Методы изучения обмена веществ. Методы исследования показателей белкового обмена Основные методы исследования обмена белков

При обследовании больных с нарушениями белкового обмена диагностическое значение имеет определение общего белка, альбуминов и белковых фракций. В клинической практике в качестве единого метода определения общего белка принят колориметрический биуретовый метод. Достоинством метода является возможность его использования как при работе в неавтоматизированных лабораториях с отечественными реактивами и реактивами фирмы «Лахема», так и при работе на …

Принцип метода Белки сыворотки (плазмы) крови, реагируя в щелочной среде с сернокислой медью, образуют соединения, окрашенные в фиолетовый цвет. Эта специфическая биуретовая реакция, характерная для пептидов и белков, применима для фотометрического определения. В сыворотке здоровых людей содержится 65—78 г/л общего белка, у детей до 6 лет 5,6—8,5 г/л, у новорожденных 5,3—8,9 г/л, в моче — …

Небходимые реактивы: натрия хлорид, 154 ммоль/л (изотонический раствор): 9 г хлорида натрия помещают в мерную колбу вместимостью 1 л, растворяют в воде и доводят до метки водой; натр едкий, 0,2 моль/л: 8 г едкого натра помещают в мерную колбу вместимостью 1 л, осторожно растворяют в воде и доводят до метки водой; калия йодид, 30 ммоль/л …

Опытная проба: к 0,1 мл сыворотки прибавляют 5 мл рабочего раствора биуретового реактива и смешивают, избегая образования пены. Через 30 мин (и не позднее чем через 1 ч) измеряют на фотометре в кювете с толщиной слоя 1 см при длине волны 500—560 нм (зеленый светофильтр) против холостой пробы. Холостая проба: к 5 мл рабочего биуретового …

Результаты определения общего белка сыворотки крови могут быть ложно завышены при наличии липидемии, желтухи, гемолиза. Продолжительное наложение жгута повышает концентрацию всех белков в пробе. Пробы, полученные выше места внутривенной инфузии, могут дать ошибочно заниженные результаты из-за локальной гемодилюции. Увеличение содержания белка более 90 г/л имеет место при гипериммуноглобулинемии, поликлональных или моноклональных гаммопатиях. Снижение содержания белка …

При изучении белкового спектра крови в качестве унифицированного метода используется зональный электрофорез с поддерживающей средой-носителем. Под влиянием постоянного электрического поля белки сыворотки, имеющие отрицательный заряд, движутся по смоченной буферным раствором бумаге по направлению к положительному электроду со скоростью, зависящей от величины заряда и молекулярной массы частиц. Вследствие этого белки сыворотки крови разделяются на пять фракций: …

Необходимые реактивы: буфер, можно использовать различные виды буферов — мединал-вероналовый, боратный, трис-буфер: мединал-вероналовый буфер рН 8,6: 10,3 г мединала и 1,84 г веронала растворяют и доводят до 1 л водой; трис-буфер рН 8,9: трис-(оксиметил)-аминометан — 60,5 г, этилендиаминтетрауксусная кислота (ЭДТА) — 6 г, борная кислота — 4,6 г, вода — до 1 л. раствор …

Альбумин является основным онкотическим компонентом плазмы, служит в ней основным резервом азота, его роль в транспорте билирубина, желчных кислот, ионов металлов, лекарств существенно зависит от концентрации. Абсолютной гиперальбуминемии не существует. Любое состояние, связанное с потерей воды, повышает концентрацию всех белков плазмы, включая альбумин, вызывая относительную гиперальбуминемию. Снижение содержания альбумина встречается при многих заболеваниях: остром и …

Тимоловая проба относится к коллоидно-осадочным, или флокуляционным, реакциям белков плазмы. Флокуляция (осаждение) белков обычно наступает при изменении их заряда, снижении количества воды в сольватной оболочке, при увеличении размеров коллоидных частиц. Принцип метода Тимоловая проба основана на помутнении смеси при взаимодействии сыворотки с насыщенным раствором тимола в вероналовом буфере. При взаимодействии тимоло-вероналового буфера с крупнодисперсными белками …

Азотистый обмен включает реакции синтеза и распада белков, нуклеиновых кислот, аминокислот, нуклеотидов, а также ряда других азотсодержащих соединений. Для оценки состояния азотистого обмена определяют фракции остаточного азота в сыворотке или в цельной крови. Остаточный азот — это небелковый азот или азот, который остается в центрифугате (фильтрате) сыворотки крови или другой биожидкости после осаждения белков трихлоруксусной, …

Определения общего белка в сыворотке \плазме\ крови и других биологических жидкостях.

