Полезные и вредные свойства инфракрасного излучения на человека. Что такое инфракрасное излучение

В различных сферах жизни человек использует инфракрасные лучи. Польза и вред излучения зависят от длины волны и времени воздействия.

В повседневной жизни человек постоянно находится под действием инфракрасного излучения (ИК-излучение). Естественным его источником является солнце. К искусственным относятся электронагревательные элементы и лампы накаливания, любые нагретые или раскаленные тела. Этот вид излучения используется в обогревателях, системах отопления, приборах ночного видения, пультах дистанционного управления. На ИК-излучении основан принцип действия медицинского оборудования для физиотерапии. Что же собой представляют инфракрасные лучи? В чем польза и вред этого вида излучения?

Что такое ИК-излучение

ИК-излучение - это электромагнитное излучение , форма энергии, которая нагревает предметы и примыкает к красному спектру видимого света. Глаз человека не видит в этом спектре, но мы чувствуем эту энергию как высокую температуру. Другими словами, люди кожей воспринимают инфракрасное излучение от нагретых предметов как ощущение тепла.

Инфракрасные лучи бывают коротковолновыми, средневолновыми и длинноволновыми. Длины волн, излучаемые нагретым предметом, зависят от температуры нагревания. Чем она выше, тем короче длина волны и интенсивнее излучение.

Впервые биологическое действие этого вида излучения было изучено на примере культур клеток, растений, животных. Обнаружено, что под влиянием ИК-лучей подавляется развитие микрофлоры, улучшаются обменные процессы вследствие активизации кровотока. Доказано, что это излучение улучшает циркуляцию крови и оказывает болеутоляющее и противовоспалительное действие. Отмечено, что под влиянием инфракрасного излучения пациенты после хирургического вмешательства легче переносят послеоперационные боли, а их раны быстрее заживают. Установлено, что ИК-излучение способствует повышению неспецифического иммунитета, что позволяет уменьшить действие ядохимикатов и гамма-излучения, а также ускоряет процесс выздоровления при гриппе. ИК-лучи стимулируют выведение из организма холестерина, шлаков, токсинов и других вредных веществ через пот и мочу.

Польза инфракрасных лучей

Благодаря этим свойствам ИК-излучение широко используется в медицине. Но применение ИК-излучений с широким спектром действия может привести к перегреву организма и покраснению кожи. Вместе с тем, длинноволновое излучение не оказывает негативного влияния, поэтому в быту и медицине более распространены длинноволновые приборы или излучатели с селективной длиной волны.

Воздействием длинноволновых ИК-лучей способствует следующим процессам в организме:

  • Нормализация артериального давления за счет стимуляции кровообращения
  • Улучшение мозгового кровообращения и памяти
  • Очищение организма от токсинов, солей тяжелых металлов
  • Нормализация гормонального фона
  • Прекращение распространения вредных микробов и грибков
  • Восстановление водно-солевого баланса
  • Обезболивание и противовоспалительный эффект
  • Укрепление иммунной системы.

Лечебное воздействие ИК-лучей может использоваться при следующих заболеваниях и состояниях:

  • бронхиальная астма и обострение хронического бронхита
  • очаговая пневмония в стадии разрешения
  • хронический гастродуоденит
  • гипермоторная дискинезия органов пищеварения
  • хронический бескаменный холецистит
  • остеохондроз позвоночника с неврологическими проявлениями
  • ревматоидный артрит в ремиссии
  • обострение деформирующего остеоартроза тазобедренного и коленного суставов
  • облитерирующий атеросклероз сосудов ног, невропатии периферических нервов ног
  • обострение хронического цистита
  • мочекаменная болезнь
  • обострение хронического простатита с нарушением потенции
  • инфекционные, алкогольные, диабетические полиневропатии ног
  • хронический аднексит и нарушения функции яичников
  • абстинентный синдром

Отопление с использованием ИК-излучения способствует укреплению иммунной системы, подавляет размножение бактерий в окружающей среде и в человеческом организме, улучшает состояние кожи за счет усиления циркуляции крови в ней. Ионизирование воздуха является профилактикой обострений аллергии.

