Эластическое и неэластическое сопротивление дыханию. Кровоток в скелетных мышцах Сопротивление в дыхательной системе

Эластическое сопротивление - (Elastance).

Эластическое сопротивление респираторной системы определяется суммой сопротивлений собственно легочной ткани и грудной стенки с диафрагмой. Однако, удельная величина этих сопротивлений неодинакова в разных возрастных группах. У здоровых взрослых сопротивление грудной клетки и диафрагмы составляет около 50% от общего, у годовалых детей - 30%, у доношенных новорожденных - 20%, у недоношенных новорожденных всего 10%. Поэтому крайне податливая грудная клетка у недоношенных вслед за легкими спадается сильнее, чем у доношенных детей. Этому способствует увеличенная эластическая тяга легких за счет повышенного поверхностного натяжения в альвеолах и дистальных бронхиолах, что связано с дефицитом сурфактанта. Это приводит к снижению ФОЕ и ателектазированию части альвеол и бронхиол с одной стороны, и к развитию ЭЗДП и появлению «воздушных ловушек» в хорошо вентилируемых зонах с другой стороны. И, напротив, у пожилых пациентов грудная клетка становится ригидной, поэтому и сопротивление ее к растяжению значительно возрастает. Эластическое сопротивление принято оценивать через обратную ему величину, то есть растяжимость (или податливость), обозначаемую С - (compliance). Податливость отражает отношение изменения объема (Д V) к изменению давления (ДР), выраженное в литрах на см Н2О (для удобства в мл/см Н2О). С = ДV/ДP.

Податливость респираторной системы зависит от следующих факторов:

  • - Содержания в легочной ткани эластических и коллагеновых волокон.
  • - Поверхностного натяжения пленки жидкости, выстилающей альвеолы, которое определяется количеством сурфактанта (у недоношенных дефицит сурфактанта)
  • - Эластичности дыхательных путей и сосудов легких.
  • - Объема крови в сосудах легких.
  • - Состояния гидратации легочного интерстиция.
  • - Состояния плевральных полостей. Наличие в них воспалительного экссудата, крови, лимфы, транссудата, инфузата или воздуха ограничивает С .
  • - Состояния диафрагмы. Высокое стояние диафрагмы при парезе кишечника, перитоните, диафрагмит, диафрагмальные грыжи - важные факторы рестрикции

Изменение объема легких при вдувании в них газа нелинейно по отношению к изменению давления этого газа. Эта зависимость выражается в виде кривой P/V (давление/объем) инспираторной. При опорожнении легких эта зависимость отражается кривой P/V экспираторной, которая по форме не совпадает с кривой вдоха. Таким образом, на графике возникает «петля P/V». Это несовпадение связано с тем, что при одинаковом объеме газа в легких, во время вдоха давление газа выше, чем во время выдоха (Pi > Pe). Это явление получило название гистерезис. Объясняется гистерезис потерей энергии на преодоление сил поверхностного натяжения альвеол, на растяжение эластических элементов легочной ткани и вязкостного (тканевого) сопротивления, то есть на преодоление сил внутритканевого трения. Петля P/V может иметь различные конфигурации, в зависимости от механических свойств легких (податливости), величины ФОЕ, а также объемов и давлений, применяемых при вдувании газа. Влияние ФОЕ на конфигурацию петель P/V иллюстрируется рис. 1. Таким образом, даже поверхностный взгляд на конфигурацию петли P/V без анализа цифровых данных позволяет получить представление о легочной механике пациента. Некоторые отечественные авторы недооценивают информацию, получаемую при анализе петель P/V и V/F, и считают, что достаточно оценивать графики давления и потока, к примеру, Царенко С. В. 2007. Однако, многие сотни публикаций в мировой литературе по интенсивной терапии за последнее десятилетие посвящены именно анализу петель и клинической интерпретации полученной информации.

Измерения растяжимости респираторной системы пациентов в клинике могут выполняться различными методами.

При статических методах (применяемых у взрослых) пациент отключается от аппарата ИВЛ, после 5 секундного выдоха в легкие медленно, ступенчато вдувается 3 литра кислорода (либо вдувание продолжается до достижения давления в 45см Н2О), измерения давления проводятся в отсутствии потоков газа (для исключения влияния аэродинамического сопротивления) через каждые 50-100 мл объема, как во время вдоха, так и во время выдоха. Таким образом выстраивается петля P/V. Cтатические методы (подробности в спец. литературе) весьма громоздки, требуют наличия специальной аппаратуры, выполняются в условиях миоплегии и седации, а измерения занимают не менее 45 секунд, что неприемлемо для детей раннего возраста. Но информация, полученная таким образом, является точной, объективной и отражает истинную растяжимость респираторной системы, если в расчетах используется трансторакальное давление (PIP плато - Ратм, которое принимается за ноль). Для измерения растяжимости собственно легких используется транспульмональное давление (PIP плато - Р плевральное). За плевральное давление принимается внутрипищеводное, для измерения которого нужны специальные датчики (баллонные).

Квазистатические методы тоже выполняются в условиях миоплегии и седации в условиях постоянного низкоскоростного потока в контуре пациента (обычно менее 9 литров в минуту). При этом аэродинамическое сопротивление дыхательных путей почти не влияет на конфигурацию петли, так как величина его незначительна. Пациента не отсоединяют от аппарата ИВЛ, а измерения занимают меньше времени (около 30 секунд). Информация с дыхательного монитора выводится на принтер, как графическая, так и цифровая. Все что для выполнения квазистатического измерения растяжимости респираторной системы требуется - наличие в аппарате ИВЛ генератора постоянного потока и программное обеспечение, а также дыхательный монитор с принтером. Все вентиляторы 4-5 поколений имеют такое программное обеспечение, которое является опцией. При использовании потоков менее 5 литров квазистатические графики полностью совпадают со статическими, однако, измерения занимают больше времени.

В настоящее время в развитых странах измерения растяжимости респираторной системы у вентилируемых пациентов с легочной патологией являются рутинными и обязательными, особенно у больных с ARDS. Параметры ИВЛ устанавливаются на основании анализа полученных графиков и цифровой информации.

