Объемная скорость течения крови в сосуде равняется. Линейная скорость кровотока. Большой круг кровообращения

Основной физиологической функцией сердца является нагнетание крови в сосуди­стую систему.

Количество крови, выбрасываемой желудочком сердца в минуту, является одним из важнейших показателей функционального состояния сердца и называется минутным объемом кровотока, или минутным объемом сердца. Он одинаков для правого и левого желудочков. Когда человек находится в состоянии покоя, минутный объем составляет в среднем 4,5-5,0 л. Разделив минутный объем на число сокращений сердца в минуту, можно вычислить систолический объем кровотока. При ритме сердечных сокращений 70-75 в минуту систолический объем равен 65-70 мл крови. Определение минутного объема кровотока у человека применяется в клинической практике.

Наиболее точный способ определения минутного объема кровотока у человека пред­ложен Фиком (1870). Он состоит в косвенном вычислении минутного объема сердца, которое производят, зная: 1) разницу между содержанием кислорода в артериальной и венозной крови; 2) объем кислорода, потребляемого человеком в минуту. Допустим,
что в 1 мин через легкие в кровь поступило 400 мл кислорода, каждые
100 мл крови поглощают в легких 8 мл кислорода; следовательно, чтобы усвоить все
количество кислорода, который поступил через легкие в кровь за минуту (в нашем при­
мере 400 мл), необходимо, чтобы через легкие прошло 100*400/8= 5000 мл крови. Это

количество крови и составляет минутный объем кровотока, который в данном случае ра­вен 5000 мл.

При использовании метода Фика необходимо брать венозную кровь из правой поло­вины сердца. В последние годы венозную кровь у человека берут из правой половины сердца при помощи зонда, вводимого в правое предсердие через плечевую вену. Этот метод взятия крови не имеет широкого применения.

Для определения минутного, а следовательно, и систолического объема разработан ряд других методов. В настоящее время широко применяют некоторые краски и радиоактив­ные вещества. Введенное в вену вещество проходит через правое сердце, малый круг кровообращения, левое сердце и поступает в артерии большого круга, где и определяют его концентрацию. Сначала она волнообразно нарастает, а затем падает. Через некото­рое время, когда порция крови, содержавшая максимальное его количество, вторично пройдет через левое сердце, его концентрация в артериальной крови вновь немного уве­личивается (так называемая волна рециркуляции). Замечают время от момента введе­ния вещества до начала рециркуляции и вычерчивают кривую разведения, т. е. измене­ния концентрации (нарастания и убыли) исследуемого вещества в крови. Зная количе­ство вещества, введенного в кровь и содержащегося в артериальной крови, а также время, потребовавшееся на прохождение всего количества введенного вещества через систему кровообращения, можно вычислить минутный объем (МО) кровотока в л/мин по формуле:


где I - количество введенного вещества в миллиграммах; С - средняя концентрация его в миллиграммах на 1 л, вычисленная по кривой разведения; Т - длительность первой волны циркуляции в секундах.

В настоящее время предложен метод интегральной реографии. Реография (импендансография) - это метод регистрации электрического сопротивления тканей человече­ского тела электрическому току, пропускаемому через тело. Чтобы не вызвать повреж­дения тканей, используют токи сверхвысокой частоты и очень небольшой силы. Сопро­тивление крови значительно меньше, чем сопротивление тканей, поэтому увеличение кровенаполнения тканей значительно снижает их электрическое сопротивление. Если регистрировать суммарное электрическое сопротивление грудной клетки в нескольких направлениях, то периодические резкие уменьшения его возникают в момент выброса сердцем в аорту и легочную артерию систолического объема крови. При этом величина уменьшения сопротивления пропорциональна величине систолического выброса.

Помня об этом и используя формулы, учитывающие размеры тела, особенности конституции и т. д., можно по реографическим кривым определить величину систоличе­ского объема крови, а умножив ее на число сердечных сокращений,- получить вели­чину минутного объема сердца.

ГЕМОДИНАМИКА

Гемодинамика - раздел физиологии, изу­чающий закономерности движения крови в сердечно-сосудистой системе.

ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ

1. Равенство объемов кровотока. Объем

крови, протекающей через поперечное сече­ние сосуда в единицу времени, называют объемной скоростью кровотока (мл/мин). Объемная скорость кровотока через большой и малый круг кровообращения одинакова. Объем кровотока через аорту или легочный ствол равен объему кровотока через суммар­ное поперечное сечение сосудов на любом отрезке кругов кровообращения.

2. Движущей силой, обеспечивающей кро­воток, является разность кровяного давления между проксимальным и дистальным участ­ками сосудистого русла. Давление крови со­здается работой сердца и зависит от упруго-эластических свойств сосудов.

