль их определитель Грама

i, k = 1,2, ..., n.

Если же функции j1 (x), j2(x), ..., jn(x) являются решениями линейного дифференциального уравнения, то для существования Л. з. между ними необходимо и достаточно, чтобы вронскиан обращался в нуль хотя бы в одной точке.

══ Линейные формы от m переменных

u1 = ai1x1 + ai2x2 + ... + aimxm

(i = 1, 2, ..., n)

называются линейно зависимыми, если существует соотношение вида (*), в котором знак равенства понимается как тождество относительно всех переменных x1, x2, ..., xm. Для того чтобы n линейных форм от n переменных были линейно зависимы, необходимо и достаточно, чтобы обращался в нуль определитель

Перейдем к описанию свойств линейных пространств. В первую очередь к ним относятся отношения между его элементами.

Линейной комбинацией элементов над полем действительных чиселR называется элемент

Определение. Множество элементов ,называется линейно независимым, если из равенства

с необходимостью следует, что ,. Ясно, что любая часть элементов изтакже линейно независимая. Если хотя бы одно из,, то множествоназывается линейно зависимым.

Пример III .6. Пусть дано векторное множество . Если один из векторов, например,, то такая система векторов линейно зависима. В самом деле, пусть множество,, …,,, …,линейно независимо, тогда из равенстваследует, что.

Добавляя к этому множеству вектор, умноженный на, по-прежнему имеем равенство

Следовательно, множество векторов, как, впрочем, и любых других элементов, содержащих нулевой элемент, всегда линейно зависимо ▼.

Замечание. Если множество векторов пусто, то оно линейно независимо. В самом деле, если нет никаких индексов, то невозможно выбрать им соответствующие не равные нулю числа, чтобы сумма вида (III.2) была равна 0. Такая интерпретация линейной независимости может быть принята за доказательство, тем более что такой результат хорошо согласуется с теорией 11.

В связи со сказанным определение линейной независимости можно сформулировать так: множество элементов линейно независимо, еслии нет ни одного индекса, для которого. В частности, это множество может быть и пустым.

Пример III .7. Любые два скользящих вектора линейно зависимы. Напомним, что скользящими векторами называются векторы, лежащие на одной прямой. Взяв единичный вектор , можно получить любой другой вектор умножением на соответствующее действительное число, то естьили. Следовательно, уже любые два вектора в одномерном пространстве линейно зависимы.

Пример III .8. Рассмотрим пространство полиномов, где ,,,. Запишем

Полагая ,,, получим, тождественно поt

то есть множество линейно зависимо. Заметим, что любое конечное множество вида,линейно независимо. Для доказательства рассмотрим случай, тогда из равенства

в случае предположения о его линейной зависимости, следовало бы, что существуют не все равные нулю числа 1 , 2 , 3 , что тождественно для любого выполняется (III.3), но это противоречит основной теореме алгебры: любой многочлен n -ой степени имеет не более чем n действительных корней. В нашем случае это уравнение имеет только два корня, а не бесконечное их множество. Получили противоречие.

§ 2. Линейные комбинации. Базисы

Пусть . Будем говорить, чтоестьлинейная комбинация элементов .

Теорема III .1 (основная). Множество ненулевых элементов линейно зависимо тогда и только тогда, когда некоторый элемент,является линейной комбинацией предшествующих элементов.

Доказательство . Необходимость . Предположим, что элементы ,, …,линейно зависимы и пустьпервое натуральное число, для которого элементы,, …,линейно зависимы, тогда

при не всех равных нулю и обязательно(иначе этим коэффициентом было бы, что противоречило бы заявленному). Отсюда имеем линейную комбинацию

Достаточность очевидна, поскольку, каждое множество, содержащее линейно зависимое множество, само линейно зависимо ▼.

Определение. Базисом (координатной системой) линейного пространства L называется множество A линейно независимых элементов, такое, что каждый элемент из L является линейной комбинацией элементов из A , 11.

Мы будем рассматривать конечномерные линейные пространства ,.

Пример III .9. Рассмотрим трехмерное векторное пространство . Возьмем единичные векторы,,. Они образуют базис при.

Покажем, что векторы линейно независимы. В самом деле, имеем

или . Отсюда по правилам умножения вектора на число и сложения векторов (примерIII.2) получим

Следовательно, ,,▼.