Типичная петля P/V при ARDS у взрослых представлена на рис. 2. На кривой вдоха, которая имеет S-образную форму, выделяют две точки, после которых резко изменяется растяжимость респираторной системы. Между этими точками прирост объема легких носит относительно линейный характер (в виде прямой). У разных авторов эти точки называются по-разному, но наиболее часто они именуются «точками перегиба»: нижней - LIP (low inflection point) и верхней - UIP (upper inflection point). «Классическая» интерпретация формы кривой вдоха объясняет наличие LIP низкой ФОЕ и массивным раскрытием спавшихся альвеол и мелких дыхательных путей (recruitment), а наличие UIP полным раскрытием альвеол и началом их перерастяжения, так как прирост объема становится незначительным, по сравнению с приростом давления. OLC- open lung concept (концепция открытого легкого) предложенная в 1993г предусматривала установление РЕЕР у больных с ARDS на уровне LIР+2см (в среднем 12см Н2О), что стало стандартной практикой 90х и начала XXI века. Однако, не все авторы согласны с таким принципом подбора оптимальных значений РЕЕР (the best PEEP). Holzapfel L. et al 1983; заявили, что LIP является «неправильной» точкой, а «истинная» точка расположена на кривой выдоха - СРР (collapse pressure point) от которой легкие начинают быстро терять объем. Такого же мнения придерживаются Rimensberger P. et al 1999; Эти авторы считают, что для раскрытия ателектазов нужно большее давление, чем для поддержания альвеол в открытом состоянии. Отсутствие LIP на инспираторной ветви кривой P/V у больных с ARDS (или даже отрицательная кривизна начального участка) свидетельствует о негомогенном характере повреждения легких, то есть о достаточной ФОЕ и наличии значительного количества нормально вентилируемых (легко рекрутируемых) альвеол, что подтверждалось данными КТ легких. У таких больных высокие значения РЕЕР при ИВЛ приводили к выраженному перерастяжению легких и волюмтравме за счет увеличения ФОЕ и конечного инспираторного объема (Vieira S. et al 1999;).

Важность UIP заключается в возможности профилактировать повреждение легких высоким объемом - волюмтравму. PIP или Vt, в зависимости от способа ИВЛ (контроль давления или объема) должны ограничиваться значениями не выше этой точки. Иногда UIP четко не выявляется на графике, что, однако, не свидетельствует об отсутствии перерастяжения альвеол. Hickling K. et al 1998; объясняют это продолжающимся раскрытием «медленных» альвеол.

Существует 4 графических способа определения «правильной» локализации LIP и UIP. На самом деле изменения растяжимости происходят более плавно и точки эти не всегда четко видны на кривой P/V. Во избежание ошибок Harris R.S. et al 1999; предложили их математическое вычисление методом регрессивного анализа. К настоящему времени уже разработан математический аппарат для вычисления различных коэффициентов и индексов при анализе петли P/V. Например, HA - hysteresis area (вычисление площади петли P/V) и HR - hysteresis ratio (отношение НА к площади прямоугольника, в который эта петля вписывается), по которым оценивают эффект от проведения рекрутирующих маневров. Вполне вероятно, что в недалеком будущем программа полного математического анализа графиков P/V будет вводиться в дыхательные мониторы.

Динамическая растяжимость респираторной системы - Cdyn определяется в реальном времени у постоянно дышащего пациента и выводится на дисплей дыхательного монитора. На результаты измерения влияет Raw тем больше, чем выше частота дыхательных циклов, а, следовательно, короче время вдоха и выдоха. При этом не все отделы легких успевают вентилироваться (только «быстрые» альвеолы) и велика вероятность недостаточного опорожнения легких и возникновения «воздушных ловушек», то есть увеличения ФОЕ. Кроме того, у младенцев Raw значительно выше из-за малого калибра дыхательных путей. Поэтому статическая растяжимость респираторной системы всегда выше динамической.

Cdyn = Vt/PIP - PEEP.

На результаты измерений у младенцев сильно влияет величина утечки газа между интубационной трубкой и трахеей (которая завышает Vt). Датчик потока должен присоединяться непосредственно к коннектору ИТ. Собственно, Cdyn не является показателем «истинной» растяжимости респираторной системы, а отражает ее состояние при данных конкретных параметрах ИВЛ. Некоторые авторы, поэтому, считают, что понятие Cdyn является неправомерным, а следует употреблять термин «динамические характеристики легких».

Тем не менее, наблюдение за петлей P/V на дисплее дыхательного монитора в динамике дает много полезной информации, так как закономерности изменения ее конфигурации во многом соответствуют тем, что были получены статическими методами, в частности помогает предотвратить перерастяжение легких.

На рис. 3 представлены типичные «динамические» конфигурации петель P/V:

  • А) Здоровые легкие. Физиологические параметры ИВЛ.
  • В) Перерастяжение здоровых легких избыточным Vt.

C) Снижение растяжимости, ФОЕ снижена.

D) Снижение растяжимости, ФОЕ снижена, перерастяжение легких высоким Vt.

E) Снижение растяжимости, ФОЕ повышена.

Снижение растяжимости респираторной системы, вне зависимости от причины, проявляется снижением угла наклона петли к оси давления. Клиницисты называют такую петлю «лежачей». При снижении растяжимости легких, связанном с увеличением количества воды в интерстиции и сниженной ФОЕ, всегда возрастает гистерезис. При такой петле клиницисты называют легкие «жесткими» (если причина не связана с патологией в животе и плевральных полостях).

Изменение растяжимости легких у недоношенных с RDS после применения сурфактанта может произойти очень быстро. При этом ИВЛ с установленными первоначально параметрами вызовет развитие волюмтравмы и гипервентиляции. Это, в свою очередь, приведет к развитию респираторного алкалоза, что чревато серьезными последствиями. Избежать подобных осложнений можно, оценивая динамику изменений петли P/V и проводя своевременную коррекцию параметров вентиляции.