Поскольку давление в артериальной части кругов кровообращения является пульсирую­щим в соответствии с фазами работы сердца, для его гемодинамической характеристики принято использовать величину среднего давления (Р ср.). Это усредненное давление, которое обеспечивает такой же эффект дви­жения крови, как и пульсирующее давление. Среднее давление в аорте равно примерно 100 мм рт.ст. Давление в полых венах колеб­лется около нуля. Таким образом, движущая сила в большом круге кровообращения рав­на разнице между этими величинами, т.е. 100 мм рт.ст. Среднее давление крови в ле­гочном стволе менее 20 мм рт.ст., в легочных венах близко к нулю - следовательно, дви­жущая сила в малом круге - 20 мм рт.ст., т.е. в 5 раз меньше, чем в большом. Равенство объемов кровотока в большом и малом круге кровообращения при существенно различаю­щейся движущей силе связано с различиями в сопротивлении току крови - в малом круге оно значительно меньше.

3. Сопротивление в кровеносной системе. Если общее сопротивление току крови в со­судистой системе большого круга принять за 100 %, то в разных ее отделах сопротивление распределится следующим образом. В аорте, крупных артериях и их ветвях сопротивление току крови составляет около 19 %; на долю мелких артерий (диаметром менее 100 мкм) и артериол приходится 50 % сопротивления; в капиллярах сопротивление составляет при­мерно 25 %, в венулах - 4 %, в венах - 3 %. Общее периферическое сопротивление (ОПС) - это суммарное сопротивление всех параллельных сосудистых сетей большого круга кровообращения. Оно зависит от гра­диента давления (АР) в начальном и конеч­ном отделах большого круга кровообращения

и объемной скорости кровотока (Q). Если градиент давления равен 100 мм рт.ст., а объ­емная скорость кровотока - 95 мл/с, то ве­личина ОПС составит:

В сосудах малого круга кровообращения общее сопротивление равно примерно 11 Па с/мл.

Сопротивление в региональных сосудис­тых сетях различно, оно наименьшее в сосу­дах чревной области, наибольшее - в коро­нарном сосудистом русле.

Согласно законам гидродинамики, сопро­тивление току крови зависит от длины и ра­диуса сосуда, по которому течет жидкость, и от вязкости самой жидкости. Эти взаимоот­ношения описывает формула Пуазейля:

где R - гидродинамическое сопротивление, L - длина сосуда, г - радиус сосуда, v - вяз­кость крови, тг - отношение окружности к диаметру.

Применительно к системе кровообраще­ния длина сосудов довольно постоянна, а ра­диус сосуда и вязкость крови - переменные параметры. Наиболее изменчивым является радиус сосуда, и именно он вносит сущест­венный вклад в изменения сопротивления току крови при различных состояниях орга­низма, так как величина сопротивления за­висит от радиуса, возведенного в четвертую степень. Вязкость крови связана с содержа­нием в ней белков и форменных элементов. Эти показатели могут меняться при различ­ных состояниях организма - анемии, поли-цитемии, гиперглобулинемии, а также разли­чаются в отдельных региональных сетях, в сосудах разного типа и даже в ветвях одного сосуда. Так, в зависимости от диаметра и угла отхождения ветви от основной артерии в ней может меняться соотношение объемов фор­менных элементов и плазмы. Это связано с тем, что в пристеночном слое крови больше доля плазмы, а в осевом - эритроцитов, поэ­тому при дихотомическом делении сосуда меньшая по диаметру ветвь или ветвь, отхо­дящая под прямым углом, получает кровь с большим содержанием плазмы. Вязкость движущейся крови меняется в зависимости от характера кровотока и диаметра сосудов.

Длина сосуда как фактор, влияющий на сопротивление, имеет значение для понима­ния того, что наибольшее сопротивление току крови оказывают артериолы, имеющие относительно большую длину при малом ра­диусе, а не капилляры: их радиус сопоста­вим с радиусом артериол, но капилляры ко­роче. Из-за большого сопротивления току крови в артериолах, которое к тому же может значительно меняться при их сужении или расширении, артериолы называют «кранами» сосудистой системы. Длина сосудов меняется с возрастом (пока человек растет), в скелет­ных мышцах длина артерий и артериол мо­жет меняться при сокращении и растяжении мышц.

