Коррекция искажений, вносимых объективом. Искажения в объективе: все, что должен знать каждый фотограф

Коррекция искажений помогает скомпенсировать огрехи, присутствующие практически в каждом снимке камеры. К ним могут относиться затемнение углов кадра, искривление исходно прямых линий или цветная кайма вокруг контрастных границ. Несмотря на то, что они могут быть не особо заметны в исходном снимке, польза от их компенсации есть всегда. Однако при неаккуратном применении коррекция искажений может даже ухудшить снимок, и к тому же, в зависимости от предмета съёмки, некоторое несовершенство может оказаться только на пользу.

Результаты коррекции виньетирования, дисторсии и хроматических аберраций.
В масштабе 1:1 разница была бы ещё более заметна.

Общие сведения

Чаще всего коррекция призвана выправить один из трёх недостатков:

Виньетирование Дисторсия Хроматические аберрации
  1. Виньетирование проявляется как нарастающее затемнение по направлению к краям кадра.
  2. Дисторсия выражается в искривлении исходно прямых линий внутрь (бочка) или наружу (подушка).
  3. Хроматические аберрации приводят к появлению цветной каймы на контрастных границах.

Однако программы коррекции искажений, вносимых объективом, обычно способны повлиять лишь на один вид искажений, потому важно уметь их различать. Следующие разделы описывают типы и причины появления искажений, рассказывают, когда их можно скорректировать, а также объясняют, как для начала минимизировать их влияние.

Всё, что написано в этой главе, в той или иной мере касается любой программы коррекции искажений, но уместно упомянуть и наиболее известные из них: это Adobe Camera RAW, Lightroom, Aperture, DxO Optics и PTLens.

1. Виньетирование

Этот термин описывает прогрессирующее снижение освещённости по направлению к углам кадра, и оно, пожалуй, проще всего поддаётся наблюдению и коррекции.

Внутреннее виньетирование Физическое виньетирование Коррекция виньетирования

Обратите внимание, что внутреннее виньетирование наиболее очевидно только
в левом верхнем и правом нижнем углах в связи с особенностями предмета съёмки,
хотя в действительности эффект во всех углах одинаков.

Типы и причины . Виньетирование может быть отнесено к одной из двух категорий:

  • Физическое виньетирование зачастую не поддаётся коррекции, иначе как кадрированием или ручным осветлением/клонированием. Проявляется как сильное, резкое затемнение, обычно только на самых краях кадра. Возникает вследствие применения серии фильтров или фильтров с толстой оправой, бленд и других объектов, физически блокирующих свет по краям кадра.
  • Внутреннее* виньетирование обычно легко устранить. Проявляется как прогрессирующее и обычно слабое затемнение по направлению от центра снимка. Возникает вследствие особенностей конструкции объектива и камеры. Обычно наиболее заметно на низших f-ступенях, в широкоугольных и телеобъективах, при наведении на удалённые объекты. Цифровые зеркальные камеры с урезанными сенсорами обычно менее подвержены виньетированию, поскольку затемнённые края оказываются откадрированы (при использовании полнокадровых объективов).

*Техническое примечание: внутреннее виньетирование делится на две подкатегории: оптическое и натуральное виньетирование. Первое можно минимизировать, закрыв диафрагму объектива (увеличив f-ступень), однако второе не зависит от настройки объектива. Как следствие, его невозможно избежать, если только нет возможности использовать объектив с меньшим углом зрения или же специальный компенсирующий фильтр, который задерживает часть света по направлению к центру изображения (не распространены, за исключением фильтров для камер большого формата).

Photoshop: регуляторы
коррекции виньетирования

Коррекция . Виньетирование зачастую может быть исправлено простым изменением регулятора количества (amount), хотя порой требуется также задать центр виньетирования, используя регулятор центральной точки (midpoint), хотя нужно это редко. Однако коррекция попутно усилит визуальный шум по краям, поскольку принцип её работы заключается по сути в применении радиального градиентного нейтрального светофильтра .

Искусственное виньетирование . Некоторые фотографы в действительности добавляют виньетку к своим снимкам, чтобы привлечь внимание к центральному предмету, а также чтобы визуально уменьшить жёсткость границ кадра. Однако применять её стоит уже после финального кадрирования (заимствуя из английского, этот приём называют виньетированием "пост-кроп").