Пусть – произвольный вектор пространства, тогда исходя из аксиом линейного пространства получаем

Аналогичные рассуждения справедливы для пространства с базисом, . Из основной теоремы следует, что в произвольном конечномерном линейном пространствеL любой элемент может быть представлен как линейная комбинация его базисных элементов,, …,, то есть

Причем такое разложение единственно. В самом деле, пусть имеем

тогда после вычитания получаем

Отсюда, в силу независимости элементов ,,

То есть ▼.

Теорема III .2 (о дополнении до базиса). Пусть – конечномерное линейное пространство и– некоторое множество линейно независимых элементов. Если они не образуют базис, то вможно найти такие элементы,, …,, что множество элементовобразуют базис в. То есть, каждое линейно независимое множество элементов линейного пространства может быть дополнено до базиса.

Доказательство . Поскольку пространство – конечномерное, то у него есть базис, состоящий, например, изn элементов, пусть это элементы . Рассмотрим множество элементов.

Применим основную теорему. В порядке следования элементов рассмотрим множество A . Оно заведомо линейно зависимое, поскольку любой из элементов есть линейная комбинация,,. Так как элементы,, …,– линейно независимые, то добавляя к нему последовательно элементыдо тех пор, пока не появится первый элемент, например,, такой, что он будет линейной комбинацией предыдущих векторов этого множества, то есть. Выбрасывая этот элемент из множестваA , получим . Продолжаем эту процедуру до тех пор, пока в этом множестве не останетсяn линейно независимых элементов, среди которых все элементы ,, …,иn -m из элементов . Полученное множество и будет базисом ▼.

Пример III .10. Доказать, что векторы ,,иобразуют линейно зависимое множество, а любые три из них линейно независимы.

Покажем, что существуют не все равные нулю числа , для которых

В самом деле, при ,имеем

Линейная зависимость доказана. Покажем, что тройка векторов, например ,,, образует базис. Составим равенство

Выполняя действия с векторами, получим

Приравнивая соответствующие координаты в правой и левой частях последнего равенства, получим систему уравнений ,,, решая ее, получим.

Аналогичное рассуждение справедливо и для оставшихся троек векторов ,,или,,.

Теорема III .3 (о размерности пространства). Все базисы конечномерного линейного пространства L состоят из одинакового числа базисных элементов.

Доказательство . Пусть даны два множества , где;,. Каждому из них припишем одно из двух свойств, определяющих базис: 1) через элементы множестваA линейно выражаются любые элементы из L , 2) элементы множества B представляют линейно независимую совокупность, но не обязательно всю из L . Будем считать, что элементы A и B упорядочены.

Рассмотрим множество A и применим к его элементам m раз метод из основной теоремы. Так как элементы из B линейно независимы, то получим, по-прежнему, линейно зависимое множество

В самом деле, если бы , то получилось бы линейно независимое множество, а оставшиесяn элементов множества B линейно выражались бы через них, что невозможно, значит . Но этого тоже быть не может, так как по построению множество (III.4) обладает свойством базиса множества A . Поскольку пространство L конечномерное, то остается только , то есть два разных базиса пространстваL состоят из одинакового числа элементов ▼.

Следствие. В любом n -мерном линейном пространстве () можно найти бесконечно много базисов.

Доказательство следует из правила умножения элементов линейного (векторного) пространства на число.

Определение. Размерностью линейного пространства L называется число элементов, составляющих его базис.

Из определения следует, что пустое множество элементов – тривиальное линейное пространство – имеет размерность 0, что, как следует заметить, оправдывает терминологию линейной зависимости и позволяет заявить: n -мерное пространство имеет размерностьn , .

Таким образом, подводя итоги сказанному, получаем, что каждое множество из n +1 элемента n -мерного линейного пространства линейно зависимо; множество из n элементов линейного пространства является базисом тогда и только тогда, когда оно линейно независимое (или каждый элемент пространства является линейной комбинацией элементов его базиса); в любом линейном пространстве число базисов бесконечно.

Пример III .11 (теорема Кронекера – Капелли).

Пусть имеем систему линейных алгебраических уравнений

где A – матрица коэффициентов системы,  расширенная матрица коэффициентов системы

Где , (III.6)

эта запись эквивалентна системе уравнений (III.5).