Сопротивление току крови и вязкость зави­сят также от характера кровотока - турбу­лентного или ламинарного. В условиях физио­логического покоя почти во всех отделах кровеносной системы наблюдается ламинар­ное, т.е. слоистое течение крови, без завихре­ний и перемешивания слоев. Вблизи стенки сосуда располагается слой плазмы, скорость движения которого ограничивается непо­движной поверхностью стенки сосуда, по оси с большей скоростью движется слой эритро­цитов. Слои скользят относительно друг друга, что создает сопротивление (трение) для течения крови как гетерогенной жидкос­ти. Между слоями возникает напряжение сдвига, тормозящее движение более быстрого слоя. Согласно уравнению Ньютона, вяз­кость движущейся жидкости (v) прямо про­порциональна величине напряжения сдвига (т) и обратно пропорциональна разнице ско­ростей движения слоев (у) : v = т/у. Поэтому при снижении скорости движения крови вяз­кость увеличивается, в физиологических ус­ловиях это проявляется в сосудах с малым диаметром. Исключением являются капилля­ры, в которых эффективная вязкость крови достигает значений вязкости плазмы, т.е. снижается в 2 раза благодаря особенностям движения эритроцитов. Они скользят, двига­ясь друг за другом (по одному в цепочке) в «смазочном» слое плазмы и деформируясь в соответствии с диаметром капилляра.

Для турбулентного течения характерно на­личие завихрений, при этом кровь перемеща­ется не только параллельно оси сосуда, но и перпендикулярно ей. Турбулентное течение наблюдается в проксимальных отделах аорты и легочного ствола в период изгнания крови из сердца, локальные завихрения могут со­здаваться в местах разветвлений и сужений артерий, в области крутых изгибов артерий. Движение крови может стать турбулентным во всех крупных артериях при возрастании объемной скорости кровотока (например, при интенсивной мышечной работе) или

снижении вязкости крови (при выраженной анемии). Турбулентное движение существен­но увеличивает внутреннее трение крови, и для ее продвижения требуется значительно большее давление, при этом нагрузка на сердце увеличивается.

Таким образом, разница давлений и со­противление кровотоку являются факторами, влияющими на объем кровотока (Q) в целом в сосудистой системе и в отдельных регио­нальных сетях: он прямо пропорционален разности давлений крови в начальном (Р,) и конечном (Р 2) отделах сосудистой сети и об­ратно пропорционален сопротивлению (R) току крови:

Увеличение давления или уменьшение со­противления току крови на системном, реги­ональном, микроциркуляторном уровнях по­вышают объем кровотока соответственно в системе кровообращения, в органе или мик­рорегионе, а уменьшение давления или уве­личение сопротивления уменьшают объем кровотока.

Ни для кого не секрет, что кровообращение – это циркуляция крови по сосудистой сетке. Кровь насыщает организм кислородом и полезными веществами, регулирует метаболические процессы. Кровообращение обеспечивает нормальную работу организма (особенно функции ЦНС).

Гемодинамика – это наука о движении крови по сосудам кровеносной системы. Кровообращение не прекращается за счёт отличия давления на разных участках сосудистой сети (кровь двигается от области с высоким давлением к зоне с низким). Существует объёмная и линейная скорость кровотока.

Объёмная скорость кровотока

Один из главных гемодинамических показателей – это объёмная скорость кровотока (ОСД). По сути, это количество жидкости, которое протекает через поперечное сечение сосудов за единицу времени (мл/с). Многих интересует, какова объёмная скорость кровотока.

Измерение этого показателя проводят с помощью формулы Пуазейля:

Так как R = 8nl/nr ², то уравнение может иметь следующий вид:

Q=(P-P1) nr²/8nL

Здесь L – это длина, n – число ПИ (3.14), r – радиус сосуда.

ОСД – это объём крови, который протекает через поперечное сечение за единицу времени

С помощью этой формулы можно вычислить ОСД, то есть, объём жидкости, который проходит через сосудистую систему за минуту. По этой причине данный показатель ещё называют минутным объёмом кровотока (МОК).

Система кровообращения замкнутая, поэтому через любое её поперечное сечение за минуту проходит одинаковый объём жидкости.

Q1 = Q2 =…Qn = const

Выше представлена формула непрерывности кровотока. Кровообращение – это закрытый сосудистый путь, который состоит из многих разветвлений, поэтому суммарный просвет увеличивается, хотя просвет каждой ветви постепенно сужается. Таким образом, формула непрерывности говорит о том, что через все сосуды проходит одинаковое количество крови.

Это не значит, что объём жидкости во всех ветках одинаковый, он меняется в зависимости от диаметра сосуда, при этом сумма всех просветов не изменяется. Это очень важно при перераспределении жидкости по органам.

Здесь S является площадью поперечного сечения, а V – линейной скоростью движения крови.

Линейная скорость кровотока

Второе по важности гемодинамическое значение – это линейная скорость кровотока. Определить этот показатель поможет уравнение Торичелли:

Здесь V является линейной скоростью, а g – ускорением свободного падения.


Выявить ЛСК поможет формула Торичелли

Если взять во внимание сопротивление кровотоку, то формула принимает следующий вид:

Здесь Pr является той частью давления, которая преодолевает сопротивление.

