Мрт структур головы. Мр-спектроскопия Общественный транспорт Германии

Развитие нейрорентгенологии идёт по пути "от изучения анатомии к изучению функций головного мозга". Сегодня МРТ позволяет не только дифференцировать типы тканей (кровь, жировую, мышечную ткань, белое и серое вещество мозга и т.д.), но и оценивать скорость и направление движения молекул воды; различать ткани, отличающиеся по транспорту молекул и ионов (К+, Na+) ; по рН среды и активности фагоцитоза. По количеству кислорода в крови МРТ позволяет выявить области мозга с повышенной активностью, обнаружить участки нарушения гематоэнцефалического барьера, количественно оценить проницаемость тканей, состояние рецепторов, гормональную активность, наличие конкретного антигена или белковых структур в тканях.

Диффузионную МРТ, МР трактографию, перфузионную, функциональную МРТ и MP-спектроскопию относят к методам молекулярной визуализации.

MP-спектроскопия - это неинвазивная методика, основанная на свойстве ядер атомов водорода индуцировать МР сигналы в магнитных полях высокой напряженности, после воздействия радиочастотного импульса. Последующий анализ этих данных позволяет судить о наличии и концентрации в тканях различных метаболитов, а также об их изменениях при различных патологических состояниях.

На сегодняшний день этот метод является единственным способом неинвазивно провести исследование обмена веществ (метаболизма) внутренних органов, в частности головного мозга. Нарушения этих процессов происходят еще до клинических проявлений болезни, поэтому магнитно-резонансная спектроскопия позволяет диагностировать заболевания на самых ранних этапах развития.

MP-спектроскопию в настоящее время довольно широко используют для оценки различных объёмных образований головного мозга. Данные MP-спектроскопии не позволяют с уверенностью предсказать гистологический тип новообразования, тем не менее, опухолевые процессы в целом характеризуются низким соотношением NAA/Cr, увеличением соотношения Cho/Cr и, в некоторых случаях, появлением пика лактата. В большинстве исследований МР- спектроскопию применяли в дифференциальной диагностике астроцитом, эпендимом и примитивных нейроэпителиальных опухолей, предположительно определяя тип опухолевой ткани.

В медицинской практике важно использовать MP-спектроскопию в послеоперационном периоде для диагностики продолженного роста новообразования, рецидива опухоли либо лучевого некроза. В сложных случаях МР-спектроскопия становится полезным дополнительным методом в дифференциальной диагностике наряду с данными перфузионно-взвешенных изображений. Характерным признаком некроза служит наличие так называемого мёртвого пика, широкого лактат-липидного комплекса на фоне полной редукции пиков остальных метаболитов.

Очень широко используют информативность МР-спектроскопии в дифференциальной диагностике первичных опухолей мозга и метастазов в головной мозг, в дифдиагностике этих поражений с инфекционными и демиелинизирующими процессами. Также МР спектроскопия становится все более востребованной при эпилепсии, при оценке метаболических нарушений и дегенеративных поражений белого вещества головного мозга у детей, при черепно-мозговой травме, ишемии мозга и других заболеваниях.

Рубрика: Диагностика в Германии

Это метод исследования, базирующийся на принципе классического магнитно-ядерного резонанса, но имеющий некоторые отличия. Если в магнитно-резонансных приборах используется свойство частиц поглощать и излучать электромагнитные волны, то целью спектроскопии является определение наличия и концентрации отдельных химических веществ . Метод магнитно-резонансной спектроскопии позволяет проводить измерения в живых тканях. Так, с помощью ядер водорода (Н 1) возможно определять количество N-ацетиласпартата в нейронах головного мозга или количество холина в клеточных мембранах. Молекулы фосфора Р 31 применяются, главным образом для изучения обмена веществ на клеточном уровне, а молекулы углерода С 13 - для отслеживания метаболизма глюкозы.