Когда ИК-излучение может навредить

Прежде всего, нужно учесть существующие противопоказания, прежде чем в лечебных целях использовать инфракрасные лучи. Вред от их применения может быть в следующих случаях:

  • Острые гнойные заболевания
  • Кровотечения
  • Острые воспалительные заболевания, приведшие к декомпенсации органов и систем
  • Системные заболевания крови
  • Злокачественные новообразования

Кроме того, чрезмерное облучение широким спектром ИК-лучей приводит к сильному покраснению кожи и может вызвать ожог. Известно о случаях появления опухоли на лице у рабочих-металлургов в результате длительного воздействия этого вида излучения. Также отмечены случаи появления дерматита, возникновения теплового удара.

Инфракрасные лучи, особенно в интервале 0,76 - 1,5 мкм (коротковолновая область) представляют опасность для глаз. Продолжительное и длительное воздействие излучения чревато развитием катаракты, светобоязни и других нарушений зрения. По этой причине нежелательно длительно находиться под воздействием коротковолновых обогревателей. Чем ближе к такому обогревателю находится человек, тем меньше должно быть время, которое он проводит возле этого прибора. Нужно отметить, что этот тип обогревателей предназначен для уличного или локального обогрева. Для отопления жилых и производственных помещений, предназначенных для длительного пребывания людей, используются длинноволновые ИК-обогреватели.

Существуют разные источники инфракрасного излучения. В настоящее время они находятся в бытовой технике, системах автоматики, охраны, а также используются при сушке промышленных изделий. Источники инфракрасного света при правильной эксплуатации не влияют на человеческий организм, поэтому изделия пользуются огромной популярностью.

История открытия

На протяжении многих веков изучением природы и действия света занимались выдающиеся умы.

Инфракрасный свет был обнаружен в начале 19 века с помощью исследований астронома В. Гершеля. Суть его заключалась в изучении нагревательных способностей различных солнечных участков. К ним ученый подносил термометр и следил за возрастанием температуры. Данный процесс наблюдался, когда прибор коснулся красной границы. В. Гершель сделал вывод, что существует некое излучение, которое нельзя увидеть зрительно, но возможно определить с помощью термометра.

Инфракрасные лучи: применение

Они широко распространены в жизни человека и нашли свое применение в разных сферах:

  • Военное дело. Современные ракеты и боеголовки, способные самостоятельно наводиться на цель, снабжены которые являются результатом применения инфракрасного излучения.
  • Термография. Инфракрасное излучение применяют для изучения перегретых или переохлажденных местностей. Инфракрасные снимки также применяются в астрономии для обнаружения небесных тел.
  • Быт. Большую популярность получили , функционирование которых направлено на нагрев предметов интерьера и стен. Затем они отдают тепло пространству.
  • Дистанционное управление. Все существующие пульты для телевизора, печей, кондиционеров и т.д. снабжены инфракрасными лучами.
  • В медицине инфракрасными лучами проводят лечение и профилактику различных заболеваний.

Рассмотрим, где применяются данные элементы.

Инфракрасные газовые горелки

Инфракрасная горелка служит для обогрева различных помещений.

Сначала она использовалась для теплиц, гаражей (то есть нежилых помещений). Однако современные технологии позволили применять ее даже в квартирах. В народе такую горелку называют прибором солнца, так как во включенном состоянии рабочая поверхность оборудования напоминает солнечный свет. Со временем такие устройства заменили масляные обогреватели и конвекторы.

Главные особенности

Инфракрасная горелка отличается от других приборов способом нагрева. Передача теплоты осуществляется за счет которые не заметны для человека. Такая особенность позволяет теплу проникать не только в воздух, но и на предметы интерьера, которые в дальнейшем также повышают температуру в помещении. Инфракрасный излучатель не сушит воздух, потому что лучи в первую очередь направлены на предметы интерьера и стены. В дальнейшем передача теплоты будет осуществляться от стен или предметов непосредственно пространству комнаты, причем процесс происходит за несколько минут.

Положительные стороны

Главным преимуществом таких приборов является быстрый и легких обогрев помещения. Например, чтобы нагреть холодную комнату до температуры +24ºС, потребуется 20 минут. В процессе не возникает движение воздуха, который способствует образованию пыли и больших загрязнений. Поэтому инфракрасный излучатель устанавливают в помещениях те люди, которые имеют аллергию.

Кроме того, инфракрасные лучи, попадая на поверхность с пылью, не вызывают ее горение, и, как следствие, нет запах горелой пыли. Качество обогрева и долговечность прибора зависит от нагревательного элемента. В таких устройствах используется керамический тип.