Вычислив ЛСК, можно определить ОСК:

Q = SV, Q - Vnr², V = Q/nr²

Согласно формуле, чем меньше сечение сосуда, тем быстрее циркулирует кровь. В сосудистой сетке наиболее узкий участок – это аорта, а наиболее широкий – это капилляры (имеется в виду суммарный просвет). Поэтому средняя скорость движения циркулирующей крови в аорте – 500 мм/с, а в капиллярах – 0.5 мм/с.

Время, за которое жидкость проходит оба круга кровообращения, в спокойном состоянии равна 20 секундам, это норма для здорового человека. То есть каждый элемент крови проходит сердце трижды за 60 секунд. При тяжёлой физической деятельности это время сокращается до 9 секунд.


Циркулирующая кровь преодолевает сопротивление сосудов

Циркулирующая кровь на своём пути встречает сопротивление, которое проявляется вследствие трения элементов крови между собой и стенками сосудов. Чем кровь гуще, тем сильнее проявляется трение, также на этот параметр влияет диаметр сосуда и скорость кровотока.

Благодаря сердцу, кровь быстрее преодолевает сосудистое сопротивление, так как оно проталкивает жидкость вперёд пульсирующими движениями. Сильнее проявляется сопротивление на тех участках, где от артерий отходят более мелкие сосуды. Самое высокое сопротивление встречает кровь в артериолах, так как они имеют минимальный диаметр, а кровь двигается быстро. Внутреннее трение увеличивается, к тому же эти сосуды предрасположены к спазмированию. Сопротивление повышается по мере удаления от аорты.

Артериальный кровоток

Кровь в артериях двигается от левого желудочка, аорты до капилляров, вен, правого предсердия. Во время систолы (сокращение) объём жидкости в сосудах увеличивается, а в момент диастолы количество крови уменьшается, а поток замедляется. При увеличении объёма артериальной жидкости во время сокращения сердца давление повышается.


При увеличении количества артериальной крови во время систолы давление повышается

Вычислить артериальное давление (АД) поможет сфигмограмма. Специальный датчик прикладывают к коже над артерией, фиксируют и анализируют пульсовую волну.

Систолическая высота давления (верхний показатель) в артериях – 120 мм рт. ст., а диастолическая (нижний показатель) – 80 мм рт. ст.

Пульсовое давление в артериях – это разница между верхним и нижним АД. Среднее артериальное давление – это наиболее стабильное значение гемодинамики, которое вычисляют по следующей формуле:

Нижнее давление + 1/3 пульсового давления = среднее АД.

К примеру, АД в плече – 120/80, тогда 80 = (120-80) : 3 = 93 мм рт. ст. (это среднее АД).

Методы определения артериального давления делят на прямой или непрямой. В первом случае в сосуд вводят иглу или катетер, а во втором вычисляют АД пальпационным или звуковым способом.

На давление влияет функциональность сердца, сосудистый тонус, количество крови.

Венозный кровоток

Движение крови по венам – это очень важный фактор, который определяет наполнение сердца во время его расслабления. Венозный кровоток имеет ряд особенностей. Венозные стенки более эластичные, чем артериальные, из-за того, что имеют более тонкий мышечный слой. Даже при минимальном давлении они растягиваются, по этой причине их относят к ёмкостным сосудам. Чтобы кровообращение нормально функционировало, вены и артерии должны взаимодействовать.


Вены относят к ёмкостным сосудам, так как они растягиваются даже при минимальном давлении

Давление в венах измеряют у животных и людей, для этого в сосуд вводят иглу и соединяют её с манометром. В сосудах, которые проходят вне грудной полости, давление находится в диапазоне от 130 до 150 мм.

Капиллярный кровоток

В капиллярах бежит кровь, которая транспортирует к тканям кислород и полезные вещества. Сосудистые стенки достаточно тонкие, так как состоят из одного шара плоских клеток. Через эндотелий в ткани проникают растворенные газы и вещества.


Капилляры насыщают ткани кислородом и полезными веществами

Существует 2 типа капилляров: по магистральным сосудам бежит кровь от артериол к венам, а другие формируют боковые ответвления.

Скорость движения крови, как и давление в разных участках капиллярной сети, отличаются. Например, в капиллярах ногтей давление равно 24 мм Hg, в почках – от 65 до 70 мм Hg и т. д.

Таким образом, линейная и объёмная скорость кровотока – это важнейшие показатели, которые необходимы для исследования гемодинамики определённой области сосудистой сети или конкретного органа. Если это значение меняется, то, скорее всего, речь идёт о сосудистой патологии (спазм сосуда, тромбы, холестериновые бляшки, повышение густоты крови). Важно вовремя оценить кровоток и провести грамотное лечение.

Линейная скорость кровотока – это расстояние, которое проходит частица крови за единицу времени, то есть это скорость перемещения частиц вдоль сосуда при ламинарном потоке.

Кровоток в сосудистой системе в основном носит ламинарный (слоистый) характер. При этом кровь движется отдельными слоями, параллельно оси сосуда.