Первая установка для МР-спектроскопии сконструирована австрийским профессором Эвальдом Мозером с сотрудниками в 1990 году. В 1996 году выполнены первые исследования метаболизма глюкозы и жирных кислот в головном мозге, скелетных мышцах и печени здоровых испытуемых, а также пациентов с диабетом 1 и 2 типа. К настоящему времени также выполнены клинические исследования МР-спектроскопии сердца и предстательной железы .

В ПОМОЩЬ ОНКОЛОГУ

В последние годы метод получил широкое распространение в онкологии , так как позволяет определить накопление патологических веществ при различных онкологических заболеваниях.

Если ранее было осуществимо лишь исследование крупных органов и значительных изменений, то сейчас стало возможным исследование такого небольшого органа, как предстательная железа с разрешением до <0,5 см 3 . В здоровой ткани предстательной железы определяется в больших количествах цитрат, или лимонная кислота. При злокачественных новообразованиях количество цитрата уменьшается. Так как общее число клеток при онкологических заболеваниях увеличивается, то возрастает и количество холина, составной части клеточной оболочки. Концентрацию двух этих веществ как раз и позволяет измерить МР спектроскопия. Для получения трехмерного изображения и точной локализации опухоли весь орган делится на небольшие участки менее 0,5 см 3 , в каждом из которых определяется концентрация указанных веществ.

На рисунке показана разница в содержании различных метаболитов в нормальной ткани предстательной железы (А) и в ткани карциномы предстательной железы (Б). При этом Cholin - холин, Kreatin - креатин, а Citrat - cоли лимонной кислоты. В злокачественной ткани преобладает повышенная концентрация холина, но снижена концентрация цитрата. (Источник: Dr. Scheidler. Patienteninfo Prostata-Spektroskopie. Radiologische Zentrum München-Pasing, 2010 ).

Комбинация МРТ (определение морфологической структуры) с МР спектроскопией (выявление и определение концентрации химических соединений) позволяет охарактеризовать и спланировать лечение рака предстательной железы.

ПРИ РАКЕ ПРОСТАТЫ

Для такого исследования требуется МРТ-установка с высоким разрешением, а также две передающие капсулы: одна располагается поверхностно на передней брюшной стенке в области предстательной железы, а другая - ректально. Для обработки сигнала необходим также специальный прибор и программное обеспечение. Для получения достоверных результатов врачу требуется достаточный опыт работы с оборудованием. Только в 2010 году была завершена экспериментальная фаза применения МР- спектроскопии для диагностики рака предстательной железы. В Германии такое обследование можно пройти, например, в радиологическом центре Мюнхен-Пазинг. Врачами этого центра с 1993 года обследовано более 7000 пациентов. В сентябре 2003 года здесь был проведен первый в Германии курс для врачей по диагностике рака предстательной железы с помощью МР-спектроскопии.

В настоящее время «золотым стандартом» ранней диагностики рака предстательной железы является определение опухолевого маркера, простатспецифического антигена (ПСА). При повышении ПСА выполняется дальнейшая диагностика - поиск злокачественного новообразования или доброкачественных изменений (гиперплазии). Основным недостатком метода является низкая специфичность, то есть повышение ПСА и при других, например, воспалительных заболеваниях.

В случае повышения ПСА на помощь как раз может прийти такой метод как МР-спектроскопия. Особенно МР-спектроскопия показана пациентам с постоянно повышенным уровнем ПСА, но неподтвержденными с помощью гистологического исследования злокачественными изменениями предстательной железы.

ПРОЦЕДУРА

Как же выполняется исследование предстательной железы? Самым приятным фактом является отсутствие специальной подготовки пациента. Лишь незадолго до процедуры рекомендуется естественное опорожнение кишечника и мочевого пузыря. Контрастное средство в исследовании не применяется.

Противопоказанием к исследованию является наличие искусственного водителя ритма. При наличии искусственных клапанов сердца или протезов внутреннего уха необходимо обязательно информировать врача, имея при себе описание (аннотацию или паспорт) данных протезов. Исследование проводится в закрытом помещении, в специальной продолговатой кабине. Если имеет место боязнь закрытых пространств - клаустрофобия, то перед исследованием пациент получает успокаивающее средство. Исследование длится около часа, в положении лежа на спине.