Стоимость

Цена таких устройств довольна низка и доступна всем слоям населения. Например, газовая горелка стоит от 800 рублей. Целую печку можно приобрести за 4000 рублей.

Сауна

Что собой представляет инфракрасная кабина? Это специальное помещение, которое строится из натуральных сортов дерева (например, кедра). В него устанавливаются инфракрасные излучатели, действующие на дерево.

Во время нагрева выделяются фитонциды — полезные компоненты, которые предотвращают развитие или появление грибков и бактерий.

Такая инфракрасная кабина в народе называется сауной. Внутри помещения температура воздуха достигает 45ºС, поэтому находиться в нем довольно комфортно. Такая температура позволяет прогреть человеческое тело равномерно и глубоко. Поэтому тепло не воздействует на сердечно-сосудистую систему. Во время процедуры удаляются накопленные токсины и шлаки, ускоряется обмен веществ в организме (за счет быстрого движения крови), также ткани обогащаются кислородом. Однако выделение пота — это не главное свойство инфракрасной сауны. Она направлена на улучшение самочувствия.

Влияние на человека

Такие помещения благотворно сказываются на организме человека. Во время процедуры прогреваются все мышцы, ткани и кости. Ускорение кровообращения влияет на обмен веществ, который помогает насытить мышцы и ткани кислородом. Кроме того, инфракрасную кабину посещают с целью профилактики различных заболеваний. Большинство людей оставляет только положительные отзывы.

Негативное воздействие инфракрасного излучения

Источники инфракрасного излучения могут вызывать не только положительное воздействие на организм, но и наносить ему вред.

При длительном воздействии лучей происходит расширение капилляров, что приводит к появлению покраснения или ожогов. Особый вред источники инфракрасного излучения наносят органам зрения — это образование катаракты. В некоторых случаях у человека появляются судороги.

На организм человека влияют короткие лучи, вызывая При повышении температуры головного мозга на несколько градусов наблюдается ухудшение состояния: потемнение в глазах, головокружение, тошнота. Дальнейший рост температуры может привести к образованию менингита.

Ухудшение или улучшение состояния происходит за счет интенсивности электромагнитного поля. Она характеризуется температурой и расстоянием до источника излучения тепловой энергии.

Длинные волны инфракрасного излучения играют особую роль в разных процессах жизнедеятельности. Короткие же больше влияют на человеческий организм.

Как предотвратить вредное влияние ИК-лучей?

Как говорилось ранее, отрицательное воздействие на человеческий организм оказывает короткое тепловое излучение. Рассмотрим примеры, в которых ИК-излучение опасно.

На сегодняшний день вредить здоровью могут инфракрасные нагреватели, излучающие температуру выше 100ºС. Среди них выделяют следующие:

  • Промышленное оборудование, излучающее лучистую энергию. Чтобы предотвратить негативное воздействие, следует использовать спецодежду и теплозащитные элементы, а также проводить профилактические мероприятия среди работающего персонала.
  • Инфракрасный прибор. Самым известным обогревателем является печь. Однако она уже давно вышла из обихода. Все чаще в квартирах, загородных домах и дачах стали использовать электрические инфракрасные нагреватели. В его конструкции предусмотрен нагревательный элемент (в виде спирали), который защищен специальным теплоизолирующим материалом. Такое воздействие лучей не вредит человеческому организму. Воздух в обогреваемой зоне не сушится. Нагреть помещение можно за 30 минут. Сначала инфракрасное излучение нагревает предметы, а уже они и всю квартиру.

Инфракрасное излучение широко применяется в различных сферах, начиная с промышленной и заканчивая медициной.

Однако обращаться с ними следует аккуратно, так как лучи могут оказать негативное воздействие на человека. Все зависит от длины волны и расстояния до нагревательного прибора.

Итак, мы выяснили, какие существуют источники инфракрасного излучения.

Инфракрасное излучение. Открытие инфракрасного излучения

Определение 1

Под инфракрасным излучением (ИК) понимается форма энергии или способ обогрева, при котором тепло от одного тела передается другому телу.

Человек в процессе своей жизни постоянно находится под действием ИК-излучения и способен чувствовать эту энергию как тепло, идущее от предмета. Воспринимается инфракрасное излучение кожей человека , глаза в этом спектре не видят.