Все известные способы определения концентрации общего белка в сыворотке крови подразделяют на следующие основные группы:

1.Азотометрические, основанные на установлении количества белкового азота - метод Кьельдаля и его модификации.

2.Способы, состоящие в определении плотности сыворотки - неточные, т.к. плотность зависит не только от содержания белков.

3.Весовые - белки сыворотки крови осаждают, высушивают до постоянного веса и взвешивают на аналитических весах. Методы трудоемки и требуют большого количества сыворотки.

4.Рефрактометрические - не совершенны, т.к. часть рефракции обуславливается иными компонентами сыворотки.

5.Колориметрические - наиболее распространенным является биуретовый метод, являющийся унифицированным.

6.Другие методы - нефелометрические, поляриметрические, спектрофотометрические не получили широкого распространения.

Отечественной промышленностью налажен выпуск наборов для исследования концентрации общего белка в сыворотке крови по биуретовой реакции. На этом же принципе основано измерение уровня общего белка в биологических жидкостях с помощью реактивов, поставляемых различными фирмами.

Определение общего белка в сыворотке крови по биуретовой реакции.

Реактивы.

1.0,9% раствор хлористого натрия /0,9 г хлористого натрия на 100 мл дистиллированной воды/.

2.0,2Н раствор едкого натрия, свободного от углекислого газа /20 мл 1Н едкого натрия доводят до 100 мл прокипяченной дистиллированной водой/.

3.Биуретовый реактив: 4,5г сегнетовой соли растворяют в 40 мл 0,2Н раствора едкого натрия, затем прибавляют 1,5 г сернокислой меди и 0,5 г едкого натра. Хранят в посуде из темного стекла, раствор стоек.

4.0,5% раствор йодистого калия в 0,2Н растворе едкого натрия.

5.Рабочий раствор биуретового реактива: 20 мл биуретового реактива смешивают с 80 мл раствора йодистого калия. Раствор стоек.

6.Стандартный раствор альбумина из человеческой или бычьей сыворотки: 10% раствор альбумина в 0,9% растворе хлористого натрия /1 мл раствора содержит 0,1 г белка - 100г/л/.

Принцип метода.

Белки реагируют в щелочной среде с сернокислой медью с образованием соединений, окрашенных в фиолетовый цвет \биуретовая реакция/.

Ход определения: к 5 мл рабочего раствора биуретового реактива прибавляют 0,1 мл сыворотки, смешивают, избегая образования пены. Через 30 мин \ и не позднее часа\ измеряют на ФЭКе в кювете с толщиной слоя 1 см при длине волны 540-560 нм \зеленый светофильтр\ против контроля.

Контроль : к 5 мл рабочего раствора биуретового реактива прибавляют 0,1 мл 0,9% раствора хлористого натрия, далее обрабатывают как опыт.

Расчет ведут по калибровочному графику.

Нормальные величины общего белка - 65-85 г\л.

Построение калибровочного графика.

Реактив: стандартный раствор альбумина 10% в 0,9% растворе хлористого натрия, 1 мл которого содержит 0,1 г белка. Для приготовления реактива можно использовать лиофилизированный альбумин из набора «Билирубин-эталон» фирмы Лахема. В инструкции набора указывается содержание альбумина в мг. Исходя из этого, делаем расчет, сколько необходимо к данному альбумину прилить 0,9% хлористого натрия, чтобы получить в 1 мл раствора 0,1 г белка.

Например: в инструкции набора указано, что лиофилизированный альбумин содержит 160 мг альбумина. Расчет: стандартный 10% раствор содержит 10г или 10 000 мг в 100 мл

в эталоне 160 мг в Х

Х = 1,6 мл, т.е. добавляем в бутылочку, где содержится альбумин 1,6 мл 0,9% хлористого натрия и получаем, что 1 мл этого раствора содержит 0,1 г белка.

После приготовления стандартного раствора готовим из него серию рабочих разведений по таблице:

Вычисление концентрации белка в г\л.