Метод МР-спектроскопии является очень многообещающим. В комбинации с обычной магнитно-резонансной томографией правильный диагноз устанавливается в 80-85% случаев. Ошибки происходят в тех случаях, когда опухолевая ткань значительно не отличается от нормальной по степени зрелости, и количество холина в ней приближено к нормальной ткани. Редко наблюдаются случаи, когда клетки опухоли рассеяны по всей предстательной железе, а не сконцентрированы на определенном участке, тогда в диагностике поможет исследование ткани под микроскопом.

В СПЕКТРЕ НАУКИ

В Германии признанным международным центром МР-спектроскопии является Франкфурт-на-Майне, где располагаются Центр биомолекулярной МР-спектроскопии, Институт Макса Планка и исследовательские группы Университета Гете. С помощью МР-спектроскопии здесь изучаются внутриклеточные белки, их изменения под воздействием различных медикаментов и температурных колебаний. В берлинской клинике Шарите и Рейнском университете Фридриха Вильгельма в Бонне активно изучается применение МР- спектроскопии для диагностики рассеянного склероза. Показано, что в неповрежденных клетках головного мозга содержится значительное количество N-ацетил-аспартата, снижение которого может указывать на развитие заболевания.

Др. София Ротэрмель



Остеоденситометрия: прочны ли ваши кости? Точный диагноз благодаря точной локализации опухоли и ее метастазов: новая диагностика с помощью высокочувствительного онкомаркера при раке простаты. Компьютерная томография в помощь ортопеду

Остеоденситометрия, или просто денситометрия - это несложный и безболезненный метод измерения плотности костной ткани. Конечно, необязательно это делать каждому, пусть и в целях профилактики...

Людгер А., в профилактических целях регулярно обследовался по подозрению на рак простаты. Однако три биопсии не подтвердили наличие опухоли. Для окончательной ясности 75-летний пациент...

все это и многое другое вы найдете на страницах журнала в разделе "Информация для врачей".
Общественный транспорт Германии

Прилетая на самолете на лечение в Германию, вы из аэропорта можете относительно недорого добраться до места назначения по железной дороге. Страна обладает разветвленной сетью железных дорог. Концерн «Немецкие железные дороги» - Deutsche Bahn (DB) предлагает несколько видов поездов, отличающихся не только внешним видом, но и, в первую очередь, скоростью и стоимостью проезда. ICE (Интер Сити Экспресс) и IC (Интер Сити) - это самые быстрые и комфортабельные экспрессы, на которых можно добраться не только до крупных городов Германии, но и 6-ти соседних стран: Австрии, Бельгии, Дании, Нидерландов, Франции и Швейцарии.

Магнитно-резонансную томографию давно используют во всех областях медицинской науки, поскольку данный вид обследования является безопасным и высокоинформативным для врачей при определении патологий и определения методик лечения пациентов. Однако бывают ситуации, когда даже такое информативное исследование не позволяет точно выявить все аспекты заболевания. В таких ситуациях проводятся дополнительные исследования, которые в своей сути так же основываются на ядерно-магнитном резонансе. Важнейшей из таких специализированных методик является магнитно-резонансная спектроскопия.

Суть исследовательской методики

Современные исследовательские клиники проводят магнитно-резонансную спектроскопию с применением специализированного оборудования. Такой метод исследования определяет биохимические изменения, которые вызываются различными патологическими состояниями, в разных участках человеческого организма.

Протонная магнитно-резонансная спектроскопия основывается на изменениях резонансной частоты протонов, из которых состоят всевозможные химические соединения. Такой процесс в медицине принято называть химическим сдвигом, что определяет различия частот пиков спектра.

Единицей измерения химического сдвига принято считать миллионную долю (ррт). На сегодняшний день протонная магнитно-резонансная спектроскопия подразделяется на ту, что проводится по одновоксельной методике, и мультивоксельную, которая может одномоментно определять спектры из нескольких участков головного мозга.

В современной медицине применяется еще одна разновидность спектроскопии – мультиядерная, учитывающая магнитно-резонансные сигналы фосфорных, углеродных и некоторых иных ядер.