Нормальные значения С у здоровых взрослых 50 - 80мл/см Н2О, у здоровых новорожденных (по данным разных авторов) 3 - 6мл/см Н2О. К годовалому возрасту С увеличивается в 1,5 раза. У недоношенных детей с RDS С может снижаться менее 0,5мл/см Н2О.

Абсолютные значения С у взрослых и детей раннего возраста невозможно сравнивать из-за большой разницы в объеме легких. Однако, эта разница устраняется, если учитывать отношение растяжимости к объему ФОЕ. Этот показатель - С/ФОЕ называется удельной растяжимостью. У взрослого и годовалого ребенка эти величины одинаковы. У новорожденных удельная растяжимость ниже.

Все разнообразие нарушений легочной механики определяется сочетанием нарушений Raw и С. При преобладании нарушений Raw имеет место обструкция, а при преобладании нарушений С - рестрикция. Довольно часто имеет место сочетание этих нарушений в равной степени, либо с преобладанием того ли иного компонента. К примеру: при накоплении жидкости в легочном интерстиции снижается растяжимость, но отек начинает сдавливать дыхательные пути, лишенные хрящевого каркаса, увеличивая Raw. Существуют и характерные клинические признаки, позволяющие «на глаз» определить у младенца преобладание рестриктивного или обструктивного компонентов дыхательной недостаточности. Одышка при преобладании рестрикции отличается высокой частотой, дыхание поверхностное с участием вспомогательной мускулатуры на вдохе с выраженным втяжением податливых мест грудной клетки, при аускультации хрипы и «хрюканье». При преобладании интраторакальной обструкции одышка отличается меньшей частотой, втяжения уступчивых мест грудной клетки отмечаются не всегда, вспомогательная мускулатура участвует как во вдохе, так и выдохе (напряжение мышц живота), может быть снижение амплитуды дыхательных экскурсий, а грудная клетка вздута (в состоянии вдоха), выдох заметно удлинен, при аускультации во время выдоха фонация - экспираторный стридор. Рентгенологически: при рестрикции снижен объем легких и повышена «плотность» легочной ткани, при обструкции объем легких повышен, а легочная ткань повышенно «прозрачна».

До сих пор мы рассматривали только эластический или статический компонент работы органов дыхания. Однако имеется еще дополнительный неэластический или динамический компонент работы, на преодоление которого при нормальной частоте дыхания расходуется 30% всей затрачиваемой энергии. Неэластическое сопротивление состоит из двух основных компонентов: вязкостного сопротивления, возникающего при деформации тканей, и фрикционного сопротивления, связанного с газотоком по дыхательным путям. Фрикционное сопротивление дыхательных путей составляет 75-80% общей неэластической работы. Поскольку именно этот компонент наиболее часто изменяется при заболеваниях легких, вязкостное сопротивление тканей в дальнейшем не будет приниматься во внимание.

Сопротивление дыхательных путей у здорового взрослого человека составляет 1-3 см вод. ст. при газотоке 1 л/сек. Половина этой величины приходится на верхние дыхательные пути, другая половина - на нижние. В норме газоток в большей части бронхиального дерева носит ламинарный характер. Турбулентность наблюдается тогда, когда направление газотока резко изменяется или превышает определенную критическую линейную скорость. Хотя можно предположить, что турбулентность возникает главным образом в бронхиолах, в действительности при нормальном дыхании она проявляется почти всегда в области голосовой щели и трахеи. Это объясняется тем, что общая площадь поперечного сечения бронхиол значительно превышает площадь поперечного сечения трахеи и голосовой щели, благодаря чему линейная скорость в бронхиолах на много ниже критической величины. Снижение давления на протяжении дыхательных путей зависит от вязкости и плотности вдыхаемого газа, от длины и калибра дыхательных путей и от скорости газотока по ним. Вязкость газа является важным фактором, определяющим сопротивление при ламинарном газотоке. При турбулентном газотоке более важную роль играет плотность газа. Этим объясняется положительный эффект при применении газа с низкой плотностью, такого, как гелий, в составе дыхательной смеси в случаях локализованного нарушения проходимости верхних дыхательных путей. Сопротивление в значительной степени зависит от калибра дыхательных путей, причем при ламинарном газотоке оно увеличивается обратно пропорционально четвертой степени их радиуса. Следовательно, даже незначительные изменения просвета бронхов и бронхиол могут приводить к резкому изменению сопротивления. Например, во время приступа бронхиальной астмы сопротивление дыхательных путей может увеличиться в 20 раз.

Обычно просвет дыхательных путей зависит от градиента давления по обе стороны их стенки. Этот градиент можно представить как разницу между внутриплевральным давлением и давлением в дыхательных путях. Последняя величина изменчива, так как давление по ходу дыхательных путей снижается из-за сопротивления газотоку. Следовательно, давление растяжения, действующее через стенку дыхательных путей во время вдоха, наибольшее около ротовой полости, а во время выдоха - вблизи альвеол (рис. 3).

Рис. 3. Градиенты давлений вне и внутри дыхательных путей во время форсированного выдоха. В приведенных на схемах примерах сделан ряд допущений. Принято, Что дыхательные пути состоят из тонкостенной части (вблизи альвеол) и более ригидного отдела. Внутригрудное давление принято равным + 4 см вод. ст., давление, обусловленное эластичностью, + 2 см вод. ст. Поэтому общее давление в альвеолах равно +6 см вод. ст. При эмфиземе эластичность снижается, что приводит к уменьшению давления в альвеолах до +5 см вод. ст. Принято, что в норме падение давления на протяжении от альвеол до бронхиол (А Р) составляет 1 см вод. ст. Давление вне дыхательных путей превышает внутреннее давление только в ригидном отделе. Поэтому дыхательные пути остаются открытыми. Принято, что при эмфиземе сопротивление больше в том отделе дыхательных путей, который прилежит к альвеолам (ЛР= +2 см вод. ст.). Внешнее давление превышает внутреннее в тонкостенном отделе дыхательных путей, что приводит к их спадению. При бронхиальной астме дыхательные пути средней величины сужены бронхоспазмом и еще более сужаются градиентом давления (по Campbell, Martin, Riley, 1957). 1 - норма; 2-эмфизема; 3-астма.