1 мл стандартного 10% р-ра содержит 0,1 г белка

0,04 г белка содержится в 1 мл раствора

Х в 1 000 мл

Из каждого рабочего разведения соответствующей концентрации берут по 0.1 мл в 3-4 пробирки, т.е. каждое определение проводят в 3-4 параллелях и в каждую пробирку прибавляют по 5 мл биуретового реактива. Через 30-60 мин колориметрируют на ФЭКе против контроля. Получаем на каждую концентрацию 3-4 показания оптической плотности. Находим из них среднее арифметическое, предварительно отбросив резко отклоняющиеся показания.

Строим калибровочный график: по оси абсцисс откладываем концентрацию белка в г\л, т.е. 40-60-80-100г\л; а по оси ординат показания оптических плотностей, полученных на ФЭКе \среднее арифметическое/.

Калибровочная кривая должна иметь вид примой, проведенной через 3 точки. Данную кривую проверяют на сыворотках доноров \не менее 3-4 определений\. При получении нормальных показаний белка, т.е. в пределах нормы; построенную калибровочную кривую используют в работе.

Примечание.

1.Калибровочную кривую необходимо строить не менее 1 раза в год, а также каждый раз после ремонта и на вновь полученном фотоэлектроколориметре.

2.Линейная зависимость между оптической плотностью и концентрацией сохраняется до Д=0,5. Если в сыворотке содержится большее количество белка, то сыворотку разводят хлористым натрием вдвое.

Определение мочевины в крови и моче.

Мочевина является основным азотсодержащим продуктом катаболизма белков.

При распаде белков накапливается аммиак – токсичное вещество. Основным путем обезвреживания аммиака является синтез мочевины в печени. Концентрация мочевины в крови зависит от скорости ее образования в печени и удаления из организма через почки с мочой.

У большинства пациентов скорость образования мочевины отражает скорость утилизации и распада клеточного белка.

При тяжелой патологии печени способность гепатоцитов синтезировать мочевину нарушается, аммиак накапливается, а содержание мочевины в крови снижается.

Выведение образовавшейся мочевины происходит с мочой и зависит от выделительной функции почек.

Определение мочевины проводится следующими методами:

1. Химический метод по цветной реакции с диацетилмонооксимом.

2. Ферментативный метод (уреазный)

3. Метод «сухой химии».

Определение мочевины по реакции с диацетилмонооксимом.

Реактивы.

1.Диацетилмонооксим и тиосемикарбазид или реагент в таблетках.

2.Эталонный или стандартный раствор, содержащий в 100 мл 100 мг мочевины или в 1 мл - 1 мг.

Приготовление растворов.

Раствор реагента: 1 таблетку растворить при нагревании в мерной колбе на 50 мл в 30 мл дистиллированной воды. После охлаждения довести объем до отметки. Раствор устойчив несколько недель.

Раствор серной кислоты: в мерную колбу на 250 мл вносят 150 мл дистиллированной воды и 25 мл 96% серной кислоты ЧДА. Нагревают после охлаждения доводят объем до метки. Раствор устойчив.

Рабочий раствор реагента и серной кислоты готовится перед реакцией в соотношении 1:1 (см. схему определения).

Принцип метода.

Мочевина образует с диацетилмонооксимом при наличии тиосемикарбазида и солей железа в сильно кислой среде комплекс красного цвета, интенсивность окраски пропорциональна концентрации мочевины.

Ход определения.

Реактивы Опыт Контроль Стандарт

1.сыворотка 0,02 - -

2.рабочий раствор

а\раствор реагента 2,0 2,0 2,0

б\раствор серной

кислоты 2,0 2,0 2,0

3.стандартный р-р

мочевины - - 0,02

Выдержать 10 минут в кипящей водяной бане. Охладить 2-3 минуты в струе холодной воды. Колориметрировать не позднее, чем через 15 минут: светофильтр зеленый \при длине волны 490-540\, кювета на 1 см, против контроля.

Расчет : До

Х= -------- * С ст в ммоль\л, где

До - оптическая плотность опыта;

Дст - оптическая плотность стандартного раствора мочевины или эталона;

С ст - концентрация мочевины в стандартном растворе;

Х - концентрация мочевины в пробе сыворотки.

Для пересчета мг % в ммоль\л используется коэффициент – 0,1665.

Нормальные величины мочевины в сыворотке крови - 2,5 -8,3 ммоль\л.

Примечания.