При одновоксельной магнитно-резонансной спектроскопии анализу подлежит лишь один воксел или участок мозга человека. При анализе состава частот спектра выбранного воксела специалисты получают определенное метаболитное распределение химического сдвига в миллионных долях. При этом по соотношению в спектре метаболитных пиков, уменьшению или увеличению их высот можно неинвазивным путем оценить протекающие в тканях биохимические процессы.

Мультивоксельная спектроскопия предоставляет спектральные значения сразу нескольких необходимых при исследовании вокселов, которые можно сравнить для получения целостности картины исследуемого участка.

Данные мультивоксельной магнитно-резонансной спектроскопии позволяют строить карту среза по параметрам, где цветовыми маркерами обозначены концентрации необходимых метаболитов, а распределенность метаболитов в срезе визуализирована и предоставляет взвешенное по параметру химического сдвига изображение.

По характеру исследуемых тканей магнитно-резонансная спектроскопия может подразделяться на:

  • МР-спектроскопию, которая проводится на внутренних органах;
  • МР-спектроскопию, областью исследования которой выступает биологическая жидкость.

Наиболее частым спектром применения методики выступает анализ мышечной ткани, поскольку она не подлежит ни одному другому неинвазивному методу диагностики и может быть обследована только путем применения биопсии.

Области применения диагностики

Рассматриваемая диагностика позволяет расшифровывать процессы метаболизма тканей различных органов при помощи получаемых магнитно-резонансных спектров. Обменные процессы организма, в большинстве случаев, нарушаются гораздо раньше, чем пациент начинает ощущать какие-то симптомы того или иного заболевания.

Вот почему важно своевременно применять магнитно-резонансную спектроскопию, которая поможет выявить отклонения на ранних стадиях болезни и принять соответствующие меры по предотвращению ее прогрессирования. К тому же, данная методика для отдельных анатомических областей организма человека является единственной неинвазивной диагностической процедурой, которая известна на сегодняшний день.

Для диагностики энергетического показателя метаболического процесса сердечной мышцы без введения радиоактивных средств магнитно-резонансная спектроскопия является единственно возможным методом обследования.

При сочетании методики с результатами магнитно-резонансной томографии врач получает общую клиническую картину кардиологических параметров – размеров сердца, структуры миокарда и нарушений кровообращения в нем, функциональных расстройств. Также вышеназванная диагностика помогает контролировать ход лечения ишемической болезни сердца, различной гипертрофии, сердечной недостаточности.

При неврологических патологиях магнитно-резонансная спектроскопия позволяет уточнить диагноз, различая, например, рассеянный склероз и нейрооптикомиелит. При расстройствах психики важным является та особенность данной диагностики, которая помогает рассмотреть различные биохимические процессы в мозговых клетках.

Данная методика широко применима для оценивания всевозможных новообразований в головном мозге. Несмотря на отсутствие гистологических данных о возникшем новообразовании, исследователи говорят об определенных соотношениях рассматриваемых в ходе диагностики показателей и возникновении пика лактата. Таким образом, большинство случаев магнитно-резонансной спектроскопии опухолевых тканей способно предоставить дифференциацию возникших новообразований по принципу злокачественности.

В клинических условиях при послеоперационных диагностиках данная методика свидетельствует об успешности проведенного хирургического вмешательства либо о продолжении роста рассматриваемой опухоли, ее рецидиве, лучевом некрозе.

Еще одним аспектом использования магнитно-резонансной спектроскопии является процесс разграничения впервые обнаруженных первичных или вторичных патологий, их дифференциация по демиелинизирующим и инфекционным процессам.

Показательными являются в данном разрезе диагностированные случаи абсцессов, опирающиеся на диффузионно-взвешенные изображения.

Так, при отсутствующих пиках основных метаболитов при абсцессе отмечается возникновение пиков липид-лактатного комплекса и специфичных абсцессу пиков – например, продуктов анаэробного бактериального гликолиза и результатов протеолиза.

