Осмотическое давление норма. Осмотическое давление в организме человека. Что влияет на отклонения осмотического давления

Даже незна­чительные нарушения солевого состава плазмы могут ока­заться губительными для многих тканей , прежде всего для клеток самой крови. Суммарная концентрация минераль­ных солей, белков , глюкозы, мочевины и других веществ, растворенных в плазме, создает осмотическое давление .

Явление осмоса возникает везде, где имеются два раствора различной концентрации, разделенные полупроницаемой мембраной, через которую легко проходит растворитель (вода), но не проходят молекулы растворенного вещества. В этих условиях растворитель движется в сторону раствора с большей концентрацией растворенного вещества. Одно­стороннюю диффузию воды через полупроницаемую пере­городку называют осмосом.

Осмотическое давление плазмы в основном создается неорганическими солями, поскольку концентрация сахара, белков, мочевины и др. органических веществ в плазме невелика. Осмотическое давление обеспечивает в организ­ме обмен воды между кровью и тканями.

Солевой раствор, имеющий такое же осмотическое давление, как плазма крови, называют изотоническим рас­твором . Для человека изотоничен 0,9% раствор поваренной соли, а для лягушки – 0,6% раствор этой же соли. Солевой раствор, осмотическое давление которого выше, чем осмо­тическое давление плазмы крови, называют гипертоничес­ким ; если осмотическое давление раствора ниже, чем в плазме крови, такой раствор называют гипотоническим .

Поскольку растворитель движется всегда в сторону более высокого осмотического давления, то при погруже­нии эритроцитов в гипотонический раствор , по законам осмоса, вода интенсивно начинает проникать внутрь кле­ток. Клетки набухают, их оболочки разрываются, и содер­жимое эритроцитов поступает в раствор. Наблюдается ге­молиз . Кровь, в которой эритроциты подверглись гемолизу, становится прозрачной, или, как иногда говорят, лаковой. У человека гемолиз начинается при помещении его эритроцитов в 0,44-0,48% раствор NaCl, а в растворах 0,28-0,32% NaCl уже почти все эритроциты оказываются разрушенными. Если эритроциты попадают в гипертони­ческий раствор, они сморщиваются.

Несмотря на то, что в кровь может поступать разное количество воды и минеральных солей, осмотическое дав­ление крови поддерживается на постоянном уровне. Это достигается благодаря деятельности почек, потовых желез, через которые из организма удаляются вода, соли и другие продукты обмена веществ.

Таблица - Компоненты плазмы крови и их функции

Компоненты

Функция

Компоненты, присутствующие в постоянной концентрации

Вода

Основной компонент лимфы. Служит источником воды для клеток. Разносит по телу множество растворенных в ней веществ. Способствует поддержанию кровяного давления и объема крови

Белки плазмы

Сывороточный альбумин

Содержится в очень большом количестве. Связывает присутствующий в плазме кальций

Сывороточные глобулины

Глобулин

Связывает тироксин в билирубин

Глобулин

Связывает железо, холестерол и витамины A, D и К

Глобулин

Связывает антигены и играет важную роль в иммунологических реакциях организма (? -глобулины обычно называют антителами). Связывает также гистамин

Протромбин

Каталитический фактор, участвующий в свертывании крови

Фибриноген

Участвует в свертывании крови

Ферменты

Участвуют в метаболических процессах

Минеральные ионы

Na + , К + , Са 2+ , Mg 2+ , Н 2 РО 4 - , PO 4 3- , Cl - , HCO 3 - , SO 4 2-

Совместно участвуют в регуляции осмотического давления и pH крови. Оказывают ряд других воздействий на клетки организма; например, Са 2+ может участвовать в свертывании крови, а также в регуляции мышечного сокращения и чувствительности нервных клеток, влияет на коллоидное состояние клеточного содержимого

Компоненты, концентрации которых изменяются

Растворимые про­дукты пищеваре­ния и продукты, подлежащие экскреминации; ви­тамины; гормоны