Поскольку податливость легких и дыхательных путей почти одинакова, просвет последних расширяется параллельно увеличению объема легких, а их сопротивление при раздувании легких падает. Во время выдоха тонус дыхательных мышц, участвующих во вдохе, постепенно ослабевает, под влиянием эластической силы легкие спадаются и выталкивают воздух из альвеол, поддерживая давление в дыхательных путях выше, чем в плевральной полости. Если эластичность частично снижена или увеличено сопротивление в дыхательных путях, механизм пассивного выдоха становится менее эффективным. Компенсация может быть достигнута за счет большего растяжения легких, что увеличивает их эластическое противодействие, или активным сокращением выдыхательных мышц. Первый вариант является обычной реакцией и объясняет увеличение объема легких при бронхиальной астме и эмфиземе. Во втором случае при активном сокращении выдыхательных мышц нарастание скорости газотока на выдохе ограничено, так как повышение внутригрудного давления имеет точку приложения не только в терминальном отделе дыхательных путей, но и вне его. В результате этого уменьшается градиент давления, который в норме поддерживает определенный просвет дыхательных путей во время вдоха и выдоха. В конечном счете дыхательные пути во время выдоха могут спадаться, что приводит к образованию так зазываемых воздушных ловушек (air trapping) (Campbell, Martin, Riley, 1957).

Сужение просвета дыхательных путей вследствие сокращения выдыхательных мышц значительно увеличивает линейную скорость газотока, хотя объемная скорость может уменьшаться. Такое увеличение скорости газотока во время кашля способствует очищению дыхательных путей от секрета. Действительно, во время сильного кашля скорость воздушной струи может становиться «сверхзвуковой».

Эластическое сопротивление. При спокойном вдохе на преодоление этого сопротивле­ния затрачивается примерно 60-70% усилий инспираторной мускулатуры, этот вид сопро­тивления является наиболее важным. При спокойном вдохе оно обусловлено, главным об­разом, эластической тягой легких, а при глубоком вдохе - эластической тягой грудной клетки. Эластичность - это понятие, которое включает в себя растяжимость и упругость. Эластические свойства легких обусловлены двумя основными причинами: 1) эластичнос­тью альвеолярной ткани (35-45% от всей эластичности) и 2) поверхностным натяжением пленки жидкости, выстилающей альвеолы (55-65% от всей эластичности).

Растяжимость альвеолярной ткани связана с наличием эластиновых волокон, которые вместе с коллагеновыми волокнами образуют спиральную сеть вокруг альвеол. Коллагено-вые волокна обеспечивают, главным образом, прочность альвеолярной стенки. Длина эла­стиновых волокон при растяжении увеличивается почти в 2 раза, а коллагеновых - всего на 10% от исходного уровня. Считается, что растяжимость легких во многом обусловена тем, каким образом эластиновые волокна образуют сети.

Поверхностное натяжение создается за счет сурфактанта, благодаря которому альвео­лы не спадаются. Сурфактант обеспечивает эластичность альвеол.

В целом, эластическое сопротивление пропорционально степени растяжения легких при вдохе: чем глубже дыхание, тем больше эластическое сопротивление (эластическая тяга легких). Единицей эластического сопротивления является эластанс - величина эластичес­кой тяги легких, возникающая при увеличении их объема на 1 мл.

Однако более удобен в практике параметр, обратный эластансу, т. е. растяжимость (по­датливость): чем выше податливость, растяжимость, тем меньше эластичность, тем мень­ше эластическая тяга. У мужчин средняя растяжимость легких - 0,22-0,24 л/см водного столба, а у женщин - 0,16-0,18 л/см водного столба. При ряде заболеваний растяжи­мость (эластичность) существенно меняется. Например, при эмфиземе легких растяжимость повышается, а эластичность (эластическая тяга легких) снижается, ткань теряет эластич­ность - становится податливой, подобно старой резине. Для акта вдоха это благоприятно, но для выдоха - нет, т. к. эластическая отдача легких низкая и необходимо включение дополнительной экспираторной мускулатуры для проведения выдоха. При фиброзах лег­кие становятся более ригидными - плохо растягиваются, но зато хорошо сокращаются, т.е. при фиброзах акт вдоха затруднен, а выдоха - облегчен.



Реэястивное сопротивление. Оно обусловлено многими факторами, в том числе: 1) аэро­динамическим сопротивлением потоку воздуха в дыхательных путях; 2) динамическим со­противлением всех перемещающихся при дыхании тканей; 3) инерционным сопротивлени­ем Перемещающихся тканей. Основной фактор - это аэродинамическое сопротивление. Рассмотрим этот вид сопротивления подробнее.

Существует формула, по которой можно определить давление, необходимое для пре­одоления аэродинамического сопротивления:


Первый член этого уравления (K,V) обусловлен ламинарным движением воздушного потока. Он зависит от длины дыхательных путей, вязкости газовой смеси и радиуса дыха­тельных путей.

ных, запасных путей между долями, сегментами, ацинусами. До 10-40% воздуха может поступать в альвеолы за счет коллатеральной вентиляции.

В альвеолярной стенке имеются поры Кона (диаметром до 10 мкм). Между бронхиола­ми и альвеолами имеются бронхиолоальвеолярные коммуникации - так называемые кана­лы Ламберта (диаметром до 30 мкм). Все это обеспечивает коллатеральную вентиляцию в пределах ацинуса.

Между отдельными ацинусами тоже есть сообщения, которые начинаются от альвео­лярных ходов одного ацинуса и заканчиваются в альвеолярном мешке другого ацинуса. Инспираторные бронхиолы одного сегмента могут соединяться с терминальными бронхио­лами соседнего сегмента (так называемые бронхиолы Мартина). В целом считается, что респираторные бронхиолы являются основой коллатеральной вентиляции легких.