В медицинских источниках часто исследуется эффективность МР-спектроскопии при метаболических нарушениях и дегенеративных поражениях белого вещества мозга у детей, эпилепсии, черепно-мозговых травмах, ишемиях головного мозга и прочих заболеваниях.

Показания и противопоказания для МРС

Рассматриваемая диагностика, аналогично магнитно-резонансной томографии, основана на ядерно-магнитном резонансе, но ее результатом не выступают снимки.

Методика помогает рассматривать правильность распределения в тканях продуктов метаболических процессов, основываясь на их молекулярных особенностях.

Среди основных состояний и заболеваний, при которых пациентам показано прохождение магнитно-резонансной спектроскопии, выделяют эпилепсию, ишемическую болезнь (местное малокровие), болезни Альцгеймера и Паркинсона, всевозможные воспалительные процессы, травмирование тканей, возникновение новообразований в головном мозге.

Поскольку метаболизм здоровых и пораженных тканей значительно отличается, проведение данного вида исследования помогает диагностировать и начать лечить проблему на самой ранней стадии, что чаще приводит к успешному результату.

Среди главных противопоказаний к процедуре специалисты называют искусственный водитель ритма. В случае наличия протезирования внутреннего уха либо искусственного сердечного клапана важно своевременно информировать об этом врача и предоставить ему подробное описание или аннотацию имеющегося протеза.

Также, поскольку исследование проводится в закрытом пространстве – продолговатой кабине, при наличии боязни таких пространств необходимо сообщить об этом специалисту, чтобы он мог прописать пациенту седативные (успокоительные) препараты.

Методика исследования, описанная выше, является многообещающей, поскольку при ее сочетании с другими обследованиями точность поставленного диагноза обычно достигает 90%. Иногда случаются неточности в связи с особенностью опухолевой ткани, которая может не сильно отличаться от нормальной по содержанию холина и степени зрелости.

В остальных случаях данное исследование очень информативно показывает специалистам, что происходит с обследуемым участком.

> Магнитно-резонансная спектроскопия

Данная информация не может использоваться при самолечении!
Обязательно необходима консультация со специалистом!

Такой эффективный метод как магнитно-резонансная томография активно используется во всех областях медицины. МРТ отличается безопасностью и вместе с тем высокой информативностью, что позволяет использовать ее для постановки правильного диагноза на самых ранних стадиях возникновения болезни. Однако иногда даже этот метод не может дать точного ответа на диагностические вопросы, полученных сведений не хватает. В этом случае специалисты назначают проведение более узких исследований, основывающихся так же на явлении ядерно-магнитного резонанса. Одним из таких специальных методов является магнитно-резонансная спектроскопия (МРС, МР-спектроскопия).

В чем заключается суть метода?

МРС – новейший метод диагностики, который проводится в специализированных клиниках при помощи особого оборудования. Данная методика основывается на определении биохимических изменений в различных тканях тела человека, вызванных теми или иными заболеваниями.

Выделяют два вида МР-спектроскопии: МРС внутренних органов и МРС биологических жидкостей. Чаще всего этот метод диагностики применяют для получения биохимического анализа мышечной ткани, так как исследование ее состояния каким-либо другим образом иногда просто невозможно выполнить без проведения биопсии.

Что показывает МР-спектроскопия?

Проведение МРС дает возможность с помощью полученных магнитно-резонансных спектров расшифровать процессы метаболизма (обмена веществ) в тканях различных органов. Нарушения процессов обмена веществ происходит задолго до появления симптомов заболевания. Таким образом МРС позволяет поставить правильный диагноз на самых ранних стадиях развития патологии и является сегодня чуть ли не единственным способом провести неинвазивное исследование метаболизма в некоторых анатомических областях.

МР-спектроскопия, например, является уникальным методом диагностики энергетического метаболизма сердечной мышцы, который не требует введения радиоактивных препаратов. В данном случае МРС дает ответ на большое количество клинических вопросов кардиологии, позволяя в сочетании с магнитно-резонансной томографией получить точную информацию о размерах сердца, изменениях в структуре миокарда, увидеть нарушения кровообращения в нем, а также функциональные расстройства. Кроме того, МР-спектроскопия позволяет контролировать эффективность проводимой терапии при ишемической болезни сердца, сердечной недостаточности, гипертрофии различного происхождения.