Естественным источником высокой температуры является наше светило. С температурой нагревания связана длина волны инфракрасных лучей, которые бывают коротковолновыми, средневолновыми, длинноволновыми.

Короткая длина волны имеет высокую температуру и интенсивное излучение. Ещё в $1800$ г. английский астроном У. Гершель проводил наблюдения за Солнцем. Занимаясь исследованием светила, он искал способ, который бы позволил уменьшить нагрев инструмента, при помощи которого эти исследования проводились. На одном из этапов своей работы ученый обнаружил, что за насыщенным красным цветом находится «максимум тепла ». Исследование стало началом изучения инфракрасного излучения .

Если раньше источниками инфракрасного излучения в лаборатории служили раскаленные тела или электрические разряды в газах, то сегодня созданы современные источники инфракрасного излучения с частотой, которую можно регулировать или фиксировать. Их основой являются твердотельные и молекулярные газовые лазеры.

В ближней инфракрасной области (около $1,3$ мкм) для регистрации излучения пользуются специальными фотопластинками .

В дальней инфракрасной области излучение регистрируется болометрами – это детекторы, которые являются чувствительными к нагреву инфракрасным излучением.

Инфракрасные волны имеют разную длину , поэтому их проникающая способность будет тоже разная.

Длинноволновые , идущие от Солнца лучи, например, спокойно проходят через атмосферу Земли , при этом, не нагревая её. Проникая через твердые тела, они увеличивают их температуру, поэтому для всего живого на планете огромное значение имеет именно дальнее излучение .

Интересно, что в постоянной компенсирующей подпитке нуждаются все живые тела, которые тоже излучают такой же спектр тепла. При отсутствии такой подпитки, температура живого тела падает, что является причиной его уязвимости для различных инфекций. Эта дополнительная подпитка в виде ИК-излучения, как считают ученые, скорее полезна , чем вредна.

Замечание 1

Специалисты провели на животных многочисленные эксперименты, которые показали, что инфракрасные лучи подавляют рост раковых клеток, уничтожают ряд вирусов, нейтрализуют разрушительное действие электромагнитных волн. Длинноволновые инфракрасные лучи повышают количество инсулина, вырабатываемого организмом, и нивелируют последствия радиоактивного воздействия.

Применение инфракрасного излучения

Инфракрасное излучение находит широкое применение, как в быту, так и в разных сферах деятельности человека.

Основными областями его применения являются:

    Термография . ИК-излучение позволяет определить температуру объектов, которые находятся на каком-то удалении. В промышленных и военных целях широко используется тепловидение, его камеры могут обнаружить ИК и произведут изображение этого излучения. Благодаря термографическим камерам без всякого освещения можно «видеть» все, что находится рядом, потому что все нагретые объекты испускают ИК.

    Слежение . Используется ИК слежение при наведении ракет, в которые встраивается устройство, получившее название «тепловые искатели ». В результате того, что двигатели машин и механизмов, да и сам человек излучают тепло, то хорошо будут видны в инфракрасном диапазоне, а отсюда ракеты без всякого труда находят направление полета.

    Обогрев. Как источник тепла ИК повышает температуру и благотворно влияет на здоровье человека, например, инфракрасные сауны , о которых сегодня много говорят. Используют их при лечении гипертонии, сердечной недостаточности, ревматоидного артрита.

    Метеорология . Высота облаков, температура поверхности воды и земли определяется со спутников, делающих инфракрасные изображения. На таких снимках холодные облака окрашены в белый цвет, теплые же облака окрашены в серый цвет. Черным или серым цветом окрашивается горячая поверхность земли.

    Астрономия. При наблюдении за небесными объектами астрономы используют специальные инфракрасные телескопы. Благодаря этим телескопам ученые определяют протозвезды до момента излучения ими видимого света, различают прохладные объекты, наблюдают ядра галактик.

    Искусство . И здесь инфракрасное излучение нашло применение. Искусствоведы, благодаря инфракрасным рефлектограммам , видят нижние слои картин, наброски художника. Данный прибор помогает отличить оригинал от копии, ошибки реставрационных работ. С его помощью изучаются старые письменные документы.

    Медицина. Широко известны лечебные свойства ИК - терапии. Нагретая глина, песок, соль издавна считались целебными и благотворно влияющими на организм человека. ИК помогают лечить переломы, улучшают обмен веществ в организме, ведут борьбу с ожирением, способствуют заживлению ран, улучшают циркуляцию крови, оказывают благотворное влияние на суставы и мышцы.