2. Дисторсия: бочка, подушка и перспектива

Этот термин описывает искривление исходно прямых линий внутрь или наружу, которое может повлиять на отображение объёма:

Синяя точка отображает направление
камеры; красные линии отмечают
сходимость параллельных прямых.

  • Подушка . Она появляется, когда исходно прямые линии искривляются внутрь кадра. Обычно ей подвержены телеобъективы или дальнее фокусное расстояние вариобъектива (зума).
  • Бочка . Появляется, когда исходно прямые линии искривляются наружу. Обычно присуща широкоугольным объективам или широкоугольному (ближнему) фокусному расстоянию вариобъектива.
  • Искажение перспективы* . Проявляется в сходимости исходно параллельных прямых. Его причиной является положение камеры (оно появляется, если линия зрения камеры не перпендикулярна параллельным прямым); на примере деревьев или архитектуры это обычно означает, что камера не направлена к линии горизонта.

При съёмке пейзажей обычно наиболее заметны искажения горизонта и деревьев. Положение линии горизонта в центре кадра может помочь минимизировать влияние всех трёх видов дисторсии.

Коррекция . К счастью, каждый из вышеприведенных типов дисторсии поддаётся коррекции. Однако применять её следует, только когда это необходимо, - например, когда предмет съёмки содержит выраженно прямые линии или имеет чёткую геометрию. Чаще всего наиболее чувствительна к дисторсии архитектурная съёмка, тогда как в пейзажах она значительно менее заметна.

Программы обработки изображений обычно предлагают регуляторы для бочки/подушки, а также перспективных искажений по горизонтали и вертикали. Не забудьте использовать координатную сетку (если возможно), чтобы упростить себе оценку результатов обработки на предмет прямоты и параллельности линий.

Недостатки . Поскольку края кадра в процессе коррекции дисторсии искривляются, обычно требуется кадрирование, которое может повлиять на композицию. Кроме того, коррекция перераспределяет разрешение в изображении; в результате удаления подушки края станут несколько резче (за счёт центра), тогда как удаление бочки усилит резкость в центре (за счёт краёв). Например, для широкоугольных объективов бочка обычно является способом борьбы с размытием краёв, которое типично для объективов этого типа.

3. Хроматические аберрации

Хроматические аберрации (ХА) проявляются как неприглядная цветная кайма на контрастных границах. В отличие от предыдущих двух недостатков объективов, хроматические аберрации обычно видны только при просмотре снимка на экране в полном размере или в отпечатках большого размера.

Вышеприведенная коррекция эффективна, поскольку присутствуют
преимущественно радиальные ХА, которые легко удалить.

Типы и причины . Хроматические аберрации, пожалуй, наиболее разнообразны и сложны в подавлении, а их влияние существенно зависит от предмета съёмки. К счастью, феномен ХА можно достаточно легко понять, разделив его на три составляющих:

Технические примечания. Чистые радиальные ХА случаются, когда каналы цветности изображения записывают различные относительные размеры (однако все они находятся в чётком фокусе). Чистые соосные ХА возникают, когда каналы цветности имеют одинаковый относительный размер,
но некоторые из них находятся не в фокусе. В случае окрашивания может иметь место комбинация
радиальных и соосных ХА, однако в масштабах микролинзы сенсора , а не объектива .

  • Радиальные хроматические аберрации устранить проще всего. Они проявляются как двуцветная кайма в направлениях от центра изображения и нарастают к его краям. Обычно кайма бывает сине-фиолетовой, но может присутствовать и сине-жёлтый компонент.
  • Соосные хроматические аберрации коррекции не поддаются, либо она возможна лишь частично, с нежелательными эффектами в других частях изображения. Проявляются как одноцветное гало вокруг контрастной границы и меньше зависят от положения в кадре. Гало зачастую приобретает пурпурный оттенок, его цвет и размер могут порой быть улучшены некоторым смещением фокусировки объектива вперёд или назад.
  • Окрашивание засветок обычно коррекции не поддаётся. Это уникальный феномен цифровых сенсоров , который приводит к избирательным засветкам - на уровне сенсора создаются цветные пятна, обычно синие или пурпурных оттенков. Наиболее часто они случаются в резких, зеркальных засветках при использовании компактных камер с высоким разрешением. Классическим примером являются границы верхушек деревьев и листва в ярком белом небе.