Линейная скорость различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре она максимальная, а около стенки – минимальная. Это связано с тем, что на периферии особенно велико трение частиц крови о стенку сосуда.

При переходе от одного калибра сосуда к другому диаметр сосуда меняется, что приводит к изменению скорости течения крови и возникновению турбулентных (вихревых) движений.

Переход от ламинарного типа движения к турбулентному ведёт к значительному росту сопротивления.

Линейная скорость также различна для отдельных участков сосудистой системы и зависит от суммарного поперечного сечения сосудов данного калибра.

Она прямо пропорциональна объёмной скорости кровотока и обратно пропорциональна площади сечения кровеносных сосудов:

Поэтому линейная скорость меняется по ходу сосудистой системы.

Так, в аорте она равна 50-40 см/c; в артериях – 40-20; артериолах – 10-0,1; капиллярах – 0,05; венулах – 0,3; венах – 0,3-5,0; в полых венах – 10-20 см/с.

В венах линейная скорость кровотока возрастает, так как при слиянии вен друг с другом суммарный просвет кровеносного русла суживается.

Время кругооборота крови

Время полного кругооборота крови - это время, необходимое для того, чтобы она прошла через большой и малый круг кровообращения.



Для измерения времени полного кругооборота крови применяют ряд способов, принцип которых заключается в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны.

В последние годы скорость кругооборота (или только в малом, или только в большом круге) определяют при помощи радиоактив­ного изотопа натрия и счетчика электронов. Для этого несколько таких счетчиков помещают на разных частях тела вблизи крупных сосудов и в области сердца. После введения в локтевую вену ра­диоактивного изотопа натрия определяют время появления радио­активного излучения в области сердца и исследуемых сосудов.

Время полного кругооборота крови у человека составляет в сред­нем 27 систол сердца. При частоте сердечных сокращений 70-80 в минуту кругооборот крови происходит приблизительно за 20-23 с, однако скорость движения крови по оси сосуда больше, чем у его стенок. Поэтому не вся кровь совершает полный кругооборот так быстро и указанное время является минимальным.

Исследования на собаках показали, что 1/5 времени полного кругооборота крови приходится на прохождение крови по малому кругу кровообращения и 4/5 - по большому.

Значение эластичности сосудистых стенок состоит в том, что они обеспечивают переход прерывистого, пульсирующего (в результате сокращения желудочков) тока крови в постоянный. Это сглаживает резкие колебания давления, что способствует бесперебойному снабжению органов и тканей.

Сопротивление сосудов. Факторы, влияющие на его величину. Общее периферическое сопротивление.

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда.

Любой из таких сосудов можно сравнить с трубкой, сопротивление которой определяется по формуле: R = 8lν / πr 4 , то есть сопротивление сосуда прямо пропорционально его длине и вязкости, протекающей в нём жидкости (крови) и обратно пропорционально радиусу трубки (π - отношение длины окружности к её диаметру).

Отсюда следует, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого самый маленький.

Однако огромное количество капилляров включено в ток крови параллельно, поэтому их суммарное сопротивление меньше, чем суммарное сопротивление артериол.

Пульсирующий ток крови, создаваемый работой сердца, выравнивается в кровеносных сосудах, благодаря их эластичности.

Поэтому ток крови носит непрерывный характер.

Для выравнивания пульсирующего тока крови большое значение имеют упругие свойства аорты и крупных артерий.

Во время систолы часть кинетической энергии, сообщённой сердцем крови, переходит в кинетическую энергию движущейся крови.

Другая её часть переходит в потенциальную энергию растянутой стенки аорты.

Потенциальная энергия, накопленная стенкой сосуда во время систолы, переходит при его спадении в кинетическую энергию движущейся крови во время диастолы, создавая непрерывный кровоток.

Давление крови в разных отделах сосудистого русла.

Кровяное давление – это давление крови на стенки сосудов.

Венозное давление – это давление крови в венах.

На величину кровяного давления влияют:

1) количество крови, поступающей в единицу времени в сосудистую систему;

2) интенсивность оттока крови на периферию;

3) ёмкость артериального отрезка сосудистого русла;

4) упругое сопротивление стенок сосудистого русла;

5) скорость поступления крови в период систолы;

6) вязкость крови;

7) соотношение времени систолы и диастолы;

8) частота сердечных сокращений.

Таким образом, величина кровяного давления, в основном, определяется работой сердца и тонусом сосудов (главным образом, артериальных).

В аорте, куда кровь с силой выбрасывается из сердца, создается самое высокое давление (от 115 до 140 мм рт. ст.).

По мере удаления от сердца давление падает, так как энергия, создающая давление, расходуется на преодоление сопротивления току крови.

Чем выше сосудистое сопротивление, тем большая сила затрачивается на продвижение крови и тем больше степень падения давления на протяжении данного сосуда.