Постоянно транспортируются в клетки и выделяются из них

  • 7) Оценка исходного тонуса симпатического и парасимпатического отделов анс.
  • 8) Оценка вегетативного обеспечения функций (реактивность).
  • 1) Физиологическая роль моторной функции.
  • 2. Регулирущие и модулирующие влияния на иммунный ответ (роль лимфокинов, тимозина, желез внутренней секреции)
  • 2) Двигательные явления:
  • 2.Система иммунной защиты (клеточные и гуморальные факторы, их роль)
  • 3.Сокращение и расслабление кардиомиоцитов. Электро-механическое сопряжение. Механизм сокращения и расслабления.
  • 2.Система факторов неспецифической защиты организма(клеточные и гуморальные факторы, их роль)
  • 3.Рефлекторные влияния на дыхание с рецепторов легких, воздухоностных путей и дыхательных мышц. Хеморецепторы и их роль в регуляции дыхания(артериальные и центральные хеморецепторы).
  • 1.Работа и работоспособность человека. Их зависимость от внешних и внутренних факторов. Адаптация к трудовой деятельности, формирование рабочего динамического стереотипа.
  • 2. Коагуляционный гемостаз.Значение.
  • 3.Характеристика возбудимости и возбуждения рабочего кардиомиоцита, пп, величина, ионный механизм, пд его фазы, ионный механизм. Изменения возбудимости в фазы пд.
  • 1.Зож. Условия его формирования. Правила зож (режим труда и отдыха, питание, оздоровительная физра, закаливание)
  • 2. Функциональная система поддержания постоянного кол-ва эритроцитов в сосудистом русле. Качество функционирования эритроцитов.
  • 3. Теоритические основы обезболивания и наркоза. Воздействия на систему боли и обезболивания. Биоэлектрические явления при наркозе. Мемтранная теория наркоза.
  • 4. Возбудимость сердечной мышцы
  • 1. Рейтинг жизненных ценностей человека.Факторы риска здоровья.
  • 3.Физиологические свойства сердечной мышцы. Проведение возбуждения в сердце(проводящая система сердца, скорость проведения возбуждения). Оценка проведения возбуждения по экг. Нарушения проведения.
  • 1.Классификация групп людей по состоянию здоровья (Авиценна). Составляющие здоровья и их характеристика.
  • 2.Кислотно-щелочное равновесие жидких сред организма. Буферные системы крови. Функциональная система поддержания рН крови.
  • 3. Обеспечение нагнетательной функции сердца. Давление в полостях сердца в фазы сердечного цикла. Причины одностороннего движения крови в сердце.
  • 1.Здоровье. Концепция здоровья. Понятие о здоровье и болезни с позиции регуляции и саморегуляции.
  • 2. Осмотическое давление крови. Функциональная система поддержания постоянства осмотического давления.
  • 3.Уровни регуляции кровообращения. Виды сосудистых реакций, обеспечивающих изменение обьемного кровотока
  • 1.Адаптация, ее физиологические основы, механизмы. Цена адаптации. Обратимость адаптации.
  • III Клеточные механизмы адаптации.
  • 2.Характеристика крови как части внутренней среды организма. Основные константы крови как системообразующие факторы.
  • 3.Внешнесекреторная деятельность поджелудочной железы. Регуляция секреции, адаптации к характеру питания.
  • 2.Характеристика крови как части внутренней среды организма. Основные константы крови как системообразующие факторы.
  • 3. Функциональная система поддержания ад и обьемного кровотока.
  • 1.Повышение осмотического давления плазмы крови
  • 2.Высыхание слизистых оболочек рта.
  • 1.Взаимосвязь обмена веществ и энергии. Обмен веществ и функции. Принципы регуляции обмена веществ.
  • 3.Стандартные неспецифические адаптивные реакции: тренировка, активация, стресс. Их фазы, механизмы.
  • 2.Парасимпатический рефлекс дефекации.
  • 1.Восходящие и нисходящие влияния рф. Механизм поддержания её активности.
  • 3.Обменно-шунтовые сосуды, их функция (микроциркуляция понятие, массоперенос в микроциркуляторном русле). Факторы, регулирующие обьемный кровоток в микроциркуляторном русле.
  • 1.Функции подкорковых ганглиев. Эффектыих раздражения и повреждения.
  • 2.Функциональная классифакация ссс: функции буферно-компрессионных сосудов. Показатели используемые для их оценки (ад, Артериальный пульс, пульсовая волна)
  • 1) Реакции приближения: 2) Реакции избегания:
  • 2. Эффект удовольствия.
  • 3. Удовольствие потребности.
  • 1) В ответ на увеличение венозного возврата.
  • 2) В ответ на увеличение сопротивления кровотоку.
  • 1.Физиология лимбической системы (регуляция вегетативных функций)
  • 2.Экстракардиальные механизмы регуляции деятельности сердца(геморальное влияние: непосредственные и опосредованные)
  • 3.Моторная деятельность тонкой кишки. Ее регуляция.
  • II) Приобретенные программы.
  • 2.Передача информации в вегетативных ганглиях(медиаторы, рецепторы). Их функции. Медиаторы, рецепторы периферических вегетативных синапсов, эффекты.
  • 3.Аккумулирующие сосуды и сосуды возврата крови к сердцу. Их функции. Временное и длительное депонирование крови.
  • 1.Схема отражения информации в организме. Виды кодирования информации в нервной система. Преобразование и передача информации в рецепторах.
  • 2. Пп, его характеристика (величина, происхождение, колебания). Зависимость возбудимости от величины пп.
  • 3.Процессы мочевыделения (функционирование чашечек, лоханок, мочеточников), мочеиспускание, его регуляция. Нарушение выделительной функции почек (анурия, полиурия, уремия).
  • 2.Механизмы, обеспечивающие приток крови к сердцу, модулирующие влияния на приток крови.
  • 3.Выделение азотистых продуктов, концентрационная способность почек, ее регуляция.
  • 1.Значение зрачка. Зрачковый рефлекс. Приспособление к ясному видению разноудаленных педметов (механизм аккомодации
  • 2.Межклеточная передача возбуждения (электрическая, химическая). Синапс, его элементы, классификация медиаторов, рецепторов, секреция медиаторов
  • 3.Процессы мочеобразования (клубочковая фильтрация, канальцевая реабсорбция, секреторная функция эпителия почечных канальцев). Состав первичной и вторичной мочи. Уровни регуляции мочеобразования.
  • 4) Обменная функция:
  • 1) Строение нейрона.
  • II Электрофизиологические явления в нейроне.
  • 1) Химический термогенез.
  • 2) Сократительный термогенез.
  • 4.Измерение ад методом короткова
  • 2) Двигательные явления:
  • 2.Сенсорный отдел двигательной системы, его функции.
  • 3.Хар-ка обмена белков (значение белков для организма, особенности обмена и регуляции)
  • 1) Гормональная:
  • 4.Определение осмотической резистентности эритроцитов
  • I По времени хранения информации различают:
  • III По проявлениям память бывает:
  • I. Нейромедиаторный механизм.
  • II. Молекулярные механизмы памяти.
  • 3.Хар-ка обмена липидов (значение липидов, особенности транспорта видов липидов, особенности регуляции обмена липидов)
  • 1) Гипофиз:
  • 4.Пробы Штанге и Генчи
  • 1) По сложности;
  • Раздражение осморецепторов вызывает рефлекторное изменение деятельности выделительных органов, и они удаляют избыток воды или солей, поступивших в кровь. Большое значение в этом отношении имеет кожа, соединительная ткань которой впитывает избыток воды из крови или отдает ее в кровь при повышении осмотического давления последней