Некоторая комбинация разных типов ХА присутствует в любом снимке, однако их сравнительное влияние может существенно меняться в зависимости об выбранного объектива и предмета съёмки. Как радиальные, так и соосные ХА более заметны в дешёвых объективах, тогда как окрашивание засветок более заметно в старых компактных камерах; все они становятся более заметны при высоком разрешении.

Примечание : хотя соосные ХА и окрашивание обычно равномерны по всем границам, они могут не выглядеть таковыми, в зависимости от яркости и цвета конкретной границы. В связи с этим их зачастую путают с радиальными ХА. Радиальные и соосные ХА порой также называют поперечными (латеральными) и продольными, соответственно.

Коррекция хроматических аберраций может существенно повлиять на резкость и качество изображения - особенно по краям кадра. Однако лишь некоторые компоненты ХА могут быть удалены практически полностью. Сложность состоит в том, чтобы определить и применить соответствующий инструментарий к каждому из компонентов по отдельности - не усугубив при этом остальные. Например, подавляя соосные ХА в одной части изображения (ошибочно используя для этого инструментарий для радиальных ХА), вы скорее всего ухудшите внешний вид остальных частей.

Начните с обработки высококонтрастной границы вблизи края кадра и контролируйте процесс, используя для оценки эффективности экранный масштаб 100-400%. Зачастую лучше всего начинать с радиальных ХА, используя регуляторы красно-голубого и сине-жёлтого, посколькуих проще всего удалить. Затем всё, что осталось, скорее всего является комбинацией соосных ХА и окрашивания, которые можно уменьшить, используя инструмент для удаления каймы (Photoshop: "Defringe"). Неважно, с каких параметров настройки вы начнёте, здесь результата добиваются исключительно опытным путём.

Фрагмент из верхнего левого угла предыдущего снимка.

Впрочем, не стоит надеяться на чудо; некоторое окрашивание и соосные ХА практически всегда присутствуют. Особенно это заметно на источниках освещения ночью, звёздах и прямых отражениях от металла и воды.

Автоматические профили коррекции объективов

Многие современные программы обработки снимков в формате RAW могут корректировать недостатки объективов, используя предустановки для широкого набора сочетаний камер и объективов. Если эта возможность доступна, она может сэкономить массу времени. Adobe Camera RAW (ACR), Lightroom, Aperture, DxO Optics и PTLens предоставляют такую возможность в своих последних версиях.

Не бойтесь регулировать корректировку от стандартного значения до 100% (полная коррекция). Кто-то предпочтёт сохранить некоторую виньетку и дисторсию, но при этом полностью устранить хроматические аберрации, например. В случае ХА, впрочем, наилучшие результаты обычно достигаются последующей доводкой вручную.

Если вы используете коррекцию объектива как часть процесса обработки фотографий, очерёдность её применения может повлиять на результат. Шумоподавление обычно более эффективно до коррекции ХА, однако повышение резкости следует производить после удаления ХА, поскольку может на него повлиять. Впрочем, если вы используете программы обработки формата RAW, незачем беспокоиться о порядке применения - он будет правильным.

Дополнительная информация

Смежные темы освещаются в следующих статьях:

  • Порядок обработки изображений
    Хороший способ понять, на каком этапе должна производиться коррекция объектива.
  • Качество объектива: ЧКХ, разрешение и контраст
    Обзор остальных параметров объектива, влияющих на качество изображения.
  • Что такое объективы
    Интерактивная визуализация принципов работы объектива для начинающих.

Я думаю, многие читатели не раз замечали, что изображение на фотографии отличается от того, что мы видим своими глазами. Отчасти это связано с особенностями передачи перспективы при разном фокусном расстоянии. Об этом подробнее можно почитать в статье про . Помимо этого, на изображении могут появляться дефекты в виде цветовых ореолов на контрастных участках, затемнения кадра по краям и изменения геометрии объектов. Эти недостатки можно смело отнести к оптическим искажениям объективов, вот о них и поговорим в сегодняшней статье.