Так, в крупных и средних артериях давление падает всего на 10 %, достигая 90 мм рт. ст.; в артериолах оно составляет 55 мм рт. ст., а в капиллярах – падает уже на 85 %, достигая 25 мм рт. ст.

В венозном отделе сосудистой системы давление самое низкое.

В венулах оно равно 12 мм рт. ст., в венах – 5 мм рт. ст. и в полой вене – 3 мм рт. ст.

В малом круге кровообращения общее сопротивление току крови в 5-6 раз меньше, чем в большом круге. Поэтому давление в лёгочном стволе в 5-6 раз ниже, чем в аорте и составляет 20-30 мм рт. ст. Однако и в малом круге кровообращения наибольшее сопротивление току крови оказывают мельчайшие артерии перед своим разветвлением на капилляры.

Артериальное давление. Факторы, влияющие на его величину. Основные показатели артериального давления: систолическое, диастолическое, пульсовое и среднее гемодинамическое давление. Методы регистрации артериального давления.

Артериальное давление – это давление крови в артериях.

Давление в артериях не является постоянным – оно непрерывно колеблется относительно некоторого среднего уровня.

Период этих колебаний различный и зависит от нескольких факторов.

1. Сокращения сердца, которые определяют самые частые волны, или волны первого порядка. Во время систолы желудочков приток крови в аорту и лёгочную артерию больше оттока, и давление в них повышается.

В аорте оно составляет 110-125 мм рт. ст., а в крупных артериях конечностей 105-120 мм рт. ст.

Подъём давления в артериях в результате систолы характеризует систолическое или максимальное давлениеи отражает сердечный компонент артериального давления.

Во время диастолы поступление крови из желудочков в артерии прекращается и происходит только отток крови на периферию, растяжение стенок уменьшается и давление снижается до 60-80 мм рт. ст.

Спад давления во время диастолы характеризует диастолическое или минимальное давлениеи отражает сосудистый компонент артериального давления.

Для комплексной оценки, как сердечного, так и сосудистого компонентов артериального давления используют показатель пульсового давления.

Пульсовое давление – это разность между систолическим и диастолическим давлением, которое в среднем составляет 35-50 мм рт. ст.

Более постоянную величину в одной и той же артерии представляет среднее давление, которое выражает энергию непрерывного движения крови.

Так как продолжительность диастолического понижения давления больше, чем его систолического повышения, то среднее давление ближе к величине диастолического давления и вычисляется по формуле:

СГД = ДД + ПД/3.

У здоровых людей оно составляет 80-95 мм рт. ст. и его изменение является одним из ранних признаков нарушения кровообращения.

2. Фазы дыхательного цикла, которые определяют волны второго порядка. Эти колебания менее частые, они охватывают несколько сердечных циклов и совпадают с дыхательными движениями (дыхательные волны): вдох сопровождается понижением кровяного давления, выдох – повышением.

3. Тонус сосудодвигательных центров, определяющий волны третьего порядка.

Это ещё более медленные повышения и понижения давления, каждое из которых охватывает несколько дыхательных волн.

Колебания вызываются периодическим изменением тонуса сосудодвигательных центров, что чаще наблюдается при недостаточном снабжении мозга кислородом (при пониженном атмосферном давлении, после кровопотери, при отравлениях некоторыми ядами).

Инвазивный (прямой) метод измерения АД применяется только в стационарных условиях при хирургических вмешательствах, когда введение в артерию пациента зонда с датчиком давления необходимо для непрерывного контроля уровня давления.

Преимуществом этого метода является то, что давление измеряется постоянно, отображаясь в виде кривой давление/время. Однако пациенты с инвазивным мониторингом АД требуют наблюдения из-за опасности развития тяжёлого кровотечения в случае отсоединения зонда, образования гематомы или тромбоза в месте пункции, присоединения инфекций.

Большее распространение в клинической практике получили неинвазивные (непрямые)методы определения АД. В зависимости от принципа, положенного в основу их работы, различают:

1) пальпаторный метод;

2) аускультативный метод;

3) осциллометрический метод.

Пальпаторный метод предполагает постепенную компрессию или декомпрессию конечности в области артерии и пальпацию её ниже места сдавливания. Систолическое АД определяется, при давлении в манжете, при котором появляется пульс, диастолическое – по моментам, когда наполнение пульса заметно снижается, либо возникает кажущееся ускорение пульса (pulsus celer).

Аускультативный метод измерения АД был предложен в 1905 г. Н.С. Коротковым. Систолическое АД определяют при декомпрессии манжеты в момент появления первой фазы тонов Короткова, а диастолическое АД – по моменту их исчезновения.