ЭНЕРГЕТИКА ДЫХАНИЯ

Для совершения обычного дыхания, т. е. при легочной вентиляции, равной б-8 л/мин, затрачивается энергия, равная 0,3 кгм/мин, или 0,002-0,008 Вт. В целом, это составляет 2-3% от общих энергозатрат организма. При МОД, равном 14 л/мин, затраты возрастают в 3 раза (0,9 кгм/мин), а при 200 л/мин - 2S0 кгм/мин. При максимальной вентиляции легких, равной 120 л/мин и выше, затраты на дыхание становятся нерентабельными и даль­нейшее повышение вентиляции легких становится в энергетическом отношении крайне невыгодным.

ПАТТЕРНЫ ДЫХАНИЯ

В норме дыхание представлено равномерными дыхательными циклами «вдох - выдох» до 12-16 в минуту. Этот вид дыхания получил название эйпноэ.

При разговоре, приеме пищи паттерн дыхания временно меняется: периодически могут наступать апноэ - задержки дыхания на вдохе или на выдохе. При физической нагрузке за счет повышенной потребности в кислороде возникает гиперпноэ - возрастает частота и глубина дыхания. Во время естественного сна паттерн дыхания меняется: в период медлен­ного (ортодоксального) сна дыхание становится поверхностным и редким, а в период пара­доксального сна оно возвращается к исходному, углубляется и учащается. В ряде случаев у взрослых во время сна может наблюдаться дыхание типа Чейна-Стокса: постепенно ампли­туда дыхательных движений возрастает, потом сходит на нет, после паузы вновь постепен­но возрастает и т. п. У новорожденных во сне может происходить остановка дыхания (син­дром внезапной детской смерти).

При нарушении структур мозга, имеющих прямое отношение к процессу дыхания, пат­терн дыхания существенно меняется.

1) Гаспинг, или терминальное редкое дыхание, которое проявляется судорожными вдо­
хами-выдохами. Возникает при резкой гипоксии мозга, в период агонии. Как правило, затем
наступает полное прекращение дыхания - апноэ.

2) Атактическое дыхание - это неравномерное, хаотическое, нерегулярное дыхание. .
Наблюдается при сохранении дыхательных нейронов продолговатого мозга, но при нару­
шении связи с варолиевым мостом.

3) Атеистическое дыхание. Апнейзис - это паттерн дыхания, при котором имеет мес­
то длительный вдох, короткий выдох и снова - длительный вдох. Т. е. нарушен процесс
смены вдоха на выдох.

4) Дыхание типа Чейна-Стокса. Возникает подобно гаспингу - при нарушении работы
дыхательных нейронов продолговатого мозга.

5) Дыхание Биота. Наблюдается при повреждении дыхательных нейронов моста. Прояв­
ляется в том, что между нормальными дыхательными циклами «вдох-выдох» возникают
длительные паузы - до 30 с, которых в норме нет.


6) Дыхательная апраксия. Наблюдается при поражении нейронов лобных долей. Боль*
ной не способен произвольно менять ритм и глубину дыхания, но обычный паттерн дыха­
ния у него не нарушен.

7) Нейрогенная гипервентиляция. Дыхание частое и глубокое. Возникает при стрессе,
при физической работе, а также при нарушениях структур среднего мозга.

Все эти виды паттернов, в том числе и патологические, возникают при изменении рабо­ты дыхательных нейронов продолговатого мозга и варолиевого моста (см. ниже). Могут также возникать вторичные изменения дыхания при различных видах патологии. Напри­мер, застой крови в малом круге кровообращения, пшертензия малого круга вызывает уча­щение дыхания (тахипноэ). Сердечная недостаточность приводит к развитию дыхания типа Чейна-Стокса, анемия сопровождается тахипноэ, артериальная гипертония вызывает ги­первентиляцию. Коматозные состояния (например, диабетическая кома) вызывают «боль­шое» шумное дыхание, или дыхание Куссмауля - глубокое дыхание с укороченным актив­ным выдохом. Метаболический ацидоз вызывает брадипноэ.

При поражении ЦНС, при наличии выраженной сердечно-сосудистой и легочной пато­логии нарушение регулярности дыхания свидетельствует о неблагоприятном развитии про­цесса. Зловещим признаком является постепенное удлинение дыхательных пауз (эпизодов апноэ), в ходе которого дыхание типа Чейна-Стокса или Биота переходит в терминальное дыхание (гаспинг).


Эластическое сопротивление легочной ткани растягиванию ее вдыхаемым воздухом зависит не только от эластических структур легкого. Оно обусловлено также поверхностным натяжением альвеол и наличием сурфактанта — фактора, понижающего поверхностное натяжение.

Это вещество, богатое фосфолипидами и липопротеидами, образуется в клетках альвеолярного эпителия. Сурфактант препятствует спадению легких при выдохе, а поверхностное натяжение альвеолярных стенок предупреждает чрезмерное растягивание легких на вдохе. При форсированном вдохе перерастяжению легочных альвеол мешают также эластические силы самих легочных структур.

Эффективность внешнего дыхания может быть оценена по величине легочной вентиляции. Она зависит от частоты и глубины дыхания. Величина легочной вентиляции косвенно связана с жизненной емкостью легких. Взрослый человек за 1 дыхательный цикл вдыхает и выдыхает в среднем около 500 см 3 воздуха.

Этот объем называется дыхательным. При дополнительном, После нормального вдоха, максимальном вдохе можно вдохнуть еще 1500 — 2000 см 3 воздуха (дополнительный объем вдоха). После спокойного выдоха можно дополнительно выдохнуть еще около 1500 см 3 воздуха. Это дополнительный Объем выдоха. Жизненная емкость легких равна суммарной величине дыхательного и дополнительного объемов вдоха и выдоха.