Дисторсия

Дисторсия — это геометрическое искажение прямых линий, когда они выглядят искривленными. Не стоит путать дисторсию и искажение перспективы, в последнем случае прямые параллельные линии становятся сходящимися, но не искривляются. Существует два типа дисторсии по виду воздействия на картинку: подушкообразная — когда линии вогнутые и бочкообразная — когда они выпуклые.

Подушкообразная дисторсия, нормальное изображение и бочкообразная дисторсия

Конечно на практике изображение редко принимает такие уродливые формы, как на схеме. Более реальным примером эффекта может служить фотография в начале статьи с небольшой бочкообразной дисторсией.

В первую очередь дисторсия видна на зум-объективах, причем чем больше кратность зума, тем сильнее она заметна. Обычно в широкоугольном положении можно наблюдать «бочку», а в теле — «подушку». Между крайними положениями объектива недостатки оптики становятся не такими заметными. Кроме этого уровень искажений может изменятся и от дистанции до объекта, в некоторых случаях близкий объект может быть им подвержен, а отдаленный получится на фотографии нормально.

Хроматически аберрации

Второй вид оптических искажений, которые мы рассмотрим — это хроматические аберрации, довольно часто можно встретить сокращенное «ХА». Хроматические аберрации вызваны разложением белого света на цветовые составляющие, из-за чего объект на снимке имеет немного разные размеры в разных цветах и как следствие по его краю появляются цветные контуры. Часто невидимые в центре кадра, они становятся заметны у объектов расположенных ближе к краям изображения. ХА не зависят ни от значения фокусного расстояния, ни от диафрагмы, но чаще и сильнее проявляются опять же в зум-объективах. Это обусловлено необходимостью внесения в оптическую схему дополнительных элементов для устранения эффекта, что для объективов с переменным фокусным расстоянием заметно сложнее, чем для фиксов.

На снимке слева ХА особенно заметны на волосах (фиолетовый контур) и на решетке окон (бирюзовый).

Нельзя сказать, что хроматические аберрации сильно портят снимок, но на конрастных объектах, особенно в контровой подсветке они становятся весьма заметны и довольно сильно бросаются в глаза.

Виньетирование

Последний пункт — виньетирование, иными словами затемнение областей по краям кадра. Обычно его можно заметить на широкоугольных объективах при максимально открытой диафрагме. Этот эффект встречается довольно редко.

Не стоит путать виньетирование вызванное недостатками оптики и появившееся из-за дополнительных аксессуаров. На картинке выше края получились черными из-за нескольких достаточно толстых светофильтров накрученных на объектив. Аналогичный эффект может получится и при навинчивании длинной бленды.

Изначально все оптические искажения напрямую зависят от класса и типа оптики, которую вы используете. Дорогие серии объективов имеют сложные схемы расположения линз и множество дополнительных элементов, что сводит к минимуму подобные нежелательные эффекты. Более дешевые объективы, особенно зумы, вследствие упрощения конструкции, намного сильнее подвержены подобным проблемам.

Спешу разочаровать читателей, объективов полностью лишенных вышеперечисленных проблем просто нет. В той или иной степени даже дорогие модели оптики с постоянным фокусным расстоянием все равно искажают картинку, правда заметно это в основном по краям кадра. Хорошая новость в том, что в большинстве своем эти эффекты не очень сильно портят картинку и довольно легко могут быть устранены программно (об этом поговорим в следующей статье). Кроме этого на камерах с неполноформатной матрицей, а это все любительские зеркалки, края изображения в любом случае обрезаются и при использовании хорошей оптики видимые искажении минимальны.

  • Слева: исходное изображение квадрата.
  • По центру: изображение квадрата, полученное с помощью оптической системы с положительной дисторсией («подушка»).
  • Справа: изображение квадрата, полученное с помощью оптической системы с отрицательной дисторсией («бочка», «рыбий глаз»)

Дисторсия исправляется на этапе разработки оптической системы подбором линз и других элементов и/или путём обработки изображения на компьютере (например, в цифровых фотографиях и кинематографе). В объективах симметричной конструкции дисторсия проявляется в наименьшей степени.