Теорема III .4 (Кронекера – Капелли). Система линейных алгебраических уравнений (III.5) совместна тогда и только тогда, когда ранг матрицы A равен рангу матрицы , то есть.

Доказательство . Необходимость . Пусть система (III.5) совместна, тогда у нее существует решение: ,,. Учитывая (III.6), , но в этом случаеесть линейная комбинация векторов,, …,. Следовательно, через множество векторов,,, …,можно выразить любой вектор из. Это означает, что.

Достаточность . Пусть . Выберем любой базис из,, …,, тогдалинейно выражается через базис (это могут быть как все векторы, так и их часть) и тем самым, через все векторы,. Это означает, что система уравнений совместна ▼.

Рассмотрим n -мерное линейное пространство L . Каждый вектор можно представить линейной комбинацией , где множество,состоит из базисных векторов. Перепишем линейную комбинацию в видеи установим взаимнооднозначное соответствие между элементами и их координатами

Это означает, что между n -мерным линейным векторным пространством векторов надn -мерным полем действительных чисел установлено взаимно-однозначное соответствие.

Определение. Два линейных пространства инад одним и тем же скалярным полемизоморфны , если между их элементами можно установить взаимнооднозначное соответствие f , так чтобы

то есть под изоморфизмом понимается взаимнооднозначное соответствие, сохраняющее все линейные отношения. Ясно, что изоморфные пространства имеют одинаковую размерность.

Из примера и определения изоморфизма следует, что с точки зрения изучения проблем линейности изоморфные пространства одинаковы, поэтому формально вместо n -мерного линейного пространства L над полем можно изучать только поле.


Понятия линейной зависимости и независимости системы векторов является очень важными при изучении алгебры векторов, так как на них базируются понятия размерности и базиса пространства. В этой статье мы дадим определения, рассмотрим свойства линейной зависимости и независимости, получим алгоритм исследования системы векторов на линейную зависимость и подробно разберем решения примеров.

Навигация по странице.

Определение линейной зависимости и линейной независимости системы векторов.

Рассмотрим набор из p n-мерных векторов , обозначим их следующим образом . Составим линейную комбинацию этих векторов и произвольных чисел (действительных или комплексных): . Отталкиваясь от определения операций над n -мерными векторами, а так же свойств операций сложения векторов и умножения вектора на число, можно утверждать, что записанная линейная комбинация представляет собой некоторый n -мерный вектор , то есть, .

Так мы подошли к определению линейной зависимости системы векторов .

Определение.

Если линейная комбинация может представлять собой нулевой вектор тогда, когда среди чисел есть хотя бы одно, отличное от нуля, то система векторов называется линейно зависимой .

Определение.

Если линейная комбинация представляет собой нулевой вектор только тогда, когда все числа равны нулю, то система векторов называется линейно независимой .

Свойства линейной зависимости и независимости.

На основании данных определений, сформулируем и докажем свойства линейной зависимости и линейной независимости системы векторов .

    Если к линейно зависимой системе векторов добавить несколько векторов, то полученная система будет линейно зависимой.

    Доказательство.

    Так как система векторов линейно зависима, то равенство возможно при наличии хотя бы одного ненулевого числа из чисел . Пусть .

    Добавим к исходной системе векторов еще s векторов , при этом получим систему . Так как и , то линейная комбинация векторов этой системы вида

    представляет собой нулевой вектор, а . Следовательно, полученная система векторов является линейно зависимой.

    Если из линейно независимой системы векторов исключить несколько векторов, то полученная система будет линейно независимой.

    Доказательство.

    Предположим, что полученная система линейно зависима. Добавив к этой системе векторов все отброшенные векторы, мы получим исходную систему векторов. По условию – она линейно независима, а в силу предыдущего свойства линейной зависимости она должна быть линейно зависимой. Мы пришли к противоречию, следовательно, наше предположение неверно.

    Если в системе векторов есть хотя бы один нулевой вектор, то такая система линейно зависимая.

    Доказательство.

    Пусть вектор в этой системе векторов является нулевым. Предположим, что исходная система векторов линейно независима. Тогда векторное равенство возможно только тогда, когда . Однако, если взять любое , отличное от нуля, то равенство все равно будет справедливо, так как . Следовательно, наше предположение неверно, и исходная система векторов линейно зависима.