1. Выше приведенный ход определения можно модифицировать, увеличив объемы всех отмериваемых растворов в 2-3 раза, в зависимости от объема кювет.

3. Перерасчет показателей мочевины в азот мочевины можно сделать умножением на фактор 0,466.

4. Тиосемикарбазид является ядовитым реактивом. При работе с ним необходимо соблюдать правила работы с ядовитыми веществами.

Активности панкреатической липазы

Клинико-диагностическое значение определения

Повышение активности панкреатической липазы в сыворотке крови отмечено при панкреатите любого происхождения, в особенности- остром панкреатите, при котором активность фермента повышается также и в асцитической жидкости. У больных панкреатитом целесообразно одновременно исследовать активность липазы в крови и моче, поскольку в последней она оказывается повышенной чаще, чем в крови. Лекарственные препараты, провоцирующие спазм сфинктера Одди (наркотические средства, анальгетики, секретин), гепарин (стимулирующий высвобождение липазы) активируют этот фермент.

Низкие показатели активности липазы обнаружены у больных туберкулезом, сифилисом, раком, при различных инфекционных заболеваниях, причем по мере прогрессирования патологического процесса активность фермента все более снижается.

Белки – высокомолекулярные азотсодержащие вещества. Различают простые белки – протеины, состоящие из 20 различных аминокислот, и сложные белки – протеиды, состоящие из протеина и простетического (небелкового) компонента. К простетическим компонентам относятся нуклеиновые кислоты, гем, липиды, фосфорная кислота и др. К сложным белкам относятся нуклеопротеиды, хромопротеиды, липопротеиды, фосфопротеиды.

Биохимический анализ обычно начинается с определения содержания общего белка в плазме (сыворотке) крови .

Изменения уровня общего белка могут быть как абсолютными, так и относительными. Последние обычно наблюдаются при увеличении (уменьшении) объема крови (плазмы). Так, гидремия приводит к относительной гипопротеинемии, а дегидратация - к относительной гиперпротеинемии. В связи с этим, при трактовке показателей общего белка в сыворотке (плазме) крови следует обязательно учитывать нарушения водного обмена.

Дегидратация может скрыть абсолютную гипопротеинемию, поскольку при данном сочетании концентрация белка в плазме крови не всегда отличается от нормы. Отсюда следует, что причиной гипо- и гиперпротеинемии может быть не только нарушение равновесия между поступлением, биосинтезом белка, его катаболизмом и удалением, но и изменение объема внутрисосудистого пространства за счет жидкой (водной) части крови. Понятно, что патогенез этих изменений различен.

Для дифференциации абсолютных и относительных изменений содержания белка в плазме достаточно исследовать показатель гематокрита или определить объем плазмы (крови).



При подавляющем большинстве хронических заболеваний внутренних органов, сопровождающихся сдвигами в белковом обмене, обнаруживается гипопротеинемия, носящая обычно вторичный характер.

Абсолютная гипопротеинемия выявляется при патофизиологических синдромах, выражающихся в снижении биосинтеза, усилении катаболизма, аномальных потерях, патологическом распределении белка между отдельными секторами организма. Причинами абсолютной гипопротеинемии являются:

1. Недостаточное поступление белка с пищей вследствие голодания, недоедания, сужения (стриктуры) пищевода (из-за ожога, опухоли), нарушения целостности и функции желудочно-кишечного тракта, при продолжительных воспалительных процессах в стенке кишечника и других состояниях, сопровождающихся ухудшением переваривания и всасывания белков.Снижение уровня общего белка в плазме (или тенденция к развитию гипопротеинемии) отмечается также при синдроме нарушенного всасывания белковой пищи и несбалансированности ее аминокислотного состава.

2. Подавление протеосинтетической функции печени, наблюдаемое при паренхиматозных гепатитах, циррозах печени, а также интоксикациях, обусловленных длительными нагноительными процессами, злокачественными новообразованиями, тиреотоксикозом, токсическим действием некоторых химических веществ.

3. Повышенный распад белков в организме, вызванный потребностью в возмещении больших энергетических затрат, связан с дефицитом пластических ресурсов. Отмечается при термических ожогах и ожоговой болезни, злокачественных новообразованиях.

4. Потеря белка организмом: с кровью при острых и хронических кровотечениях, с мочой при нефротическом синдроме (нефрозе, амилоидозе почек).