Кроме этого лечебное воздействие используют при заболеваниях:

  1. Хроническим бронхитом и бронхиальной астмой;
  2. Пневмонией;
  3. Хроническим холециститом и его обострением;
  4. Простатитом с нарушением потенции;
  5. Ревматоидным артритом;
  6. При заболеваниях мочевыводящих путей и др.

Для того чтобы использовать инфракрасные лучи в лечебных целях, необходимо учитывать противопоказания.

Большой вред они могут принести:

  1. Когда у человека есть гнойные заболевания;
  2. Скрытые кровотечения;
  3. Заболевания крови;
  4. Новообразования и, прежде всего, злокачественные;
  5. Воспалительные заболевания, чаще всего острые.

Коротковолновые ИК отрицательно воздействуют на мозговую ткань человека, в результате чего наблюдается «солнечный удар ». Вред в этом случае очевиден. Человек испытывает головную боль, пульс и дыхание становятся учащенными, в глазах темнеет, возможна потеря сознания. При дальнейшем облучении организм не выдерживает – происходит отек тканей и оболочек мозга, появляются симптомы энцефалита и менингита. Короткие волны особенно сильный вред наносят глазам человека, сердечнососудистой системе.

Замечание 2

Таким образом, получается, что польза воздействия ИК на организм, несмотря на отрицательные моменты, значительна.

Защита от инфракрасного излучения

Для снижения наносимого ИК вреда и защиты от него разработаны нормы ИК-облучения, безопасные для человека.

Основные мероприятия защиты:

  1. Устаревшие технологии необходимо заменить современными, что позволит снизить интенсивность излучения источника;
  2. Использование экранов из металлических сеток и цепей, облицовка асбестом открытых печных проёмов;
  3. Обязательная индивидуальная защита и, прежде всего, глаз очками со светофильтрами;
  4. Защита тела льняной или полульняной спецодеждой;
  5. Рациональный режим труда и отдыха;
  6. Обязательные лечебно-профилактические мероприятия работников.

Об инфракрасном излучении


Из истории изучения инфракрасного излучения

Инфракрасное излучение или тепловое излучение не является открытием 20 или 21 века. Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем . Он обнаружил, что «максимум тепла» лежит за пределами красного цвета видимого излучения. Это исследование положило начало изучению инфракрасного излучения. Очень многие известные ученые приложили свои головы к изучению данного направления. Это такие имена как: немецкий физик Вильгельм Вин (закон Вина), немецкий физик Макс Планк (формула и постоянная Планка), шотландский ученый Джон Лесли (устройство измерения теплового излучения – куб Лесли), немецкий физик Густав Кирхгоф (закон излучения Кирхгофа), австрийский физик и математик Йозеф Стефан и австрийский физик Стефан Людвиг Больцман (закон Стефана-Больцмана).

Использование и применение знаний по тепловому излучению в современных отопительных устройствах вышло на передний план лишь в 1950-х годах. В СССР теория лучистого отопления разработана в трудах Г. Л. Поляка, С. Н. Шорина, М. И. Киссина, А. А. Сандера. С 1956 года в СССР было написано или переведено на русский язык множество технических книг по данной тематике (список литературы ). В связи с изменением стоимости энергоресурсов и в борьбе за энергоэффективность и энергосбережение, современные инфракрасные обогреватели получили широкое применение в отоплении бытовых и промышленных зданий.


Солнечное излучение - природное инфракрасное излучение

Наиболее известным и значительным природным инфракрасным обогревателем является Солнце. По сути, это природный и самый совершенный метод обогрева, известный человечеству. В пределах Солнечной системы Солнце это самый мощный источник теплового излучения, обусловливающий жизнь на Земле. При температуре поверхности Солнца порядка 6000К максимум излучения приходится на 0,47 мкм (соответствует желтовато-белому). Солнце находится на расстоянии многих миллионов километров от нас, однако, это не мешает ему передавать энергию через все это громадное пространство, практически не расходуя ее (энергию), не нагревая его (пространство). Причина в том, что солнечные инфракрасные лучи, проходят долгий путь в космосе, практически не имеют потерь энергии. Когда же на пути лучей встречается, какая либо поверхность, их энергия, поглощаясь, превратится в тепло. Нагревается непосредственно Земля, на которую попадают солнечные лучи, и другие предметы, на которые так же попадают солнечные лучи. И уже земля и другие, нагретые Солнцем предметы, в свою очередь, отдают тепло окружающему нас воздуху, тем самым нагревая его.