    Величину осмотического давления обычно определяют косвенными методами. Наиболее удобен и распространен криоскопический способ, когда находят депрессию, или понижение точки замерзания крови. Известно, что температура замерзания раствора тем ниже, чем больше концентрация растворенных в нем частиц, то есть чем больше его осмотическое давление. Температура замерзания крови млекопитающих на 0,56-0,58 °С ниже температуры замерзания воды, что соответствует осмотическому давлению 7,6 атм, или 768,2 кПа.

    Определенное осмотическое давление создают и белки плазмы. Оно составляет 1/220 общего осмотического давления плазмы крови и колеблется от 3,325 до 3,99 кПа, или 0,03-0,04 атм, или 25-30 мм рт. ст. Осмотическое давление белков плазмы крови называют онкотическим давлением. Оно значительно меньше давления, создаваемого растворенными в плазме солями, так как белки имеют огромную молекулярную массу, и, несмотря на большее их содержание в плазме крови по массе, чем солей, количество их грамм-молекул оказывается относительно небольшим, к тому же они значительно менее подвижны, чем ионы. А для величины осмотического давления имеет значение не масса растворенных частиц, а их число и подвижность.

    3.Уровни регуляции кровообращения. Виды сосудистых реакций, обеспечивающих изменение обьемного кровотока

    Регуляция кровообращения обеспечивается взаимодействием местных гуморальных механизмов при активном участии нервной системы и направлена на оптимизацию соотношения кровотока в органах и тканях с уровнем функциональной активности организма.

    В процессе обмена веществ в органах и тканях постоянно образуются метаболиты, влияющие на тонус кровеносных сосудов. Интенсивность образования метаболитов (СО2 или Н+; лактата, пирувата, АТФ, АДФ, АМФ и др.), определяемая функциональной активностью органов и тканей, является одновременно и регулятором их кровоснабжения. Этот тип саморегуляции называется метаболическим.

    Местные саморегуляторные механизмы генетически обусловлены и заложены в структурах сердца и кровеносных сосудов. Их можно рассматривать и как местные миогенные ауторегуляторные реакции, суть которых состоит в сокращении мышц в ответ на их растяжение объемом или давлением.