    Если система векторов линейно зависима, то хотя бы один из ее векторов линейно выражается через остальные. Если система векторов линейно независима, то ни один из векторов не выражается через остальные.

    Доказательство.

    Сначала докажем первое утверждение.

    Пусть система векторов линейно зависима, тогда существует хотя бы одно отличное от нуля число и при этом верно равенство . Это равенство можно разрешить относительно , так как , при этом имеем

    Следовательно, вектор линейно выражается через остальные векторы системы , что и требовалось доказать.

    Теперь докажем второе утверждение.

    Так как система векторов линейно независима, то равенство возможно лишь при .

    Предположим, что какой-нибудь вектор системы выражается линейно через остальные. Пусть этим вектором является , тогда . Это равенство можно переписать как , в его левой части находится линейная комбинация векторов системы, причем коэффициент перед вектором отличен от нуля, что указывает на линейную зависимость исходной системы векторов. Так мы пришли к противоречию, значит, свойство доказано.

Из двух последних свойств следует важное утверждение:
если система векторов содержит векторы и , где – произвольное число, то она линейно зависима.

Исследование системы векторов на линейную зависимость.

Поставим задачу: нам требуется установить линейную зависимость или линейную независимость системы векторов .

Логичный вопрос: «как ее решать?»

Кое-что полезное с практической точки зрения можно вынести из рассмотренных выше определений и свойств линейной зависимости и независимости системы векторов. Эти определения и свойства позволяют нам установить линейную зависимость системы векторов в следующих случаях:

Как же быть в остальных случаях, которых большинство?

Разберемся с этим.

Напомним формулировку теоремы о ранге матрицы, которую мы приводили в статье .

Теорема.

Пусть r – ранг матрицы А порядка p на n , . Пусть М – базисный минор матрицы А . Все строки (все столбцы) матрицы А , которые не участвуют в образовании базисного минора М , линейно выражаются через строки (столбцы) матрицы, порождающие базисный минор М .

А теперь поясним связь теоремы о ранге матрицы с исследованием системы векторов на линейную зависимость.

Составим матрицу A , строками которой будут векторы исследуемой системы :

Что будет означать линейная независимость системы векторов ?

Из четвертого свойства линейной независимости системы векторов мы знаем, что ни один из векторов системы не выражается через остальные. Иными словами, ни одна строка матрицы A не будет линейно выражаться через другие строки, следовательно, линейная независимость системы векторов будет равносильна условию Rank(A)=p .

Что же будет означать линейная зависимость системы векторов ?

Все очень просто: хотя бы одна строка матрицы A будет линейно выражаться через остальные, следовательно, линейная зависимость системы векторов будет равносильна условию Rank(A)

.

Итак, задача исследования системы векторов на линейную зависимость сводится к задаче нахождения ранга матрицы, составленной из векторов этой системы.

Следует заметить, что при p>n система векторов будет линейно зависимой.

Замечание : при составлении матрицы А векторы системы можно брать не в качестве строк, а в качестве столбцов.

Алгоритм исследования системы векторов на линейную зависимость.

Разберем алгоритм на примерах.

Примеры исследования системы векторов на линейную зависимость.

Пример.

Дана система векторов . Исследуйте ее на линейную зависимость.

Решение.

Так как вектор c нулевой, то исходная система векторов линейно зависима в силу третьего свойства.

Ответ:

Система векторов линейно зависима.

Пример.

Исследуйте систему векторов на линейную зависимость.

Решение.

Не сложно заметить, что координаты вектора c равны соответствующим координатам вектора , умноженным на 3 , то есть, . Поэтому, исходная система векторов линейно зависима.

Зададим в (действительном или комплексном) систему из векторов

По определению система (1) линейно независима, если из векторного равенства

где , , ..., - числа (соответственно действительные или комплексные), следует, что

Система векторов (1) называется линейно зависимой, если существуют числа , , ..., , одновременно не равные нулю, для которых выполняется равенство (2). Если для определенности считать, что , то из (2) следует, что

Таким образом, если система из векторов линейно зависима, то один из них есть, как говорят, линейная комбинация остальных, или, как еще говорят, зависит от остальных.

Так как все время будет идти речь о линейной зависимости, то термин линейный будем позволять себе иногда опускать. Будем также говорить зависимые или независимые векторы вместо зависимая или независимая система векторов.