Дисторсия оптических систем с осевой симметрией

В результате дисторсии в действительности прямые линии на изображении становятся кривыми, кроме линий, лежащих в одной плоскости с оптической осью . Например, изображение квадрата (см. ), центр которого пересекает оптическая ось, имеет

  • вид «подушки » (подушкообразная дисторсия, «подушка») при положительной дисторсии и
  • вид «бочки » (бочкообразная дисторсия, «бочка») при отрицательной.

Дисторсия “подушкой” – положительна (увеличивает расстояние от оптического центра), “бочкой” – отрицательна (уменьшает расстояние от оптического центра).

В отдельных случаях искажения формы могут иметь и более сложный вид.

Применение апертурной или виньетирующей диафрагмы не влияет на дисторсию, поскольку такая диафрагма не изменяет коэффициент увеличения оптической системы.

Дисторсия может быть выражена количественно через так называемую относительную дисторсию ν {\displaystyle \nu } [ ] :

ν = [ (b − b 0) / b ] ⋅ 100 % , {\displaystyle \nu =\left[(b-b_{0})/b\right]\cdot 100\%,}

Величина ν {\displaystyle \nu } измеряется в процентах .

Коэффициент увеличения b {\displaystyle b} на оптической оси равен . Отклонение от b 0 {\displaystyle b_{0}} , обычно, достигает максимума по краю поля зрения. Поэтому для характеристики дисторсии оптической системы обычно за величину b {\displaystyle b} принимают коэффициент увеличения по краю.

Для одной и той же системы дисторсия зависит [ ] :

Как правило, если дисторсия мала или отсутствует при одном расстоянии, она будет мала и при другом.

Дисторсия у объективов, близких к симметричным, обычно мала, даже если коэффициент линейного увеличения не равен −1. Этот случай чаще всего встречается на практике.

Объективы с исправленной дисторсией называются ортоскопическими .

В некоторых случаях к исправлению дисторсии предъявляются повышенные требования. Так, в объективах для аэрофотосъёмки составляет ≈0,01 % .

Иногда, величина дисторсии не имеет значения. Объективы с неисправленной дисторсией называются дисторзирующими и применяются, например, для метеорологических наблюдений.

Дисторсия вводится намеренно в некоторые широкоугольные объективы для компенсации искажений перспективы и других недостатков.

Не следует путать с дисторсией искажения перспективы , вызванные проецированием трёхмерного пространства на плоскость . При таких искажениях некоторые параллельные линии на изображении выглядят не параллельными, некоторые вертикальные линии - наклонными. Но к дисторсии это не относится ( ).

Теория

Влияние дисторсии объекти-вoв на изображения хорошо известно в фотографии. Из-за дисторсии прямые линии на сцене превращаются в кривые на изображении, а прямоугольные объекты становятся похожими на бочки или подушки (рис. 1, 2).

Рис. 1. Дисторсия отсутствует


Рис. 2. Есть бочкообразная дисторсия

В большинстве случаев такие искажения изображения не приводят к значительной потере его информативности, в то же время учет дисторсии довольно сложен. Поэтому при проектировании видеонаблюдения влиянием дисторсии обычно пренебрегают.

Однако под влиянием дисторсии искажается не только само изображение, но и углы обзора, форма зоны обзора и распределение пространственного разрешения (плотности пикселей). Эти параметры не важны в фотографии, поэтому влияние на них дисторсии обычно не упоминается. Однако данные параметры важны при проектировании видеонаблюдения.

Под влиянием дисторсии поле зрения перестает быть прямоугольным, а фактические углы обзора по горизонтали, вертикали и диагонали могут значительно отличаться от углов, рассчитанных исходя из размеров видеосенсора и фокусного расстояния объектива.

Например, рассмотрим спецификацию типичного короткофокусного объектива (табл. 1).

Табл. 1. Спецификация короткофокусного объектива

Max. Aperture Ratio

Back Focal Length

Max. Image Format

4,8 мм x 3,6 мм (0 мм)

Flange Back Length

0 4,5 мм x 35,4 мм

Object Dimension at M.O.D.