    Гуморальная регуляция К. осуществляется с участием гормонов, ренин-ангиотензиновой системы, кининов, простагландинов, вазоактивных пептидов, регуляторных пептидов, отдельных метаболитов, электролитов и других биологически активных веществ. Характер и степень их влияния определяются дозой действующего вещества, реактивными свойствами организма, его отдельных органов и тканей, состоянием нервной системы и другими факторами. Так, разнонаправленное действие катехоламинов крови на тонус сосудов и сердечной мышцы связано с наличием в них a- и b-адренорецепторов. При возбуждении a-адренорецепторов происходит сужение, а при возбуждении b-адренорецепторов - расширение кровеносных сосудов.

    В основе нервной регуляции К. лежит взаимодействие безусловных и условных сердечно-сосудистых рефлексов. Их подразделяют на собственные и сопряженные рефлексы. Афферентное звено собственных рефлексов К. представлено ангиоцепторами (баро- и хеморецепторами), расположенными в различных участках сосудистого русла и в сердце. Местами они собраны в скопления, образующие рефлексогенные зоны. Главными из них являются зоны дуги аорты, каротидного синуса, позвоночной артерии. Афферентное звено сопряженных рефлексов К. располагается за пределами сосудистого русла, его центральная часть включает различные структуры коры головного мозга, гипоталамуса, продолговатого и спинного мозга. В продолговатом мозге располагаются жизненно важные ядра сердечно-сосудистого центра: нейроны латеральной части продолговатого мозга через симпатические нейроны спинного мозга оказывают тоническое активирующее влияние на сердце и кровеносные сосуды; нейроны медиальной части продолговатого мозга тормозят симпатические нейроны спинного мозга; моторное ядро блуждающего нерва угнетает деятельность сердца; нейроны вентральной поверхности продолговатого мозга стимулируют деятельность симпатической нервной системы. Через гипоталамус осуществляется связь нервного и гуморального звеньев регуляции К. Эфферентное звено регуляции К. представлено симпатическими пре- и постганглионарными нейронами, пре- и постганглионарными нейронами парасимпатической нервной системы (см. Вегетативная нервная система). Вегетативная иннервация охватывает все кровеносные сосуды кроме капилляров.

    Билет №20

  • 2. Осмотическое давление

    3. Осмометр – прибор для измерения осмотического давления

    4. Биологическая роль осмоса и осмотического давления

    5. Осмотическая электростанция

    6. Обратный осмос

    7. Литература


    Глава 1. Осмос

    Осмос (греч. osmos толчок, проталкивание, давление) - самопроизвольный переход вещества, обычно растворителя, через полупроницаемую мембрану, отделяющую раствор от чистого растворителя или от раствора меньшей концентрации.

    Впервые осмос наблюдал Жан-Антуа Нолле в 1748, однако исследование этого явления было начато спустя столетие.

    Суть процесса

    Осмос обусловлен стремлением системы к термодинамическому равновесию и выравниванию концентраций растворов по обе стороны мембраны путем односторонней диффузии молекул растворителя.

    Важным частным случаем осмоса является осмос через полупроницаемую мембрану. Полупроницаемыми называют мембраны, которые имеют достаточно высокую проницаемость не для всех, а лишь для некоторых веществ, в частности, для растворителя. (Подвижность растворённых веществ в мембране стремится к нулю). Если такая мембрана разделяет раствор и чистый растворитель, то концентрация растворителя в растворе оказывается менее высокой, поскольку там часть его молекул замещена на молекулы растворенного вещества (см. Рис. 1). Вследствие этого, переходы частиц растворителя из отдела, содержащего чистый растворитель, в раствор будут происходить чаще, чем в противоположном направлении. Соответственно, объём раствора будет увеличиваться (а концентрация уменьшаться), тогда как объём растворителя будет соответственно уменьшаться.

    Например, к яичной скорлупе с внутренней стороны прилегает полупроницаемая мембрана: она пропускает молекулы воды и задерживает молекулы сахара. Если такой мембраной разделить растворы сахара с концентрацией 5 и 10 % соответственно, то через нее в обоих направлениях будут проходить только молекулы воды. В результате в более разбавленном растворе концентрация сахара повысится, а в более концентрированном, наоборот, понизится. Когда концентрация сахара в обоих растворах станет одинаковой, наступит равновесие. Растворы, достигшие равновесия, называются изотоническими.

    Осмос, направленный внутрь ограниченного объёма жидкости, называется эндосмосом, наружу - экзосмосом. Перенос растворителя через мембрану обусловлен осмотическим давлением. Оно равно избыточному внешнему давлению, которое следует приложить со стороны раствора, чтобы прекратить процесс, то есть создать условия осмотического равновесия. Превышение избыточного давления над осмотическим может привести к обращению осмоса - обратной диффузии растворителя.

    В случаях, когда мембрана проницаема не только для растворителя, но и для некоторых растворённых веществ, перенос последних из раствора в растворитель позволяет осуществить диализ, применяемый как способ очистки полимеров и коллоидных систем от низкомолекулярных примесей, например электролитов.