Магнитно-резонансная спектроскопия часто применяется для диагностики различных неврологических патологий – например, помогает определить разницу между рассеянным склерозом и нейрооптикомиелитом. МР-спектроскопия позволяет увидеть биохимические процессы в различных клетках головного мозга, что, по мнению ученых, делает этот метод особенно полезным для ранней диагностики и лечения различных расстройств психики.

Показания для проведения магнитно-резонансной спектроскопии

Данное исследование, как и МРТ, основывается на физическом явлении ядерно-магнитного резонанса, но результатом спектроскопии являются не снимки. Она помогает увидеть, правильно ли распределены в тканях продукты метаболизма согласно их молекулярным свойствам.

Показаниями для проведение МР-спектсроскопии становятся следующие заболевания и состояния: различные воспалительные процессы, эпилепсия, нейродегенеративная патология (болезнь Альцгеймера, болезнь Паркинсона), травматические повреждения тканей, ишемия (местное малокровие), новообразования головного мозга.

Метаболизм здоровых тканей сильно отличается от метаболизма пораженных, поэтому проведение МРС так важно для ранней диагностики опухолевых процессов различной этиологии.

Магнитно-резонансная томография (МРТ) — метод получения изображений внутренних органов человека, основанный на явлении ядерно-магнитного резонанса (ЯМР).

Физика метода

Человеческое тело содержит большое количество протонов — ядер атома водорода: в составе воды, в каждой молекуле органического вещества — белках, жирах, углеводах, мелких молекулах... Протон же - один из немногих атомов, у которого есть собственный магнитный момент или вектор направления. При отсутствии внешнего мощного магнитного поля магнитные моменты протонов ориентированы случайным образом, то есть стрелки векторов направлены в разные стороны.

Если же поместить атом в сильное постоянное магнитном поле все меняется. Магнитный момент ядер водорода ориентируется либо сонаправленно направлению магнитного поля, либо в противоположном направлении. Во втором случае энергия состояния будет чуть выше. Если же теперь воздействовать на этим атомы электромагнитым излучением резонансной частоте (к счастью для нас, это частота радиоволн, абсолютно безопасная для человека), то часть протонов поменяют свой магнитный момент на противоположный. А после отключения внешнего магнитного поля они вернутся в исходное положение, выделяя энергию в виде электромагнитного излучения, которое и регистрируется томографом.

Ориентация магнитных моментов ядер а ) в отсутствии б ) при наличии внешнего магнитного поля

Эффект ЯМР можно представить не только на протонах, но и на любых изотопах, имеющих ненулевой спин (то есть вращающихся в определенном направлении), чья встречаемость в природе (или в организме человека) достаточно велика. К таким изотопам можно отнести 2 Н, 31 Р, 23 Na, 14 N, 13 C, 19 F и некоторые другие.

История МРТ

В 1937 году Изидор Раби , профессор Колумбийского университета изучил интересное явление, при котором атомные ядра образцов, помещённые в сильное магнитное поле, поглощали радиочастотную энергию. За это открытие он получил Нобелевскую премию по физике в 1944 году.

Позже две группы физиков из США, одна под руководством Феликса Блоха , другая — Эдварда М. Парселла , впервые получили сигналы ядерного магнитного резонанса от твёрдых тел. За это оба в 1952 также удостоились Нобелевской премии физике.

В 1989 Норман Фостер Рамсей получил Нобелевскую премию по химии за теорию химического сдвига, которую сформулировал в 1949 году. Суть теории в том, что ядро атома можно опознать по изменению резонансной частоты, а любую молекулярную систему может описать её спектр поглощения. Эта теория стала основой магнитно-резонансной спектроскопии. В период с 1950 по 1970 годы ЯМР использовался для химического и физического молекулярного анализа в спектроскопии.