60,8 ем x 37,5 ем

Operating Temperature

20° С - +50° С

При фокусном расстоянии 2,3 мм и размере видеосенсора 1/3" фактический горизонтальный угол обзора составляет 113,30°, а вертикальный - 86,30°. Расчет же показывает меньшие значения углов обзора - 92,40° и 76,10°.

Форма зоны обзора камеры с таким объективом отличается от классической пирамиды (рис. 8) и поэтому не может быть точно рассчитана калькуляторами объективов или смоделирована обычными программами проектирования. Причиной искажения зоны обзора является дисторсия объектива.

Вспомним, что оптическое увеличение объектива - это отношение размеров изображения некоторого предмета, проецируемого объективом на видеосенсоре, к истинным размерам этого предмета.

Дисторсия проявляется тогда, когда оптическое увеличение реального объектива не является постоянной величиной по всему полю зрения, а изменяется в зависимости от расстояния от главной оптической оси объектива.

В зависимости от того, уменьшается или увеличивается оптическое увеличение объектива при удалении от центра поля зрения, различают бочкообразную и подушкообразную дисторсию.

Традиционно, из фотографии, название «бочка» и «подушка» связано с искажением сетчатого поля на изображении. При этом форма поля зрения изменяется противоположно названию. Так, при бочкообразной дисторсии изображение напоминает бочку (рис. 4), а форма поля зрения - подушку (рис. 6). При подушкообразной дисторсии изображение напоминает подушку (рис. 14), а форма поля зрения - бочку (рис. 16).

Дисторсию объектива не следует путать с искажением перспективы (рис. 9), которое является естественным на всех изображениях полученных с помощью широкоугольных объективов. В отличие от дисторсии, искажение перспективы не нарушает пирамидальную форму зоны обзора и распределение пространственного разрешения.

Рассмотрим влияние бочкообразной и подушкообразной дисторсии на моделях, построенных в программе профессионального проектирования видеонаблюдения - VideoCAD.

БОЧКООБРАЗНАЯ ДИСТОРСИЯ

Если при удалении от центра поля зрения оптическое увеличение уменьшается, то на изображении объекты по краям поля зрения выглядят сжатыми, пространственное разрешение уменьшается от центра к краям, а само поле зрения камеры растягивается к краям. Фактические углы обзора в этом случае больше расчетных (рис. 5, 6).

Такая дисторсия называется бочкообразной. Бочкообразная дисторсия наиболее распространена и характерна для широкоугольных объективов.

В частности, рассмотренный выше объектив обладает именно бочкообразной дисторсией. Рассмотрим модели изображений от этого объектива, модели поля зрения, зоны обзора, проекций зоны обзора, построенные с учетом и без учета дисторсии. Положение камеры в обоих случаях неизменно (рис. 3...12). На рисунках слева показаны модели, построенные без учета дисторсии, а на рисунках справа - модели с учетом дисторсии.


Рис. 3, 4. Вид сетчатого поля. С бочкообразной дисторсией сетчатое поле напоминает бочку


Рис. 5, 6. Поле зрения камеры. С бочкообразной дисторсией поле зрения напоминает подушку. Пространственное разрешение ухудшается от центра к краям поля зрения


Рис. 7, 8. Зона обзора и модель сцены в 3D


Рис. 9, 10. Модель изображения от камеры. Наклон мужчин в верхних углах рис. 9 без дисторсии является искажением перспективы, естественным для любого широкоугольного объектива


Рис. 11, 12. Проекция зоны обзора в 2D

Обратите внимание на искажение распределения пространственного разрешения (рис. 6). Бочкообразная дис-торсия увеличивает поле зрения, но уменьшает пространственное разрешение, чем дальше от центра поля зрения, тем сильнее. Предметы, удаленные от центра поля зрения, будут отображаться с меньшим разрешением, чем предметы в центре поля зрения. Поскольку калькуляторы объективов считают пространственное разрешение только в центре, фактическое пространственное разрешение на большей части поля зрения будет хуже расчетного.