    Глава 2. Осмотическое давление

    Осмотическое давление (обозначается р) - избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану. Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

    Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое - гипотоническим.

    Осмотическое давление может быть весьма значительным. В дереве, например, под действием осмотического давления растительный сок (вода с растворёнными в ней минеральными веществами) поднимается по ксилеме от корней до самой верхушки. Одни только капиллярные явления не способны создать достаточную подъёмную силу - например, секвойям требуется доставлять раствор на высоту даже до 100 метров. При этом в дереве движение концентрированного раствора, каким является растительный сок, ничем не ограничено.

    Взаимодействие эритроцитов с растворами в зависимости от их осмотического давления.



    Если же подобный раствор находится в замкнутом пространстве, например, в клетке крови, то осмотическое давление может привести к разрыву клеточной мембраны. Именно по этой причине лекарства, предназначенные для введения в кровь, растворяют в изотоническом растворе, содержащем столько хлорида натрия (поваренной соли), сколько нужно, чтобы уравновесить создаваемое клеточной жидкостью осмотическое давление. Если бы вводимые лекарственные препараты были изготовлены на воде или очень сильно разбавленном (гипотоническом по отношению к цитоплазме) растворе, осмотическое давление, заставляя воду проникать в клетки крови, приводило бы к их разрыву. Если же ввести в кровь слишком концентрированный раствор хлорида натрия (3-5-10 %, гипертонические растворы), то вода из клеток будет выходить наружу, и они сожмутся. В случае растительных клеток происходит отрыв протопласта от клеточной оболочки, что называется плазмолизом. Обратный же процесс, происходящий при помещении сжавшихся клеток в более разбавленный раствор, - соответственно, деплазмолизом.

    Величина осмотического давления, создаваемая раствором, зависит от количества, а не от химической природы растворенных в нём веществ (или ионов, если молекулы вещества диссоциируют), следовательно, осмотическое давление является коллигативным свойством раствора. Чем больше концентрация вещества в растворе, тем больше создаваемое им осмотическое давление. Это правило, носящее название закона осмотического давления, выражается простой формулой, очень похожей на некий закон идеального газа:

    где i - изотонический коэффициент раствора; C - молярная концентрация раствора, выраженная через комбинацию основных единиц СИ, то есть, в моль/м3, а не в привычных моль/л; R - универсальная газовая постоянная; T - термодинамическая температура раствора.

    Это показывает также схожесть свойств частиц растворённого вещества в вязкой среде растворителя с частицами идеального газа в воздухе. Правомерность этой точки зрения подтверждают опыты Ж. Б. Перрена (1906): распределение частичек эмульсии смолы гуммигута в толще воды в общем подчинялось закону Больцмана.

    Осмотическое давление, которое зависит от содержания в растворе белков, называется онкотическим (0,03 - 0,04 атм.). При длительном голодании, болезни почек концентрация белков в крови уменьшается, онкотическое давление в крови снижается и возникают онкотические отёки: вода переходит из сосудов в ткани, где рОНК больше. При гнойных процессах рОНК в очаге воспаления возрастает в 2-3 раза, так как увеличивается число частиц из-за разрушения белков. В организме осмотическое давление должно быть постоянным (7,7 атм.). Поэтому пациентам вводят изотонические растворы (растворы, осмотическое давление которых равно р плазмы 7,7 атм. - 0,9 % NaCl - физиологический раствор, 5 % раствор глюкозы). Гипертонические растворы, у которых р больше, чем осмотическое давление плазмы, применяются в медицине для очистки ран от гноя (10 % NaCl), для удаления аллергических отёков (10 % CaCl2, 20 % глюкоза), в качестве слабительных лекарств (Na2SO4 10H2O, MgSO4 7H2O).

    Закон осмотического давления можно использовать для расчёта молекулярной массы данного вещества (при известных дополнительных данных).

    Осмотическое давление измеряют специальным прибором

    Глава 3. Осмометр – прибор для измерения осмотического давления

    Осмометр - (осмо- + греч. metreo измерять) прибор для измерения осмотического давления или концентрации осмотически активных веществ; применяется при биофизических и биохимических исследованиях.

    Принципиальная схема осмометра: А - камера для раствора; Б - камера для растворителя; М - мембрана. Уровни жидкости в трубках при осмотическом равновесии: а и б - в условиях равенства внешних давлений в камерах А и Б, когда rА = rБ, при этом Н - столб жидкости, уравновешивающий осмотическое давление; б - в условиях неравенства внешних давлений, когда rА - rБ = p.