«Физиология человека», Н.А. Фомин

Дыхание — непрерывный биологический процесс газообмена между организмом и внешней средой. В процессе дыхания атмосферный кислород переходит в кровь, а образовавшийся в организме углекислый газ удаляется с выдыхаемым воздухом. Дыхание подразделяется на внешнее (легочное) и внутреннее (тканевое). Промежуточное звено между ними — перенос газов кровью — позволяет говорить о дыхательной функции крови. Дыхание у человека…

Легочная вентиляция в покое составляет 5 — 6 дм3. При мышечной работе она возрастает до 100 дм3 и более в 1 мин. Наибольшие величины легочной вентиляции (до 150 дм3/мин) могут быть получены при произвольном глубоком и частом дыхании (максимальная легочная вентиляция). В процессе внешнего дыхания происходит газообмен между альвеолярным воздухом и кровью. Обмен газов в…

Внутреннее дыхание начинается с момента доставки кислорода от легочных капилляров к тканям. Транспорт кислорода осуществляется форменными элементами крови — эритроцитами — и отчасти плазмой крови. У здорового человека в нормальных условиях жизнедеятельности гемоглобином может быть связано около 20 см3 O2 на 100 см3 крови (1 г Нb связывает 1,34 см3 02, 15 г — 20,1…

Парциальное давление O2 в тканях непостоянно. При интенсивной работе оно может быть близким к нулю. Поэтому кислород артериальной крови быстро переходит в ткани. Парциальное давление O2 в артериальной крови составляет 13 — 13,5 кПа. В венозной крови парциальное давление O2 уменьшается в два и более раза. В ней содержится 10 — 12 см3 O2 на…

Повышенные энергетические траты, связанные с мышечной работой, сопровождаются усилением обменных процессов, протекающих как в анаэробных, так и в аэробных условиях. В дыхательной функции при мышечной работе происходят адаптационные изменения, которые совершенствуются по мере роста тренированности. В результате систематической мышечной деятельности происходит увеличение жизненной емкости легких. У спортсменов зрелого возраста она составляет в среднем 4,7 —…

Ранняя диагностика респираторных нарушений при заболеваниях легких является чрезвычайно актуальной проблемой. Определение и оценка выраженности нарушений функции внешнего дыхания (ФВД) позволяет поднять диагностический процесс на более высокий уровень.

Основные методы исследования ФВД :

  • спирометрия;
  • пневмотахометрия;
  • бодиплетизмография;
  • исследование легочной диффузии;
  • измерение растяжимости легких;
  • эргоспирометрия;
  • непрямая калориметрия.

Первые два метода считаются скрининговыми и обязательными для использования во всех лечебных учреждениях. Следующие три (бодиплетизмография, исследование диффузионной способности и растяжимости легких ) позволяют оценивать такие характеристики респираторной функции, как бронхиальная проходимость, воздухонаполненность, эластические свойства, диффузионная способность и респираторная мышечная функция. Они являются более углубленными, дорогостоящими методами и доступными только в специализированных центрах. Что же касается эргоспирометрии и непрямой калориметрии , то это довольно сложные методы, которые используются в основном для научных целей.

В настоящее время в Республике Беларусь имеется возможность проведения углубленного исследования функции внешнего дыхания по методике бодиплетизмографии на аппаратуре MasterScreen (VIASYS Healthcare Gmbh, Германия) с определением параметров механики дыхания в норме и при патологии.

Механика дыхания - раздел физиологии дыхания, изучающий механические силы, под действием которых совершаются дыхательные экскурсии; сопротивление этим силам со стороны аппарата вентиляции; изменения объема легких и воздушного потока в дыхательных путях.

В акте дыхания дыхательные мышцы выполняют определенную работу, направленную на преодоление общего дыхательного сопротивления. Сопротивление дыхательных путей можно оценить посредством бодиплетизмографии , а респираторное сопротивление может быть определено с помощью техники форсированных осцилляций .

Общее дыхательное сопротивление складывается из трех составляющих: эластической, фрикционной и инерционной. Эластическая составляющая возникает в связи с упругими деформациями грудной клетки и легких, а также компрессией (декомпрессией) газов и жидкостей в легких, плевральной и брюшной полостях во время дыхания. Фрикционная составляющая отображает действие сил трения при перемещении газов и плотных тел. Инерционная составляющая - преодоление инерции анатомических образований, жидкостей и воздуха; показатель достигает значимых величин только при тахипноэ.

Таким образом, чтобы полностью описать механику дыхания, необходимо рассмотреть соотношение трех параметров - давления (Р), объема (V) и потока (F) на протяжении дыхательного цикла . Поскольку взаимосвязь трех параметров сложна как для регистрации, так и для расчетов, на практике используют соотношение парных показателей в виде индексов или описание каждого из них во времени.

При обычном (спокойном) дыхании активность инспираторных мышц необходима для преодоления сопротивления дыхательной системы. В этом случае достаточно работы диафрагмы (у мужчин) и межреберных мышц (женский тип дыхания). При физической нагрузке или патологических состояниях к работе подключаются дополнительные инспираторные мышцы - межреберные, лестничные и грудино-ключично-сосцевидные . Выдох в покое происходит пассивно за счет эластической отдачи легких и грудной клетки. Работа дыхательных мышц создает градиент давления, необходимый для формирования воздушного потока.

Прямые измерения давления в плевральной полости показали, что в конце выдоха внутриплевральное (внутригрудное) давление на 3-5 см вод. ст., а в конце вдоха - на 6-8 см вод. ст. ниже атмосферного. Обычно измеряют давление не в плевральной полости, а в нижней трети пищевода , которое, как показали исследования, близко по значению и очень хорошо отражает динамику изменения внутригрудного давления. Альвеолярное давление равно сумме давления эластической тяги легкого и плеврального давления и может быть измерено методом перекрытия воздушного потока, когда оно становится равным давлению в ротовой полости. В общем виде уравнение для движущего давления в легких имеет вид:

Ptot = (Е × ΔV) + (R × V") + (I × V""),

  • Ptot - движущее давление;
  • Е - эластичность;
  • ΔV - изменение объема легких;
  • R - сопротивление;
  • V" - объемная скорость потока воздуха;
  • I - инерционность;
  • V"" - ускорение воздушного потока.