ПОДУШКООБРАЗНАЯ ДИСТОРСИЯ

Если при удалении от центра поля зрения оптическое увеличение увеличивается, то объекты на изображении по краям поля зрения выглядят растянутыми, пространственное разрешение увеличивается от центра к краям, а само поле зрения камеры сжимается. Фактические углы обзора в этом случае меньше расчетных (рис. 15, 16). Такая дисторсия называется подушкообразной. Подушкообразная дисторсия меньше распространена и может встречаться у телеобъективов.

Рассмотрим модели, построенные с учетом и без учета подушкообразной дисторсии. Модели приведены для иллюстрации искажений, вносимых подушкообразной дисторсией, и не связаны с определенной моделью объектива. Положение камеры в обоих случаях неизменно (рис. 13...22).


Рис. 13, 14. Вид сетчатого поля. С подушкообразной дисторсией сетчатое поле напоминает подушку


Рис. 15, 16. Поле зрения камеры. С подушкообразной дисторсией поле зрения напоминает бочку. Пространственное разрешение от центра к краям поля зрения увеличивается


Рис. 17, 18. Зона обзора и модель сцены в 3D


Рис. 19, 20. Модель изображения от камеры. Так как объектив узкоугольный, искажения перспективы не заметны (сравните с рис. 9)


Рис. 21, 22. Проекция зоны обзора в 2D

Обратите внимание на искажение распределения пространственного разрешения (рис. 16). Подушкообразная дисторсия уменьшает поле зрения, но увеличивает пространственное разрешение, чем дальше от центра поля зрения, тем сильнее.

УЧЕТ ДИСТОРСИИ В ПРОЕКТИРОВАНИИ ВИДЕОНАБЛЮДЕНИЯ

На практике влияние дисторсии актуально для объективов с фокусным расстоянием менее 4 мм. Для более длиннофокусных объективов дисторсия, как правило, невелика и ею можно пренебречь.

Наиболее распространенная бочкообразная дисторсия короткофокусных объективов приводит к тому, что фактическое поле зрения камеры оказывается шире расчетного, с вытянутыми углами, а фактическое пространственное разрешение равно расчетному только в центре поля зрения. В остальной части поля зрения пространственное разрешение оказывается хуже расчетного. Причем на краях поля зрения пространственное разрешение может быть хуже в разы (рис. 6).

Учет дисторсии объектива при проектировании видеонаблюдения позволяет получить модели зон обзора и изображений более близкие к реальности, а значит более полно использовать возможности камер в проекте.

В случаях, требующих точности, сравните фактические углы обзора из спецификации производителя камеры или полученные практическим измерением с расчетными углами обзора, заданными калькулятором объектива исходя из фокусного расстояния и размера видеосенсора. Если углы значительно различаются, то дисторсия объектива этой камеры может быть заметна (см. пример объектива выше).

Моделирование дисторсии объектива впервые реализовано в восьмой версии программы VideoCAD.

Так как параметр «дисторсия» отсутствует в спецификациях камер и CCTV объективов, дисторсия объектива в VideoCAD задается комбинацией расчетного угла обзора и фактического угла обзора. Расчетные углы обзора вычисляются внутри программы из фокусного расстояния объектива и размеров видеосенсора.

Фактические углы обзора обычно приводятся в спецификациях камер и объективов. Если значения углов неизвестны, то можно измерить углы практически.

Для задания дисторсии достаточно задать один из трех фактических углов: горизонтальный, вертикальный или диагональный. Предпочтительнее задать горизонтальный угол. Недостающие углы VideoCAD рассчитает самостоятельно. Для получения максимальной точности можно задать 2 или все 3 фактических угла.


Рис. 23. Проектирование видеонаблюдения в программе VideoCAD

Из заданных значений углов VideoCAD рассчитает дисторсию, которую будет учитывать при построении моделей зоны обзора, распределения пространственного разрешения и моделей изображений от камер. Моделирование дисторсии можно оперативно включать и выключать для оценки ее влияния в каждом конкретном случае.