    Осмометры давления пара

    Этот тип приборов отличается тем, что для измерения требуется минимальный объем пробы (единицы микролитров), что имеет большое значение, когда из объекта исследования нельзя взять больший объем. Однако по причине малости объема пробы осмометры давления пара имеют большую погрешность по сравнению с другими. Кроме того, результат измерения зависит от изменения атмосферного давления. Основное применение эти приборы нашли в научных исследованиях и педиатрической практике для исследований крови новорожденных, взятой из пальчика или пяточки. Диапазон измеряемых концентраций ограничивается 2000 ммоль/кг Н2О. В российских ЛПУ они не нашли широкого применения. В Европейском союзе осмометры давления пара производит фирма Dr .Knauer, Gonotec (Германия), в США - фирма Wescor .

    Мембранные осмометры

    На свойстве осмоса строятся осмометры, называемые мембранными. В их конструкции могут использоваться как искусственные мембраны (например, целлофан), так и природные (например, кожа лягушки).

    Приборы этого типа используются для измерения так называемого коллоидно-осмотического давления крови (КОД), которое создается высокомолекулярной (более 30000 Д) составляющей общей концентрации осмотически активных частиц, содержащихся в плазме крови. Это давление называется также онкотическим и создается преимущественно белками. КОД составляет менее 3 ммоль/кг Н2О и поэтому незначительно влияет на общее осмотическое давление, но имеет определяющее значение для процессов транскапиллярного обмена. Эта составляющая общего давления имеет важное диагностическое значение. Мембранные осмометры производят фирмы Dr. Knauer , Gonotec , Германия (Osmomat 050), в США - фирма Wescor. Интересно, что фирма доктора Кнауэра предлагает всю линейку осмометров, перекрывая, таким образом, весь диапазон частиц с молекулярной массой, включая миллионные.

    Осмотическое давление крови (ОДК) – это уровень силы, обеспечивающей циркуляцию растворителя (для нашего организма это вода) сквозь оболочку эритроцитов.

    Поддержание уровня происходит на основе перемещения из растворов, менее концентрированных в те, где сосредоточенность воды больше.

    Это взаимодействие является водным обменом между кровью и тканями человеческого организма. Ионы, глюкоза, белки, и другие полезные элементы, сосредоточенные в крови.

    Нормальными показателями осмотического давления является 7,6 атм., или 300 мОсмоль, что равно 760 мм.рт.ст.

    Осмоль – это концентрация одного моля неэлектролита, растворенного на литр воды. Осмотическая концентрация в крови определяется именно при помощи их измерения.

    Что из себя представляет ОДК?

    Окружение клеток оболочкой присуще как тканям, так и элементам крови, через нее с легкостью проходит вода и практически не проникают растворенные вещества. Поэтому, отклонение показателей осмотического давления может повлечь к увеличению эритроцита, и утрате им воды и деформированию.

    Для эритроцитов и большинства тканей пагубным является увеличения потребления солей в организм, которые оседаю на стенках сосудов и сужают проходы сосудов.

    Такое давление всегда находится примерно на одинаковом уровне и регулируется рецепторами , локализующимися в гипоталамусе, сосудах и тканях.

    Общее их название осморецепторы, именно они поддерживают показатель ОДК на нужном уровне.

    Одним из самых устойчивых параметров крови является осмотическая концентрация плазмы , которая поддерживает нормальные показатели осмотического давления крови, при помощи гормонов и сигналов организма – ощущение чувства жажды.

    Какие нормальные показатели ОДК?

    Нормальными показателями осмотического давления являются, показатели криоскопического исследования, не превышающие 7,6 атм. При анализе определяется точка, при которой замерзает кровь. Нормальными показателями замерзания раствора для человека является 0,56-0,58 градусов по Цельсию, что эквивалентно 760 мм.рт.ст.

    Отдельный вид ОДК создается белками плазмы. Также осмотическое давление белков плазмы именуется онкотическим давлением. Такое давление в разы ниже, чем давление, которое создается в плазме солями, так как белкам присущи большие уровни молекулярной массы.

    В отношении к другим осмотическим элементам присутствие их незначительно, хотя они содержатся в крови во множественном количестве.

    Оно влияет на общие показатели ОДК, но в маленьком соотношении (одна целая двухсот двадцатая часть) к общим показателям.

    Это эквивалентно 0,04 атм., или 30 мм.рт.ст. Для показателей осмотического давления крови имеет значимость их количественный фактор и подвижность, нежели масса растворенных частиц.

    Описанное давление противодействует сильному перемещению растворителя из крови в ткани, и влияет на переход воды от тканей к сосудам. Именно поэтому прогрессируют отечности тканей, следствием уменьшения белковой концентрации в плазме.

    Неэлектролит содержит меньшую осмотическую концентрацию, нежели электролит. Отмечается это потому. Что молекулы электролита растворяют ионы, что влечет к росту концентрации активных частиц, которые характеризуют осмотическую концентрацию.