5. Перемещение в другие ткани при резко увеличенной проницаемости капиллярной стенки: образование обширных отеков, переход в третье пространство - при образовании экссудатов, выпотов в серозные полости, в просвет кишечника (при завороте кишок, перитоните).

6. Дефектопротеинемии, т.е. сравнительно редко встречающиеся наследственно обусловленные (генетически детерминированные) нарушения в синтезе белков крови.

7. Особенности физиологического состояния организма. Пониженное содержание белка в плазме крови отмечено и при некоторых физиологических состояниях: например, у женщин в последние месяцы беременности и в период лактации.

Относительные гипопротеинемии. Известно, что обильные перфузии раствора глюкозы и других физиологических жидкостей, приводят к уменьшению концентрации белка вследствие увеличения объема жидкой части крови.

Более половины всего количества белков плазмы (35-55г/л) приходится на долю альбумина. Альбумин плазмы быстро обновляется: в течение суток синтезируется и распадается 10-16г этого белка. Благодаря значительной концентрации, высокой гидрофильности и небольшим размерам молекул альбумин выполняет важную функцию по поддержанию коллоидоосмотического давления крови. Тем самым он участвует в обмене воды между кровью и межтканевым пространством. При содержании альбумина ниже 30г/л онкотическое давление уменьшается настолько, что вода переходит из внутри - во внесосудистый сектор.

Определение уровня альбумина в плазме играет существенную роль для оценки тяжести течения заболеваний, сопровождающихся гипоальбуминемией.

Столь же важное диагностическое значение имеет определение концентрации альбумина в моче.

Снижение уровня альбумина отмечается при хронических заболеваниях почек – нефротическом синдроме, а также при ожогах, кровопотерях, инфекционных болезнях, гнойных процессах, неспецифической пневмонии, туберкулезе легких и других органов, остром полиартрите и иных воспалительных состояниях, при злокачественных опухолях (раковая кахексия), лейкемии, анемии, сердечной недостаточности, инфаркте миокарда, массивной потере белка через кишечник.

Появление белка в моче (протеинурия) отмечается при ряде заболеваний почек. Принято выделять органические (вызванные поражением паренхимы почек – заболевания воспалительного характера, нефротический синдром, иногда врожденные дефекты нефрона) и функциональные почечные протеинурии, связанные с увеличением проницаемости почечного фильтра или замедлением тока крови в клубочках (под влиянием переохлаждения, физического и психического перенапряжения).

Преренальная протеинурия связана с усиленным распадом белков тканей, выраженным гемолизом; ренальная - обусловлена патологией почек (клубочковой и канальцевой); постренальная - вызвана патологией мочевыводящих путей и чаще всего – воспалительной экссудацией.

Принято дифференцировать три степени выраженности протеинурии : умеренную – при суточной потере белка до 1г, среднюю – от 1 до 3 г и выраженную – более 3г/сутки.

Основными причинами протеинурии являются:

1. повышение проницаемости гломерулярного фильтра для белков плазмы (гломерулярная протеинурия);

2. нарушение канальцевой реабсорбции профильтрованных белков (тубулярная протеинурия);

3. парапротеинемия и/или увеличение содержания белков в крови;

4. изменение почечной гемодинамики;

Для изучения обмена веществ в организме и отдельных органах существует разнообразные методы. Одним из старинных является метод балансовых опытов , заключающийся в том, что изучают количество поступивших органических веществ и количество образовавшихся конечных продуктов.

Для изучения обмена веществ в отдельных органах применяют метод изолированных органов . Органы, способные сохранять в течение некоторого времени свою жизненную активность и могут использовать для своей деятельности питательные вещества, пропускающие через кровь.

Для изучения обмена веществ в отдельных органах - метод ангеостомии. Разработал Лондон. На кровеносные сосуды накладывают специальные трубочки, которые позволяют получить притекающую кровь к какому-либо органу. По изменению химического состава крови судят о процессе обмена веществ.

В настоящее время широко используется метод меченых атомов – основанный на использовании соединений, в молекулы которых включены атомы тяжелых и радиоактивных изотопов биоэлементов. Вводят в организм соединения, меченные такими изотопами, используют радиометрические методы анализа можно проследить за судьбой элементов или соединений в организме и о его участии в метаболических процессах.