В 1971 году физик Раймонд Дамадьян (США) открыл возможность применения ЯМР для обнаружение опухолей. Он продемонстрировал на крысах, что сигнал водорода от злокачественных тканей сильнее, чем от здоровых. Дамадьян и его команда потратили 7 лет на разработку и создание первого МР-сканера для медицинского отображения человеческого тела.

Доктор Дамадьян при попытке получить собственное МРТ изображение

В 1972 году химик Пол Кристиан Лотербур (США) сформулировал принципы отображения ядерного магнитного резонанса, предложив использовать переменные градиенты магнитного поля для получения двумерного изображения.

В 1975 г. Ричард Эрнст (Швейцария) предложил использовать в магнитно-резонансной томографии фазовое и частотное кодирование и Фурье-преобразования, метод, который используется в МРТ и в настоящее время. В 1991 году Ричард Эрнст удостоился Нобелевской премии по химии за достижения в области импульсной томографии.

В 1976 Питер Мэнсфилд (Великобритания) предложил эхо-планарное отображение (EPI) — самую скоростную методику, основанную на сверхбыстром переключении градиентов магнитного поля. Благодаря этому время получения изображения уменьшилось с нескольких часов до нескольких десятков минут. Именно Питер Мэнсфилд вместе с Полом Лотенбуром в 2003 году получил Нобелевскую премию по физиологии или медицине за изобретение метода магнитно-резонансной томографии. Кстати, любопытно, что с Лотенбуром над созданием метода МРТ работал правнук Альфреда Нобеля, Микаэль Нобель.

Итак, 3 июля 1977 , спустя почти 5 часов после начала первого теста, наконец, получили первое изображение среза человеческого тела на первом прототипе магнитного резонансного сканера.

Первое МРТ-изображение среза человеческого тела. Получено 3 июля 1977 года

Устройство томографа

МР-томограф состоит из следующих блоков: магнит, градиентные, шиммирующие и радиочастотные катушки, охлаждающая система, система приема, передачи и обработки данных, система экранирования (см. рис.)

Схема МР - томографа

Магнит — самая, собственно, важная и дорогая часть томографа, создающая сильное устойчивое магнитное поле. Магниты в МР-томографе бывают самые разные: постоянные, резистивные, сверхпроводящие и гибридные.

В томографе с постоянным магнитом поле создается между двумя полюсами, сделанными из ферромагнитных материалов (ферромагнетик — вещество, обладающее магнитными свойствами в отсутствии внешнего магнитного поля). Плюс такого томографа в том, что он не требует дополнительной электроэнергии или охлаждения. Однако создаваемое таким типом томографов поле не превышает по своей индукции 0,35 Тл (Тесла, Тл — единица измерения силы магнитного поля. Надо сказать, что и 0,35 Тл — это мощное магнитное поле, в 10000 раз мощнее магнитного поля Земли). Недостатки постоянных томографов — высокая стоимость непосредственно самого магнита и поддерживающих структур, а также проблемы с однородностью магнитного поля.

В резистивных магнитах поле создается пропусканием сильного электрического тока по проводу, намотанному на железный сердечник. Сила поля таких МРТ примерно чуть больше — 0,6 Тл. Но эти томографы нуждаются в хорошем охлаждении и в постоянном электропитании для поддержания однородности магнитного поля.

В гибридных системах для создания магнитного поля используются и проводящие ток катушки, и постоянно намагниченный материал.

Для создания полей свыше 0,5 Тл обычно необходимы сверхпроводящие магниты, которые очень надежны и дают однородные и стабильные во времени поля. В таком магните поле создается током в проводе из сверхпроводящего материала, не имеющего электрического сопротивления при температурах вблизи абсолютного нуля (-273,15°C). Сверхпроводник пропускает электрический ток без потерь. В МРТ обычно используется провод из ниобий-титанового сплава длиной в несколько километров, вложенный в медную матрицу. Охлаждается эта система жидким гелием. Более 90% производящихся сегодня МР-томографов составляют модели со сверхпроводящими магнитами.