От высоты Солнца над горизонтом самым существенным образом зависит как мощность солнечного излучения у земной поверхности, так и его спектральный состав. Различные составляющие солнечного спектра по-разному проходят через земную атмосферу. У поверхности Земли спектр солнечного излучения имеет более сложную форму, что связано с поглощением в атмосфере. В частности, в нем отсутствует высокочастотная часть ультрафиолетового излучения, губительная для живых организмов. На внешней границе земной атмосферы, поток лучистой энергии Солнца составляет 1370 Вт/м² ; (солнечная постоянная), а максимум излучения приходится на λ=470 нм (синий цвет). Поток, достигающий земной поверхности, значительно меньше вследствие поглощения в атмосфере. При самых благоприятных условиях (солнце в зените) он не превышает 1120 Вт/м² ; (в Москве, в момент летнего солнцестояния - 930 Вт/м² ), а максимум излучения приходится на λ=555 нм (зелено-желтый), что соответствует наилучшей чувствительности глаз и только четверть от этого излучения приходится на длинноволновую область излучения, включая вторичные излучения.

Однако, природа солнечной лучистой энергии весьма отлична от лучистой энергии, отдаваемой инфракрасными обогревателя, используемыми для обогрева помещений. Энергия солнечного излучения состоит из электромагнитных волн, физические и биологические свойства которых существенно отличаются от свойств электромагнитных волн, исходящих от обычных инфракрасных обогревателей, в частности, бактерицидные и лечебные (гелиотерапия) свойства солнечного излучения полностью отсутствуют у источников излучения с низкой температурой. И все же инфракрасные обогреватели дают тот же тепловой эффект , что и Солнце, являясь наиболее комфортными и экономичными из всех возможных источников тепла.


Природа возникновения инфракрасных лучей

Выдающийся немецкий физик Макс Планк , изучая тепловое излучение (инфракрасное излучение), открыл его атомный характер. Тепловое излучение - это электромагнитное излучение, испускаемое телами или веществами и возникающее за счет его внутренней энергии, обусловленное тем, что атомы тела или вещества под действием теплоты движутся быстрее, а в случае твердого материала быстрее колеблются по сравнению с состоянием равновесия. При этом движении атомы сталкиваются, а при их столкновении происходит их ударное возбуждение с последующим излучением электромагнитных волн. Все предметы непрерывно излучают и поглощают электромагнитную энергию . Это излучение является следствием непрерывного движения элементарных заряженных частиц внутри вещества. Один из основных законов классической электромагнитной теории гласит, что движущаяся с ускорением заряженная частица излучает энергию. Электромагнитное излучение (электромагнитные волны) это распространяющееся в пространстве возмущение электромагнитного поля, то есть изменяющийся во времени периодический электромагнитный сигнал в пространстве, состоящем из электрических и магнитных полей. Это и есть тепловое излучение. Тепловое излучение содержит электромагнитные поля различных длин волн. Поскольку атомы движутся при любой температуре, все тела при любой температуре, больше чем температура абсолютного нуля (-273°С) , излучают тепло. Энергия электромагнитных волн теплового излучения, то есть сила излучения, зависит от температуры тела, его атомной и молекулярной структуры, а также от состояния поверхности тела. Тепловое излучение происходит по всем длинам волн - от самых коротких до предельно длинных, однако принимают во внимание лишь то тепловое излучение, имеющее практическое значение, которое приходится в диапазоне длин волн: λ = 0,38 – 1000 мкм (в видимой и инфракрасной части электромагнитного спектра). Однако не всякий свет имеет особенности теплового излучения (на пример люминесценция), поэтому в качестве основного диапазона теплового излучения можно принять только диапазон инфракрасного спектра (λ = 0,78 – 1000 мкм) . Еще можно сделать дополнение: участок с длиной волны λ = 100 – 1000 мкм , с точки зрения отопления - не интересен.