С.В. УТОЧКИН,
директор CCTVCAD Software
Опубликовано в журнале

Продолжаю цикл статей по компьютерной обработке фотоагрфий. Темой сегодняшнего нашего разговора будет исправление дисторсии и перспективы на фотографии. Напомню, что дисторсия - это искривление прямых линий, проявляющееся по краям кадра, из-за чего картинка выглядит выпуклой или, наоборот, вогнутой. Эффект перспективы - это оптический эффект, состоящий в схождении параллельных прямых на фотографии. Дисторсия и перспектива - это настоящий бич при съемке интерьеров и архитектуры. Именно из-за них стены зданий выглядят искривленными, а сами здания вместо прямоугольной формы имеют форму трапеции.

Однако, иногда дисторсия и перспектива играют положительную роль и используются в качестве художественного приема, позволяющего лучше передать идею фотографии зрителю (хотя, это все на любителя).

Тем не менее, зачастую встает вопрос - как "подчинить" перспективу и дисторсию и заставить их "работать на себя". Для этого придумано немало средств, как "железных", так и программных. Для начала поговорим о перспективе .

Как исправить перспективу?

Использование объектива "тилт-шифт"

Тилт-шифт (tilt-shift, поворот-сдвиг) - это объектив специальной конструкции, позволяющий копменсировать перспективные искажения. Примером такого объектива является Canon TS-E 24mm f/3.5 L II. Объектив состоит из 2 частей, соединенных подвижным шарниром, имеющим две степени свободы - "морду" объектива можно двигать вверх-вниз параллельно плоскости кадра (для компенсации перспективы) или поворачивать в вертикальной плоскости (для управления расположением зоны ГРИП.

Более подробно почитать об этом объективе можно на сайте photozone.de (правда на английском языке), а посмотреть картинки на этой странице - примеры использования объектива tilt-shift - весьма интересно! Объектив "тилт-шифт" - незаменимый аксесуар для профессиональных фотографов, снимающих архитектуру и интерьеры. Однако, стоимость такой оптики редко опускается ниже 4-значной долларовой отметки. Редкий фотолюбитель может себе такое позволить.

Компоновка кадра, исключающая перспективное искажение

Если вы заметили, то эффект перспективы проявляется только когда расположение оптической системы (фотоаппарат + объектив) отлично от горизонтального. Стоит "задрать" голову, сразу получаем падающие стены! С другой стороны, если скомпоновать кадр так, чтобы горизонт был посередине (то есть, аппарат стоит строго горизонтально), то перспективного завала не будет. Однако, при этом необходимо сильно кадрировать изображение. Примерно так (пример сделан "пост-фактум", поэтому прошу извинить за возможную неточность передачи картинки):
Минусы очевидны - значительный проигрыш в разрешающей способности, необходимость иметь мощный широкоугольник. Советовать использование такого метода на практике не рискну, однако, на самый крайний случай может пригодиться.

Исправление перспективы в Adobe Photoshop Lightroom

Если у вас есть эта программа и вы имеете привычку снимать все в RAW, вы можете вздохнуть с облегчением, вы избавлены от многих мучений. Открываем фотографию в Lightroom (как это сделать - читайте в ).
Нам нужно выполнить 4 действия: 1. Выбрать раздел Develop 2. Промотать список опций вниз до Lens Correction 3. Выбрать режим Manual 4. Поиграть движком Vertical При наведении курсора мыши на движок Vertical, на изображении появляется сетка, которая помогает "вывести" вертикали.
Все почти хорошо за исключением того, что в нижней части фотографии образовалась полукруглая "выемка", от которой избавляемся кадрированием.
Вот и все!

Итак, с перспективой разобрались. Осталось победить дисторсию. А если не победить, то использовать с выгодой для себя.

Эксперименты с дисторсией

Единственный минус - детализация по углам кадра становится просто никакой. Однако, учитывая разницу в стоимости между Зенитаром 16/2.8 и "эквивалентным" ему широкоугольником Canon EF 16-35/2.8L или Canon EF 14/2.8L советскому фишаю можно простить абсолютно все! По крайней мере, подобный эксперимент может дать вам примерное представление - "а как будет это выглядеть, если снять это сверхширокоугольником?" Это может повлиять на ваше решение о (не) целесообразности покупки широкоугольной "эльки".



Понравилась статья? Поделитесь ей
Наверх