59 вопрос Обмен белков. Классификация их (два вида) и характеристика. Значение для организма. Биологическая ценность белков. Азотистый баланс. Роль печени в белковом обмене. Особенности белкового обмена у жвачных. Регуляция белкового обмена

Обмен белков ФУНКЦИИ БЕЛКОВ

Пластическая функция белков состоит в обеспечении роста и развития организма за счет процессов биосинтеза.

Ферментативная активность белков регулирует скорость протекания биохимических реакций.

Защитная функция белков состоит в образовании иммунных белков - антител. Белки способны связывать токсины и яды а также обеспечивать свертываемость крови (гемостаз).

Транспортная функция заключается в переносе кислорода и двуокиси углерода эритроцитным белком гемоглобином , а также в связывании и переносе некоторых ионов (железо, медь, водород), лекарственных веществ, токсинов.

Энергетическая роль белков обусловлена их способностью освобождать при окислении энергию.


Белковый обмен проходит четыре основных этапа:

Расщепление белка в ЖКТ и всасывание в виде аминокислот;

Центральное звено обмена – синтез из аминокислот собственных белков организма и расщепление белка в клетках;



Межуточные превращения аминокислот в клетках;

Образование и выведение конечных продуктов белкового обмена.


Азотистый баланс

Косвенным показателем активности обмена белков служит так называемый азотистый баланс - разность между количеством азота, поступившего с пищей, и количеством азота, выделяемого из организма в виде конечных метаболитов.

Азотистое равновесие - количество поступившего азота равно количеству выделенного (отмечают у взрослого здорового животного в нормальных условиях кормления и содержания)

Положительный азотистый баланс превышает выделенное.

Отрицательный азотистый баланс - состояние, при котором количество поступившего азота меньше выделенного.

При расчетах азотистого баланса исходят из того факта, что в белке содержится около 16% азота, то есть каждые 16 г азота соответствуют 100 г белка (100:16=6,25).


Белковый минимум

Наименьшее количество вводимого с пищей белка, способствующее поддержанию азотистого равновесия.


МРС, свиньи – 1г/кг живой массы

Лошади – 0,7-0,8 (1,2-1,42)

Коровы – 0,6-0,7 (1)

Человек – 1,5-1,7 (белковый оптимум).


Вне зависимости от видоспецифичности все многообразные белковые структуры содержат в своем составе всего 20 аминокислот . Для нормального метаболизма имеет значение не только количество получаемого белка, но и его качественный состав, а именно соотношение заменимых и незаменимых аминокислот .

Незаменимых аминокислот для моногастричных животных, птиц и человека 10: дизин, триптофан, гистидин, фенилаланин, лейцин, изолейцин, метионин, валин, треонин, аргинин.

Биологическая ценность белков

У жвачных и некоторых других видов животных есть свои особенности в обмене белка: микрофлора преджелудков способна синтезировать все незаменимые аминокислоты и, следовательно, могут обходиться кормом без незаменимых аминокислот.



Белки в которых нет хотя бы одной незаменимой аминокислоты или если они содержатся в недостаточных количествах называются неполноценными (растительные белки ).

Обмен аминокислот

Основное место обмена аминокислот – печень:

дезаминирование – отщепление аминогруппы (в виде аммиака) с образованием жирных кислот, оксикислот, кетокислот;

трансаминирование – перенос аминогрупп из аминокислот в кетокислоты с образованием другой аминокислоты и кетокислоты без промежуточного образования аммиака;

декарбоксилирование – отщепление карбоксильной группы в виде углекислоты с образованием биогенных аминов.


Регуляция белкового обмена

Глюкокортикоиды - ускоряют распад белков и аминокислот, в результате чего усиливается выделение азота из организма.

Механизм действия СТГ состоит в ускорении утилизации аминокислот клетками. Соответственно, при акромегалии и гипофизарном гигантизме наблюдается положительный азотистый баланс, при гипофизэктомии и гипофизарном нанизме – отрицательный.

Тироксин : при гиперфункции щитовидной железы повышается обмен белков

Гипофункция сопровождается замедлением обмена веществ, останавливается рост и развитие организма.

В печени происходит не только синтез белка, но и обеззараживание продуктов их гниения. В почках совершается дезаминирование продуктов азотистого обмена.