Один вектор тоже образует систему - линейно независимую, если , и зависимую, если .

Если система векторов линейно независима, то любая часть этой системы тем более линейно независима. Иначе нашлась бы нетривиальная система чисел ,…,, для которой выполнялось бы

но тогда для системы , ..., , , которая тоже нетривиальна, имело бы место

Из сказанного следует, что если система векторов линейно зависима то любая пополненная система

обладает тем же свойством. В частности, система векторов, содержащая в себе нулевой вектор, всегда линейно зависима.

Составим матрицу, определяемую векторами системы (1):

Теорема 1. Если ранг , т.е. ранг равен числу векторов, то система (1) линейно независима.

Если же ранг , то система (1) линейно зависима.

Пример 1. Два вектора , в действительном пространстве образуют линейно независимую систему, если определитель

потому что векторное уравнение

эквивалентно двум уравнениям для соответствующих компонент

Но если , то система (5) имеет единственное тривиальное решение

Если же , то уравнениям (5) удовлетворяет некоторая нетривиальная система , т.е. при система векторов , линейно зависима.

Очевидно, сказать, что в действительном пространстве векторы и коллинеарны или линейно зависимы - это все равно. Но тогда сказать, что векторы и не коллинеарны или линейно независимы - это тоже все равно.

Пример 2. Система векторов , , ...., в действительном пространстве всегда линейно зависима. Геометрически это ясно из рис. 33: если произвольный вектор и , - неколлинеарные векторы, то всегда можно указать такие числа , , что

Это показывает, что система , , линейно зависима. Если же и - коллинеарные векторы, то они линейно зависимы. Тем более линейно зависимы , , .

По теореме 1, чтобы исследовать пару векторов , , мы должны записать матрицу из их координат

В данном случае .

а) Если ранг , то теорема утверждает, что векторы , линейно зависимы.

б) Если же ранг , то векторы , линейно независимы.

Это совпадает с приведенными выводами, потому что в случае а) и б).

Тот факт, что три произвольных вектора , , в линейно зависимы, тоже предусмотрен теоремой - ведь ранг

Пример 3. В трехмерном действительном пространстве два вектора

линейно зависимы тогда и только тогда, когда они коллинеарны.

В самом деле, пусть , коллинеарны. Если один из данных векторов нулевой, то они линейно зависимы. Если же и коллинеарны и не нулевые, то

где - некоторое число. Последнее означает, что , линейно зависимы.

Обратно, если , линейно зависимы, то один из них зависит от другого, например

т.е. векторы коллинеарны.

Если в этом случае рассмотреть матрицу

то элементы строк матрицы пропорциональны, и поэтому

т.е. наше утверждение согласуется с теоремой 1.

Пример 4. Рассмотрим теперь три вектора в :

Векторному уравнению

эквивалентна система из трех уравнений

Если , то система (7") имеет единственное тривиальное решение . Но тогда и уравнение (7) имеет единственное тривиальное решение и система векторов , , , линейно независима.

Если , то система (7"), следовательно, и уравнение (7) имеют нетривиальное решение (). Но тогда система векторов (, , ) линейно зависима. Но здесь можно различать детали:

1) Пусть ранг, где

Тогда по крайней мере одна из строк , пусть для определенности первая, имеет хотя бы один элемент, не равный нулю. Рассмотрим матрицу

Она имеет ранг 1, поэтому все порождаемые ею определители второго порядка равны нулю

Но тогда, очевидно, компоненты векторов и пропорциональны.

Аналогично, учитывая, что в матрице

тоже все определители второго порядка равны нулю, получим, что

где - некоторое число. Таким образом, в этом случае векторы , , коллинеарны.

2) Пусть теперь ранг . Тогда одна из матриц, состоящих из двух строк матрицы , имеет ранг 2. Пусть для определенности это есть матрица (см. (8)). На основании примера 3 векторы и , линейно независимы. Но система , , зависима, т. е. для некоторой нетривиальной тройки чисел ()

Здесь , потому что иначе , и в силу независимости системы , было бы . Но тогда равенство (9) можно разрешить относительно :

Таким образом, если , а ранг (см. (8)), то векторы и неколлинеарны, а вектор , принадлежит к плоскости этих векторов.. Существует не равный нулю определитель уравнений системы (2") удовлетворяются найденными числами (см.(11)) и произвольными числами . На основании утверждения 2) §4 (правила решения систем) числа удовлетворяют и остальным уравнениям системы (2"), т. е. числа , (не все равные нулю) удовлетворяют остальным уравнениям системы (2").