Внутри магнита расположены градиентные катушки, предназначенные для создания небольших изменений главного магнитного поля. Приложенные в трех взаимно перпендикулярных направлениях, градиентные поля позволяют точно локализовать зону интереса в трехмерном пространстве.

Шиммирующая катушка — это катушка с малым током, создающая вспомогательные магнитные поля для компенсации неоднородности главного магнитного поля томографа из-за дефектов основного магнита или присутствия намагниченных объектов в поле исследований.

Радиочастотная (РЧ ) катушка представляет собой одну или несколько петель проводника, создающих магнитное поле, необходимое для поворота спинов на 90° или 180° и регистрирующих сигнал от спинов внутри тела.

Еще недавно клинической практике верхний предел напряженности магнитного поля составляет 2 Тл, однако сегодня на рынок выходят уже семитесловые томографы.

Типы МРТ

По виду конструкции МР-томографы могут быть открытые и закрытые. Первые МРТ-сканеры конструировались как длинные и узкие туннели. МРТ открытой конструкции имеют горизонтальные или вертикальные противостоящие магниты и имеют больше пространства вокруг пациента. Существуют системы для исследования пациентов в вертикальном положении.

МРТ-сканер с вертикальным положением пациента

МРТ-сканер открытого типа

МРТ -сканер закрытого типа

Диффузионно-тензорная МРТ. Этот метод определяет направление и тензор (силу) диффузии молекул воды в тканях: клетках, сосудах, нервных волокнах. Метод не требует использования контрастного вещества и поэтому абсолютно безопасен. На основе полученных в ходе томографии данных строят карты диффузии. Данный метод хорошо подходит для исследования ЦНС, позволяет хорошо визуализировать проводящие структуры мозга. Тензорную МРТ иногда называют трактографией.

Изображение проводящих путей мозга, получено с помощью диффузионно-тензорной МРТ

МР-ангиография. Метод визуализации кровеносных сосудов, основан на отличии сигнала движущихся протонов в крови от сигнала протонов окружающих неподвижных тканей.

МР-ангиография сосудов головы

Функциональная МРТ. Метод основан на регистрации кровообращения активно работающих участков мозга. Этому методу на портале будет посвящен отдельный материал.

МР-спектроскопия. Метод позволяет определить наличие определённых метаболитов (лактата, креатинина, N-ацетиласпартата и многих других) в тканях, органах и полостях, что позволяет делать выводы о наличии заболевания, его динамике.

Применение МРТ

МРТ позволяет увидеть любые внутренние органы человека, не нанося ему вреда. Высокая разрешающая способность, безопасность делают МРТ весьма популярным и перспективным методом исследования в клинической практике, несмотря на довольно высокую стоимость.

Помимо исследования больших объектов — человека, животных, для исследователей есть и другие способы использования магнитного резонанса. Например, МР-микроскопия. Для химиков, физиков и биологов МР-микроскопия возможно самый мощный инструмент изучения веществ на молекулярном уровне. Можно локализовать в 3D объеме магнитные ядра, позволяющие получать изображения и наблюдать объекты с разрешением, достигающим 10 -6 м.

ЯМР-микроскопия сегодня уже применяется для обнаружения микродефектов в различных объектах. Для химиков метод позволяет идентифицировать составы сложных смесей.

Источники:

1. Хорнак Дж. П. Основы МРТ. 2005

2. Марусина М.Я., Казначеева А.О. Современные виды томографии. Учебное пособие. - СПб: СПбГУ ИТМО, 2006. - 132 с.

3. McRobbie D. W. et al. MRI from Picture to Proton. - Cambridge university press, 2006.

4. http://www.fonar.com/nobel.htm

5. Александр Грек. Мозги на просвет: Цветные мысли. Популярная механика // 2008 — № 2(64) — стр. 54-58

6. http://www.bakuprightmri.com

7. http://mri-center.ru/mrt-otkritogo-tipa

8. Окользин А. В. Магнитно-резонансная спектроскопия по водороду в характеристике опухолей головного мозга //Онкология. - 2007. - Т. 8.

Дарья Прокудина



Понравилась статья? Поделитесь ей
Наверх