Осциллометрический метод. Снижение давления в окклюзионной манжете осуществляется ступенчато, и на каждой ступени анализируется амплитуда микропульсаций давления в манжете, возникающая при передаче на неё пульсации артерий. Наиболее резкое увеличение амплитуды пульсации соответствует систолическому АД, максимальные пульсации – среднему давлению, а резкое ослабление пульсаций – диастолическому.

Сердце - один из главных «тружеников» нашего организма. Ни на минуту не останавливаясь в течение жизни, оно перекачивает гигантское количество крови, обеспечивая питанием все органы и ткани тела. Важнейшими характеристиками эффективности кровотока являются минутный и ударный объем сердца, величины которых определяются множеством факторов как со стороны самого сердца, так и регулирующих его работу систем.

Минутный объем крови (МОК) - величина, характеризующая количество крови, которое отправляет миокард в кровеносную систему в течение минуты. Он измеряется в литрах в минуту и равняется примерно 4-6 литрам в состоянии покоя при горизонтальном положении тела. Это значит, что всю кровь, содержащуюся в сосудах тела, сердце способно перекачать за минуту.

Ударный объем сердца

Ударный объем (УО) - это тот объем крови, который сердце выталкивает в сосуды за одно свое сокращение. В состоянии покоя у среднестатистического человека он составляет около 50-70 мл. Этот показатель напрямую связан с состоянием сердечной мышцы и ее способностью сокращаться с достаточной силой. Увеличение ударного объема происходит при возрастании пульса (до 90 и более мл). У спортсменов эта цифра намного выше, чем у нетренированных лиц даже при условии примерно одинаковой частоты сердечных сокращений.

Объем крови, который миокард может выбросить в магистральные сосуды, не постоянен. Он определяется запросами органов в конкретных условиях. Так, при интенсивной физической нагрузке, волнении, в состоянии сна органы потребляют разное количество крови. Отличаются и влияния на сократимость миокарда со стороны нервной и эндокринной систем.

При повышении частоты сокращений сердца, возрастает сила, с которой миокард выталкивает кровь, и объем жидкости, попадающей в сосуды, благодаря значительному функциональному резерву органа. Резервные возможности сердца довольно высоки: у нетренированных людей при нагрузке сердечный выброс в минуту достигает 400%, то есть минутный объем выбрасываемой сердцем крови возрастает до 4 раз, у спортсменов этот показатель и того выше, у них минутный объем увеличивается в 5-7 раз и достигает 40 литров в минуту.

Физиологические особенности сердечных сокращений

Объем крови, перекачиваемый сердцем в минуту (МОК), определяется несколькими составляющими:

  • Ударным объемом сердца;
  • Частотой сокращений в минуту;
  • Объемом возвращенной по венам крови (венозный возврат).

К концу периода расслабления миокарда (диастола) в полостях сердца накапливается определенный объем жидкости, но не вся она потом попадает в системный кровоток. Только часть ее уходит в сосуды и составляет ударный объем, который по количеству не превышает половины всей крови, поступившей в камеру сердца при ее расслаблении.

Оставшаяся в полости сердца кровь (примерно половина или 2/3) - это резервный объем, необходимый органу в тех случаях, когда потребности в крови возрастают (при физической нагрузке, эмоциональном напряжении), а также небольшое количество остаточной крови. За счет резервного объема при возрастании частоты пульса увеличивается и МОК.

Имеющаяся в сердце после систолы (сокращения) кровь называется конечно-диастолическим объемом, но и она не может быть полностью эвакуирована. После выброса резервного объема крови в полости сердца все равно останется какое-то количество жидкости, которое не будет вытолкнуто оттуда даже при максимальной работе миокарда - остаточный объем сердца.

Сердечный цикл; ударный, конечный систолический и конечный диастолический объемы сердца

Таким образом, всю кровь сердце при сокращении не выбрасывает в системный кровоток. Сначала из него выталкивается ударный объем, при необходимости - резервный, а после этого остается остаточный. Соотношение этих показателей указывает на интенсивность работы сердечной мышцы, силу сокращений и эффективность систолы, а также на способность сердца обеспечить гемодинамику в конкретных условиях.

МОК и спорт

Основной причиной изменения минутного объема кровообращения в здоровом организме считают физические нагрузки . Это могут быть занятия в тренажерном зале, пробежка, быстрая ходьба и т. д. Другим условием физиологического возрастания минутного объема можно считать волнение и эмоции, особенно, у тех, кто остро воспринимает любую жизненную ситуацию, реагируя на это учащением пульса.

При выполнении интенсивных спортивных упражнений ударный объем увеличивается, но не до бесконечности. Когда нагрузка достигла приблизительно половины от максимально возможной, ударный объем стабилизируется и принимает относительно постоянное значение. Такое изменение выброса сердца связывают с тем, что при ускорении пульса укорачивается диастола, а значит, камеры сердца не будут заполняться максимально возможным количеством крови, поэтому показатель ударного объема рано или поздно перестанет нарастать.