Первое выражение в скобках (Е × ΔV) представляет собой давление, необходимое для преодоления эластической отдачи дыхательной системы . Оно равно транспульмональному давлению, которое можно измерить катетером в грудной полости и приближенно равно разнице давлений в ротовой полости и пищеводе. Если одновременно регистрировать объем легких на вдохе и выдохе и внутрипищеводное давление, используя заслонку для перекрытия потока, получим статическую (т. е. при отсутствии потока) кривую «давление - объем», имеющую вид гистерезиса (рис. 1) - кривой, характерной для всех эластических структур.

Кривые «давление - объем » на вдохе и выдохе неодинаковы. При одном и том же давлении объем спадающихся легких больше, чем во время их раздувания (гистерезис ).

Особенностью гистерезиса является то, что для создания определенного объема на вдохе (растяжении) требуется больший градиент давления, чем при выдохе. На рис. 1 видно, что гистерезис не располагается в нулевой точке объема, поскольку легкие изначально содержат объем газа, равный функциональной остаточной емкости (ФОЕ). Отношение между давлением и изменением объема легких не остается постоянным на всем диапазоне легочных объемов. При незначительном наполнении легких это отношение равно Е × ΔV. Константа Е характеризует эластичность - меру упругости легочной ткани. Чем больше эластичность, тем большее давление необходимо приложить для достижения заданного изменения объема легких. Легкое более растяжимо при низких и средних объемах. По достижении максимального объема легкого дальнейший прирост давления увеличить его не может - кривая переходит в ее плоскую часть. Изменение объема на единицу давления отображается наклоном гистерезиса и называется статической растяжимостью (C stat), или комплайенсом . Растяжимость обратно пропорциональна (реципрокна) эластичности (C stat = 1/Е). На уровне функциональной остаточной емкости 0,5 л статическая растяжимость легкого в норме около 200 мл/см вод. ст. у мужчин и 170 мл/см вод. ст. у женщин. Она зависит от многих причин, в том числе, от размера легких. Чтобы исключить последний фактор, вычисляют удельную растяжимость - отношение растяжимости к объему легких, при котором она измеряется, к общей емкости легких (ОЕЛ) а также к функциональной остаточной емкости. Как и для других параметров, для эластичности и растяжимости разработаны должные величины, зависящие от пола, возраста, антропометрических данных пациента.

Эластические свойства легких зависят от содержания эластических структур в тканях. Геометрическое расположение нитей эластина и коллагена в альвеолах, вокруг бронхов и сосудов наряду с поверхностным натяжением сурфактанта придают легким эластические свойства. Патологические процессы в легких изменяют эти свойства. Статическая растяжимость у пациентов с обструктивными заболеваниями близка к норме, если паренхима легких мало затронута при этих заболеваниях. У пациентов с эмфиземой нарушение эластической отдачи легких сопровождается увеличением их растяжимости (комплайенса). Бронхиальная обструкция в свою очередь может приводить к изменению воздухонаполненности (или структуры статических объемов) в сторону гипервоздушности легких. Основным проявлением гипервоздушности легких или увеличения их воздухонаполненности является увеличение общей емкости легких , полученной при бодиплетизмографическом исследовании или методом разведения газов. Один из механизмов повышения общей емкости легких при хронической обструктивной болезни легких (ХОБЛ) - снижение давления эластической отдачи по отношению к соответствующему легочному объему. В основе развития синдрома гипервоздушности легких лежит еще один важный механизм. Повышение легочного объема способствует растяжению дыхательных путей и, следовательно, повышению их проходимости. Таким образом, возрастание функциональной остаточной емкости легких представляет собой своего рода компенсаторный механизм, направленный на растяжение и увеличение внутреннего просвета бронхов. Однако подобная компенсация идет в ущерб эффективности работы респираторных мышц вследствие неблагоприятного соотношения «сила - длина». Гипервоздушность средней степени выраженности приводит к снижению общей работы дыхания, так как при незначительном повышении работы вдоха имеет место существенное снижение экспираторного вязкостного компонента. Отмечается также изменение формы и угла наклона петли «давление - объем». Кривая статистической растяжимости сдвигается вверх и влево. При эмфиземе, которая характеризуется утратой соединительнотканных компонентов, эластичность легких снижается (соответственно, статическая растяжимость увеличивается). Для выраженной ХОБЛ характерно увеличение функциональной остаточной емкости, остаточного объема (ОО) и отношения ОО к общей емкости легких. В частности, общая емкость легких увеличена у пациентов с тяжелой эмфиземой. Увеличение статической легочной растяжимости, снижение давления эластической тяги легкого при данном объеме легкого и изменение формы кривой «статическое давление - объем легкого» характерны для эмфиземы легких. У многих пациентов с ХОБЛ максимальное инспираторное и экспираторное давление (PI max и PE max) снижены. В то время как PEmax снижено вследствие гиперинфляции и укорочения инспираторных дыхательных мышц, PE max менее подвержено влиянию изменений механики дыхания. Снижение PE max может быть связано со слабостью мускулатуры, что обычно имеет место при прогрессирующей ХОБЛ. Измерение максимальных респираторных давлений показано при наличии подозрений на плохое питание или стероидную миопатию, а также в тех случаях, когда степень диспноэ или гиперкапнии не соответствует имеющемуся объему форсированного выдоха за первую секунду.

При рестриктивных легочных заболеваниях , напротив, изменяется структура легочных объемов в сторону снижения общей емкости легких. Это происходит, главным образом, за счет уменьшения жизненной емкости легких. Эти изменения сопровождаются снижением растяжимости легочной ткани. Фиброз легких, застойная сердечная недостаточность, воспалительные изменения уменьшают комплайенс. При дефиците нормального сурфактанта (респираторном дистресс-синдроме) легкие становятся неподатливыми, ригидными.

При эмфиземе показатели диффузионной способности легких DLCO и ее отношения к альвеолярному объему DLCO/Va снижены, главным образом вследствие деструкции альвеолярнокапиллярной мембраны, уменьшающей эффективную площадь газообмена. Однако снижение диффузионной способности легких на единицу объема (DLCO/Va) (т. е. площади альвеолокапиллярной мембраны) может быть компенсировано возрастанием общей емкости легких. Для диагностики эмфиземы исследование DLCO показало себя более информативным, чем определение легочной растяжимости, а по способности к регистрации начальных патологических изменений легочной паренхимы данный метод сопоставим по чувствительности с компьютерной томографией.