Таким образом, тепловое излучение, представляет собой одну из форм электромагнитного излучения, возникающее за счёт внутренней энергии тела и имеющего сплошной спектр, то есть это часть электромагнитного излучения, энергия которого при поглощении вызывает тепловой эффект. Тепловое излучение присуще всем телам.

Все тела, имеющие температуру больше чем температура абсолютного нуля (-273°С), даже если они не светятся видимым светом, являются источником инфракрасных лучей и испускают непрерывный инфракрасный спектр. Это означает, что в излучении присутствуют волны со всеми без исключения частотами, и говорить об излучении на какой-либо определенной волне, совершенно бессмысленно.


Основные условные области инфракрасного излучения

На сегодня не существует единой классификации в разделении инфракрасного излучения на составляющие участки (области). В целевой технической литературе встречается более десятка схем деления области инфракрасного излучения на составляющие участки, и все они различаются между собой. Так как все виды теплового электромагнитного излучения имеют одинаковую природу, поэтому классификация излучения по длинам волн в зависимости от производимого ими эффекта носит лишь условный характер и определяются главным образом различиями в технике обнаружения (тип источника излучения, тип прибора учета, его чувствительность и т.п.) и в методике измерения излучения. Математически, с использованием формул (Планка, Вина, Ламберта и т.п.), так же нельзя определить точные границы областей. Для определения длины волны (максимума излучения) существуют две разные формулы (по температуре и по частоте), дающие различные результаты, с разницей примерно в 1,8 раз (это так называемый закон смещения Вина) и плюс к этому все расчеты делаются для АБСОЛЮТНО ЧЕРНОГО ТЕЛА (идеализированного объекта), которых в реальности не существует. Реальные тела, встречающиеся в природе, не подчиняются этим законам и в той или иной степени от них отклоняются. Информация взята Компанией ЭССО из технической литературы российских и зарубежных ученых" data-lightbox="image26" href="images/26.jpg" title="Развернуть области инфракрасного излучения"> Излучение реальных тел зависит от ряда конкретных характеристик тела (состояния поверхности, микроструктуры, толщины слоя и т. д.). Это так же является причиной указания в разных источниках совершенно разных величин границ областей излучения. Всё это говорит о том, что использовать температуру для описания электромагнитного излучения надо с большой осторожностью и с точностью до порядка. Еще раз подчеркиваю, деление весьма условное!!!

Приведем примеры условного деления инфракрасной области (λ = 0,78 – 1000 мкм) на отдельные участки (информация взята только из технической литературы российских и зарубежных ученых). На приведенном рисунке видно насколько разнообразно это деление, поэтому не стоит привязываться ни к одной из них. Просто нужно знать, что спектр инфракрасного излучения можно условно разбить на несколько участков, от 2-х до 5-и. Область, которая находится ближе в видимому спектру обычно называют: ближняя, близкая, коротковолновая и т.п.. Область которая находится ближе к микроволновым излучениям - дальняя, далекая, длинноволновая и т.п.. Если верить Википедии, то обычная схема деления выглядит так: Ближняя область (Near-infrared, NIR), Коротковолновая область (Short-wavelength infrared, SWIR), Средневолновая область (Mid-wavelength infrared, MWIR), Длинноволновая область (Long-wavelength infrared, LWIR), Дальняя область (Far-infrared, FIR).


Свойства инфракрасных лучей

Инфракрасные лучи - это электромагнитное излучение, имеющее ту же природу, что и видимый свет, поэтому оно так де подчиняется законам оптики. Поэтому, чтобы лучше себе представить процесс теплового излучения, следует проводить аналогию со световым излучением, которое нам всем известно и доступно наблюдению. Однако не надо забывать, что оптические свойства веществ (поглощение, отражение, прозрачность, преломление и т.п.) в инфракрасной области спектра, значительно отличаются от оптических свойств в видимой части спектра. Характерной особенностью инфракрасного излучения является то, что в отличие от других основных видов передачи теплоты здесь нет необходимости в передающем промежуточном веществе. Воздух и тем более вакуум считается прозрачным для инфракрасного излучения, хотя с воздухом это не совсем так. При прохождении инфракрасного излучения через атмосферу (воздух), наблюдается некоторое ослабление теплового излучения. Это обусловлено тем, что сухой и чистый воздух практически прозрачен для тепловых лучей, однако при наличии в нем влаги в виде пара, молекул воды (Н 2 О) , углекислого газа (СО 2) , озона (О 3) и других твердых или жидких взвешенных частиц, которые отражают и поглощают инфракрасные лучи, он становится не совсем прозрачной средой и в результате этого поток инфракрасного излучения рассеивается по разным направлениям и ослабевает. Обычно рассеяние в инфракрасной области спектра меньше, чем в видимой. Однако когда потери, вызванные рассеянием в видимой области спектра, велики, и в инфракрасной области они также значительны. Интенсивность рассеянного излучения изменяется обратно пропорционально четвертой степени длины волны. Оно существенно только в коротковолновой инфракрасной области и быстро уменьшается в более длинноволновой части спектра.