Для оценки состояния белкового обмена, а также функций отдельных органов проводят определение в сыворотке крови общего белка и его фракций, мочевины, креатинина и других составляющих остаточного азота.
Для определения общего белка сыворотки крови используют методы сжигания (къельдалеметрические), рефрактометрические, спектрофотометрические и др. В лабораториях ветеринарной медицины преимущественно пользуются рефрактометрическим и колориметрическим (биуретовым) методами. При определении белковых фракций сыворотки крови используют электрофоретические (на агаровом геле, в полиакриламидном геле, на бумаге, ацетате целлюлозы), турбидиметрические (высаливание нейтральными солями), седиментационные (разделение белков на фракции ультрацентрифугированием) методы и др.
В клинической практике для разделения белков пользуются чаще электрофоретическими и турбидиметрическими методами. При электрофорезе на бумаге получают 5 основных фракций: альбумины, ар, (Х2, Р- и 7-глобулины. Недостатки этого метода - длительность проведения анализа (результаты исследования можно получить только на 2-3-й день), не совсем четкое разделение фракций белков. Электрофорезом на агаровом геле получают более четкое разделение белковых фракций, чем на бумаге, однако сложность процедуры приготовления геля не позволяет широко внедрять этот метод в лабораторную практику. С помощью электрофореза на полиакриламидном геле можно получать около 30 фракций белка. Недостаток метода - трудность количественной оценки полученных фракций.
Унифицированным признан метод электрофореза на ацетате целлюлозы. При отсутствии в лаборатории аппарата для электрофореза используются методы осаждения белков нейтральными солями с последующим турбидиметрическим измерением степени помутнения среды на ФЭКе. Соотношение альбуминов и глобулинов в сыворотке крови определяют белково-осадочными пробами (сулемовой, с цинк-сульфатом, тимоловой и др.).
Под остаточным азотом понимают количество его, которое остается в крови после осаждения белков. Сюда входит азот мочевины, аминокислот, креатинина, креатина, мочевой кислоты, инди- кана, аммиака, полипептидов, нуклеотидов, биогенных аминов и других продуктов белкового обмена. Основная часть остаточного азота крови - азот мочевины, на долю которого приходится не менее 1/2 всего небелкового азота крови.
Около 1 /4 остаточного азота составляет азот аминокислот, креатина и креатинина. Наибольшее клиническое значение имеет определение отдельных фракций остаточного азота, в частности мочевины, аминного азота, креатина и креатинина, мочевой кислоты, индикана.
Для определения мочевины в крови, моче и других биологических жидкостях применяют диацетилмонооксимные, уреазные, ги- похлоритные, гипобромидные, ксантгидроловые и другие методы. Наиболее распространенным является колориметрический метод, основанный на взаимодействии мочевины с диацетилмоноокси- мом с образованием окрашенных продуктов (реакция Фирона). Однако более точными и специфическими являются методы определения мочевины с использованием фермента уреазы.
Для определения белка, альбумина, мочевины, креатинина, а также других биохимических показателей возможно применение отражательных фотометров и диагностических полосок системы «сухой химии», биохимических автоанализаторов. Пробирки для взятия крови не должны содержать детергенты и другие моющие средства. Хранят их закрытыми.

Еще по теме МЕТОДЫ ОЦЕНКИ СОСТОЯНИЯ БЕЛКОВОГО ОБМЕНА:

  1. МЕТОДЫ ОЦЕНКИ СОСТОЯНИЯ ВОДНО-ЭЛЕКТРОЛИТНОГО И МИНЕРАЛЬНОГО ОБМЕНОВ
  2. БОЛЕЗНИ НАРУШЕНИЙ БЕЛКОВОГО, УГЛЕВОДНОГО И ЖИРОВОГО ОБМЕНА ОЖИРЕНИЕ - ADIPOSITAS
  3. ОЦЕНКА СОСТОЯНИЯ РАСТИТЕЛЬНОГО ПОКРОВА ПОСЛЕСИЛЬНОГО ТОРФЯНОГО ПОЖАРА
  4. Определение белковых фракций в сыворотке крови турбидимет- рическим (нефелометрическим) методом.
  5. ОПЫТ количественной оценки динамических СОСТОЯНИЙ И УСТОЙЧИВОСТИ СОСНОВЫХ НАСАЖДЕНИЙ НАОБЪЕКТАХ ГИДРОМЕЛИОРАЦИИ


Понравилась статья? Поделитесь ей
Наверх