С другой стороны, работающие мышцы потребляют большое количество крови, которая не возвращается в момент спортивных занятий обратно к сердцу, уменьшая, таким образом, венозный возврат и степень заполнения камер сердца кровью.

Главным механизмом, определяющим норму ударного объема, считается растяжимость миокарда желудочков . Чем значительнее растянулся желудочек, тем больше крови в него поступит и тем выше будет сила, с которой он ее отправит в магистральные сосуды. При увеличении интенсивности нагрузки на уровень ударного объема в большей степени, чем растяжимость, влияет сократимость кардиомиоцитов - второй механизм, регулирующий значение ударного объема. Без хорошей сократимости даже максимально заполненный желудочек не сможет увеличить свой ударный объем.

Следует отметить, что при патологии миокарда механизмы, регулирующие МОК, приобретают несколько иное значение. К примеру, перерастяжение стенок сердца в условиях декомпенсированной сердечной недостаточности, миокардиодистрофии, при миокардитах и других заболеваниях не вызовет увеличения ударного и минутного объемов, так как миокард не имеет достаточной для этого силы, в результате систолическая функция снизится.

В период спортивной тренировки возрастает и ударный, и минутный объемы, но лишь влияния симпатической иннервации для этого мало. Повысить МОК помогает параллельно увеличивающийся венозный возврат за счет активных и глубоких вдохов, насосного действия сокращающихся скелетных мышц, повышения тонуса вен и кровотока по артериям мышц.

Возросший объем крови при физической работе помогает обеспечить питанием очень нуждающийся в этом миокард, доставить кровь к работающим мышцам, а также кожным покровам для правильной терморегуляции.

По мере усиления нагрузки увеличивается доставка крови к коронарным артериям, поэтому прежде чем приступить к тренировкам на выносливость, следует провести разминку и разогрев мышц. У здоровых людей пренебрежение этим моментом может пройти незаметно, а при патологии сердечной мышцы возможны ишемические изменения, сопровождающиеся болью в сердце и характерными электрокардиографическими признаками (депрессия сегмента ST).

Как определить показатели систолической функции сердца?

Величины систолической функции миокарда вычисляются по различным формулам, с помощью которых специалист судит о работе сердца с учетом частоты его сокращений.

фракция выброса сердца

Систолический объем сердца, отнесенный к площади поверхности тела (м²), будет составлять сердечный индекс . Площадь поверхности тела вычисляется по специальным таблицам либо формуле. Помимо сердечного индекса, МОК и ударного объема, важнейшей характеристикой работы миокарда считается , которая показывает, какой процент конечно-диастолической крови уходит из сердца при систоле. Ее рассчитывают, поделив ударный объем на конечно-диастолический и умножив на 100%.

Вычисляя указанные характеристики, врач должен принять во внимание все факторы, способные изменить каждый показатель.

На конечно-диастолический объем и заполнение сердца кровью оказывают влияние:

  1. Количество циркулирующей крови;
  2. Масса крови, попадающей в правое предсердие из вен большого круга;
  3. Частота сокращений предсердий и желудочков и синхронность их работы;
  4. Длительность периода расслабления миокарда (диастолы).

Повышению минутного и ударного объема способствуют:

  • Увеличение количества циркулирующей крови при задержке воды и натрия (не спровоцированных сердечной патологией);
  • Горизонтальное положение тела, когда закономерно увеличивается венозный возврат к правым частям сердца;
  • Психо-эмоциональное напряжение, стресс, сильное волнение (за счет возрастания пульса и усиления сократимости венозных сосудов).

Снижение сердечного выброса сопровождает:

  1. Кровопотерю, шоки, обезвоживание;
  2. и др.).

На показатель ударного объема левого желудочка оказывает влияние тонус вегетативной нервной системы, частота пульса, состояние сердечной мышцы. Такие частые патологические состояния, как инфаркт миокарда, кардиосклероз, дилатация сердечной мышцы при декомпенсированной недостаточности органа способствуют снижению сократимости кардиомиоцитов, поэтому сердечный выброс вполне закономерно будет снижаться.

Прием лекарственных препаратов тоже определяет показатели функции сердца. Адреналин, норадреналин, повышают сократимость миокарда и увеличивают МОК, тогда как , барбитураты, некоторые снижают сердечный выброс.

Таким образом, на показатели минутного и УО влияют множество факторов, начиная от положения тела в пространстве, физической активности, эмоций и заканчивая самой разной патологией сердца и сосудов. При оценке систолической функции врач опирается на общее состояние, возраст, пол обследуемого, наличие или отсутствие структурных изменений миокарда, аритмий и др. Только комплексный подход может помочь правильно оценить эффективность работы сердца и создать такие условия, при которых оно будет сокращаться в оптимальном режиме.



Понравилась статья? Поделитесь ей
Наверх