    Что влияет на отклонения осмотического давления?

    Рефлекторные изменения деятельности выделительных органов, влечет раздражение осморецепторов. При их воспалении, они устраняют из организма избыточное количество воды и солей, которые попали в кровь.

    Важную роль здесь играет кожный покров, ткани которого питаются избытком воды из крови или возвращает её в кровь, при увеличении показателей осмотического давления.

    На показатели нормального ОДК влияет количественное насыщение крови электролитами и неэлектролитами, которые растворены в плазе крови.

    Не меньше шестидесяти процентов составляет ионизированный хлорид калия. Изотонические растворы – это растворы в которых уровень ОДК близится к плазменному.

    При росте показателей этой величины, состав именуется гипертоническим, а в случае уменьшения – гипотоническим.

    Если нормальный показатель осмотического давления отклоняется от нормы, провоцируется повреждение клеток. Для того чтобы вернуть показатели осмотического давления в крови, могут внутрь вводить растворы, которые подбираются, зависимо от заболевания, провоцирующего отклонения ОДК от нормы.

    Среди них:

    • Гипотонический концентрированный раствор. При применении в правильной дозировке чистит раны от гноя и способствует уменьшению в размерах оттека аллергического характера. Но при неправильных дозах, провоцирует быстрое наполнение клеток раствором, что влечет к их быстрому разрыву;
    • Гипертонический раствор. При помощи введения этого раствора в кровь, способствуют улучшенному выведению клеток воды в сосудистую систему;
    • Разведение препаратов в изотоническом растворе. Препараты размешивают в данном растворе, при нормальных показателях ОДК. Натрий хлорида является наиболее часто размешиваемым препаратом.

    За повседневным поддержанием нормальных отметок ОДК следят потовые железы и почки. Они не допускают воздействия продуктов, которые остаются после обмена веществ, на организм, путем создания защитных оболочек.

    Именно поэтому осмотическое давление крови почти всегда колеблется на одном уровне. Резкое увеличение его показателей возможно при активной физической нагрузке. Но и в этом случае организм сам быстро стабилизирует показатели.


    Взаимодействие эритроцитов с растворами в зависимости от их осмотического давления.

    Что происходит при отклонениях?

    При увеличении показателей осмотического давления крови происходит перемещение клеток воды из эритроцитов в плазму, вследствие чего клетки деформируются и теряют свою функциональность. При упадке концентрации осмолей, происходит увеличение насыщенности клетки водой , что влечет к увеличению её размеров и деформации мембраны, которая именуется гемолизом.

    Гемолиз характеризуется тем, что при нем деформируются наиболее численные клетки крови – красные тельца, также именуемые эритроцитами, тогда белок гемоглобина попадает в плазму, впоследствии чего она становится прозрачной.

    Гемолиз делиться на следующие виды:

    Вид гемолиза Характеристика
    Осмотический Прогрессирует при упадке ОДК. Влечет к увеличению эритроцитов, с последующей деформацией их мембраны, и высвобождением гемоглобина
    Механический Данный вид гемолиза возникает вследствие сильного механического влияния на кровь. Как пример, когда пробирку с кровью сильно встряхнуть
    Биологический Прогрессирует под воздействием иммунных гемолизов, переливании крови, которая не совмещается по группе крови, при укусах отдельных видов змей
    Термический Развивается при размораживании и замораживании крови
    Химический Прогрессирует под действием веществ, которые деформируют белковую оболочку красных клеток. Воздействовать на это могут алкогольные напитки, эфирные масла, хлороформ, бензол и прочие

    При исследованиях, как клинических, так и в целях науки, осмотический гемолиз задействуют для определения качественных показателей красных клеток, (метод осмотического сопротивления красных клеток), а также противодействию оболочек красных клеток к деформации в растворе.


    Влияет ли питание на осмотическое давление крови?

    Соблюдение правильного питания, со сбалансированным рационом продуктов помогает в профилактике многих заболеваний.

    Высокая концентрация потребляемой соли, влечет к отложению натрия на стенках сосудов. Они становятся уже, что нарушает нормальное обращение крови и выведение жидкости, увеличивает показатели артериального давления, и провоцирует отечности.


    Употребление чистой питьевой воды менее полутора литров в день, приводит к нарушению водного баланса.

    Он в свою очередь влечет повышенную вязкость крови, в связи с недостаточностью растворителя.

    Так возникает ощущение жажды, удовлетворив которую, организм возобновляет нормальную функциональность организма.

    Какими методами определяется?

    Измерение показателя ОДК происходить при помощи осмометра — аппарат для измерения общей концентрации крови, криоскопическим методом, активных веществ (осмолярности) в жидкостях крови, мочи и водных растворах.