Таким образом, векторы линейно зависимы, и теорема доказана и в этом случае.

Задача 1. Выяснить, является ли система векторов линейно независимой. Систему векторов будем задавать матрицей системы, столбцы которой состоят из координат векторов.

Решение. Пусть линейная комбинация равна нулю. Записав это равенство в координатах, получим следующую систему уравнений:

Такая система уравнений называется треугольной. Она имеет единственное решение . Следовательно, векторы линейно независимы.

Задача 2. Выяснить, является ли линейно независимой система векторов.

Решение. Векторы линейно независимы (см. задачу 1). Докажем, что вектор является линейной комбинацией векторов . Коэффициенты разложения по векторам определяются из системы уравнений

Эта система, как треугольная, имеет единственное решение.

Следовательно, система векторов линейно зависима.

Замечание . Матрицы, такого вида, как в задаче 1, называются треугольными , а в задаче 2 – ступенчато-треугольными . Вопрос о линейной зависимости системы векторов легко решается, если матрица, составленная из координат этих векторов, является ступенчато треугольной. Если матрица не имеет специального вида, то с помощью элементарных преобразований строк , сохраняющих линейные соотношения между столбцами, её можно привести к ступенчато-треугольному виду.

Элементарными преобразованиями строк матрицы(ЭПС) называются следующие операции над матрицей:

1) перестановка строк;

2) умножение строки на отличное от нуля число;

3) прибавление к строке другой строки, умноженной на произвольное число.

Задача 3. Найти максимальную линейно независимую подсистему и вычислить ранг системы векторов

Решение. Приведем матрицу системы с помощью ЭПС к ступенчато-треугольному виду. Чтобы объяснить порядок действий, строчку с номером преобразуемой матрицы обозначим символом . В столбце после стрелки указаны действия над строками преобразуемой матрицы, которые надо выполнить для получения строк новой матрицы.

Очевидно, что первые два столбца полученной матрицы линейно независимы, третий столбец является их линейной комбинацией, а четвертый не зависит от двух первых. Векторы называются базисными. Они образуют максимальную линейно независимую подсистему системы , а ранг системы равен трем.



Базис, координаты

Задача 4. Найти базис и координаты векторов в этом базисе на множестве геометрических векторов, координаты которых удовлетворяют условию .

Решение . Множество является плоскостью, проходящей через начало координат. Произвольный базис на плоскости состоит из двух неколлинеарных векторов. Координаты векторов в выбранном базисе определяются решением соответствующей системы линейных уравнений.

Существует и другой способ решения этой задачи, когда найти базис можно по координатам.

Координаты пространства не являются координатами на плоскости , так как они связаны соотношением , то есть не являются независимыми. Независимые переменные и (они называются свободными) однозначно определяют вектор на плоскости и, следовательно, они могут быть выбраны координатами в . Тогда базис состоит из векторов, лежащих в и соответствующих наборам свободных переменных и , то есть .

Задача 5. Найти базис и координаты векторов в этом базисе на множестве всех векторов пространства , у которых нечетные координаты равны между собой.

Решение . Выберем, как и в предыдущей задаче, координаты в пространстве .

Так как , то свободные переменные однозначно определяют вектор из и, следовательно, являются координатами. Соответствующий базис состоит из векторов .

Задача 6. Найти базис и координаты векторов в этом базисе на множестве всех матриц вида , где – произвольные числа.

Решение . Каждая матрица из однозначно представима в виде:

Это соотношение является разложением вектора из по базису с координатами .

Задача 7. Найти размерность и базис линейной оболочки системы векторов

Решение. Преобразуем с помощью ЭПС матрицу из координат векторов системы к ступенчато-треугольному виду.

Столбцы последней матрицы линейно независимы, а столбцы линейно выражаются через них. Следовательно, векторы образуют базис , и .

Замечание . Базис в выбирается неоднозначно. Например, векторы также образуют базис .



Понравилась статья? Поделитесь ей
Наверх