У злостных курильщиков , составляющих основную массу больных ХОБЛ, и у пациентов, подвергающихся профессиональному воздействию окиси углерода на рабочем месте, отмечается остаточное напряжение СО в смешанной венозной крови, что может привести к ложно заниженным значениям DLCO и его компонентов.

Расправление легких при гипервоздушности приводит к растяжению альвеолярно-капиллярной мембраны, уплощению капилляров альвеол и возрастанию диаметра «угловых сосудов» между альвеолами. В результате общая диффузионная способность легких и диффузионная способность самой альвеолокапиллярной мембраны возрастают с объемом легких, но соотношение DLCO/Va и объем крови в капиллярах (Qc) уменьшаются. Подобный эффект легочного объема на DLCO и DLCO/VA может приводить к неправильной интерпретации результатов исследования при эмфиземе.

При рестриктивных легочных заболеваниях характерно значительное снижение диффузионной способности легких (DLCO). Отношение DLCO/Va может быть снижено в меньшей степени из-за одновременного значительного уменьшения объема легких.

Большее клиническое значение имеет измерение динамической растяжимости (C dyn), когда рассматривают изменение объема легких относительно изменения давления при наличии воздушного потока. Оно равно наклону линии, соединяющей точки начала вдоха и выдоха на кривой «динамическое давление - объем» (рис. 2).

Если сопротивление дыхательных путей нормальное, C dyn близка по величине к C stat и слабо зависит от частоты дыхания. Уменьшение C dyn по сравнению с C stat может свидетельствовать о негомогенности легочной ткани. При увеличении сопротивления, даже незначительном и ограниченном мелкими бронхами, Cdyn снизится раньше, чем это нарушение будет выявлено обычными функциональными методами. Снижение C dyn особенно проявится при высокой частоте дыхания, так как при частом дыхании время, необходимое для наполнения легкого или его части с обструкцией, становится недостаточным. Изменения Cdyn, зависящие от частоты дыхания, называются частотно-зависимой растяжимостью. В норме C dyn /C stat больше 0,8 при любой частоте дыхания.

При обструкции, в том числе дистальной, это отношение падает с увеличением частоты дыхания. Величина C stat , в отличие от C dyn , зависит не от частоты дыхания, а от его глубины, точнее, от уровня жизненной емкости легких (ЖЕЛ), на котором она регистрировалась. Измерения Cstat на уровне спокойного дыхания дают минимальное значения, при глубоком вдохе величина C stat максимальна. При проведении измерения компьютерная программа вычисляет C stat на различных уровнях ЖЕЛ и строит график зависимости объема легких от внутригрудного (внутрипищеводного) давления. При эмфиземе легких такая кривая будет иметь более крутой наклон (C stat увеличивается), при легочных фиброзах - более пологий (C stat снижается).

Помимо рассмотренных показателей C stat , C dyn исследование дает возможность получить ряд других измеренных и производных величин (рис. 3). Важными показателями, которые мы получаем при измерении растяжимости легких, являются Pel - транспульмональное (пищеводное) давление, которое отражает давление эластической отдачи легких; P 0dyn - давление на уровне функциональной остаточной емкости; Pel RV - давление на уровне остаточного объема; PTL/IC - отношение транспульмонального (пищеводного) давления к емкости вдоха; P0stat, Pel 100, Pel 80, Pel 50 - транспульмональное (пищеводное) давление при глубине вдоха соответственно на уровне функциональной остаточной емкости, ЖЕЛ, 80% ЖЕЛ, 50% ЖЕЛ. Для получения производных величин - отношения комплайенса к функциональной остаточной емкости, внутригрудному объему или общей емкости легких, важность которых определяется тем, что растяжимость легких зависит от их размеров, эти показатели необходимо предварительно измерить (например, при проведении бодиплетизмографии). Отношение С (растяжимости) к общей емкости легких именуют индексом ретракции. Следует отметить, что хотя для всех вышеперечисленных величин предложены формулы расчета должных величин, индивидуальные различия весьма значительны. Используя петлю «давление-объем», можно рассчитать работу по преодолению упругих и вязких сил (эластического и неэластического сопротивления). Площадь условного прямоугольного треугольника, гипотенузой которого является прямая, соединяющая точки смены фаз дыхания, а сторонами - проекции на оси координат (рис. 3), равна работе дыхательных мышц по преодолению эластического сопротивления легких.

Площадь фигуры под гипотенузой соответствует работе вдоха по преодолению аэродинамического (бронхиального) сопротивления. Показатель работы дыхания сильно зависит от минутного объема дыхания, его частоты и глубины и может варьироваться от 0,25 кгм/мин до 15 кгм/мин. В норме около 70% общей работы расходуется на преодоление эластического и 30% - неэластического (аэродинамического) сопротивления. Их соотношение позволяет уточнить преобладание обструктивных или рестриктивных нарушений. Уменьшению энерготрат способствует поверхностное (но частое) дыхание, что мы наблюдаем в клинике у больных с выраженными фиброзными изменениями, или медленное дыхание у больных с тяжелой обструкцией. Измерение комплайенса позволяет не только установить степень поражения легких, но и наблюдать динамику патологического процесса, контролировать лечение. Прежде всего, это важно при хронических распространенных поражениях легких, обусловленных идиопатическими интерстициальными пневмонитами, ревматическими, профессиональными и другими заболеваниями легких. Особая ценность метода в том, что изменения растяжимости могут быть выявлены на ранних стадиях как обструктивных, так и рестриктивных нарушений, которые не фиксируются другими методами исследований, что важно для раннего выявления заболеваний легких.

Лаптева И. М., Томашевский А. В.
Республиканский научно-практический центр пульмонологии и фтизиатрии.
Журнал «Медицинская панорама» № 9, октябрь 2009.



Понравилась статья? Поделитесь ей
Наверх