    Осмометр

    Определение показателей осмотического давления крови, делают в большинстве случаев криоскопическим методом — исследования растворов, где за основу взято понижение точки замерзания раствора по сравнению с температурой, при которой замерзает чистый растворитель.

    Такой метод определяет депрессию, или упадок уровня, при котором кровь замерзает. Чем выше показатель осмотического давления, тем выше концентрация в крови растворенных частиц. Из этого следует, что чем больше уровень ОДК, тем меньше температура, при которой замерзает раствор.

    В пределах нормы, показатели колеблется от 7,5 до 8 атм.

    Также важным является показатель онкотического давления и при его колебании ниже нормы, может указывать на патологии почек или печени, либо продолжительную голодовку.

    Показатель осмотического давления является важным фактором организма, и указывает на нормальное обращение растворителя (воды) в организме человека.

    Осмотическое давление крови — это давление, которое способствует проникновению водного растворителя через полупроницаемую мембрану в сторону более концентрированного состава.

    Благодаря этому в организме человека происходит водный обмен между тканями и кровью. Измерять его можно с помощью осмометра или криоскопически.

    От чего зависит осмотическая величина

    На этот показатель оказывает влияние количество и неэлектролитов, растворенных в плазме крови. Не менее 60% составляет ионизированный хлорид натрия. Растворы, осмотическое давление которых приближается к плазменному, называют изотоническими.

    Если эта величина снижена, то такой состав зовется гипотоническим, а в случае ее превышения — гипертоническим.

    При изменении нормального уровня раствора в тканях клетки повреждаются. Для нормализации состояния жидкости могут вводиться извне, причем состав будет зависеть от характера болезни:

    • Гипертонический раствор способствует выведению воды в сосуды.
    • Если давление в норме, то препараты разводят в изотоническом растворе, обычно это натрий хлорида.
    • Гипотонический концентрированный раствор способен привести к разрыву клетки. Вода, проникая в клетку крови, стремительно наполняет ее. Но при правильной дозировке это способствует очистке ран от гноя, уменьшению аллергического отека.

    Почки и потовые железы заботятся о том, чтобы этот показатель был неизменным. Они создают защитный барьер, который не допускает влияния продуктов обмена на организм.

    Поэтому осмотическое давление у человека практически всегда имеет постоянную величину, резкий скачек может произойти лишь после интенсивной физической нагрузки. Но организм все равно сам быстро нормализует этот показатель.

    Как влияет питание

    Правильное питание — залог здоровья всего человеческого тела. Изменение давления происходит в случае:

    • Употребления большого количества соли. Это приводит к отложению натрия, из-за чего стенки сосудов становятся плотными, соответственно, уменьшается просвет. В таком состоянии организм не справляется с выведением жидкости, что приводит к увеличению циркуляции крови и повышению артериального давления, появлению отеков.
    • Недостаточного употребления жидкости. Когда организму не хватает воды, нарушается водный баланс, кровь сгущается, так как уменьшается количество растворителя, то есть воды. Человек ощущает сильную жажду, утолив которую, запускает процесс возобновления работы механизма.
    • Употребления вредной пищи или нарушения работы внутренних органов (печени и почек).

    Как измеряется, и о чем говорят показатели

    Величина осмотического давления плазмы крови измеряется при замерзании последней. В среднем эта величина в норме составляет 7,5-8,0 атм. При повышении показателя температура замерзания раствора будет выше.

    Часть осмотической величины создает онкотическое давление, его образуют белки плазмы. Оно отвечает за регуляцию водного обмена. Онкотическое давление крови в норме составляет 26-30 мм рт. ст. Если показатель изменяется в меньшую сторону, то появляется отечность, так как организм плохо справляется с выведением жидкости, и она скапливается в тканях.

    Это может происходить при заболеваниях почек, длительном голодании, когда состав крови содержит мало белков, или при проблемах с печенью, в этом случае за сбой отвечают альбумины.

    Влияние на человеческий организм

    Бесспорно, осмос и осмотическое давление — это основные факторы, влияющие на упругость тканей и способность организма сохранять форму клеток и внутренних органов. Они обеспечивают ткани нутриентами.

    Чтобы понять, что это такое, следует эритроцит поместить в дистиллированную воду. Со временем вся клетка наполнится водой, оболочка эритроцита разрушится . Этот процесс получил название « ».

    Если клетку окунуть в концентрированный солевой раствор, она потеряет свою форму и упругость, произойдет ее сморщивание. Плазмолиз приводит к потере эритроцитом воды. В изотоническом же растворе сохранятся первоначальные свойства.

    Осмотическое давление обеспечивает нормальное движение воды в организме.



    Понравилась статья? Поделитесь ей
    Наверх