Молекулы азота и кислорода в воздухе не поглощают инфракрасное излучение, а ослабляют его лишь в результате рассеяния. Взвешенные частицы пыли так же приводят к рассеиванию инфракрасного излучения, причём величина рассеяния зависит от соотношения размеров частиц и длины волны инфракрасного излучения, чем больше частицы, тем больше рассеивание.

Пары воды, углекислый газ, озон и другие примеси, имеющиеся в атмосфере, селективно поглощают инфракрасное излучение. Например, пары воды, очень сильно поглощают инфракрасное излучение во всей инфракрасной области спектра , а углекислый газ поглощает инфракрасное излучение в средней инфракрасной области.

Что касается жидкостей, то они могут быть как прозрачными, так и не прозрачными для инфракрасного излучения. Например, слой воды толщиной в несколько сантиметров прозрачен для видимого излучения и непрозрачен для инфракрасного излучения с длиной волны более 1 мкм.

Твердые вещества (тела), в свою очередь, в большинстве случаев не прозрачны для теплового излучения , но бывают и исключения. Например, пластины кремния, непрозрачные в видимой области, прозрачны в инфракрасной области, а кварц, наоборот, прозрачен для светового излучения, но непрозрачен для тепловых лучей с длиной волны более 4 мкм. Именно по этой причине кварцевые стекла не применяются в инфракрасных обогревателях. Обычное стекло, в отличии от кварцевого, частично прозрачно для инфракрасных лучей, оно так же может поглощать значительную часть инфракрасного излучения в определенных интервалах спектра, но за то не пропускает ультрафиолетовое излучение. Каменная соль, так же, прозрачна для теплового излучения. Металлы, в своем большинстве, имеют отражательную способность для инфракрасного излучения значительно больше, чем для видимого света, которая возрастает с увеличением длины волны инфракрасного излучения. Например, коэффициент отражения алюминия, золота, серебра и меди при длине волны около 10 мкм достигает 98% , что значительно выше, чем для видимого спектра, это свойство широко используется в конструкции инфракрасных обогревателей.

Достаточно привести здесь в качестве примера остекленные рамы парников: стекло практически пропускает большую часть солнечного излучения, а с другой стороны, разогретая земля излучает волны большой длины (порядка 10 мкм ), в отношении которых стекло ведет себя как непрозрачное тело. Благодаря этому внутри парников длительное время поддерживается температура, значительно более высокая, чем температура наружного воздуха, даже после того, как солнечное излучение прекращается.


Важную роль в жизни человека играет лучистый теплообмен. Человек отдает окружающей среде теплоту, вырабатываемую в ходе физиологического процесса, главным образом путем лучистого теплообмена и конвекции. При лучистом (инфракрасном) отоплении лучистая составляющая теплообмена тела человека сокращается из-за более высокой температуры, возникающей как на поверхности отопительного прибора, так и на поверхности некоторых внутренних ограждающих конструкций, поэтому при обеспечении одного и того же тепло ощущения конвективные теплопотери могут быть больше, т.е. температура воздуха в помещении может быть меньше. Таким образом, лучистый теплообмен играет решающую роль в формировании ощущения теплового комфорта у человека.

При нахождении человека в зоне действия инфракрасного обогревателя, ИК лучи проникают в организм человека через кожу, при этом разные слои кожи по-разному отражают и поглощают данные лучи.

При инфракрасном длинноволновом излучении проникновение лучей значительно меньше по сравнению с коротковолновым излучением . Поглощающая способность влаги, содержащейся в тканях кожи, очень велика, и кожа поглощает более 90% попадающего на поверхность тела излучения. Нервные рецепторы, ощущающие теплоту, расположены в самом наружном слое кожи. Поглощаемые инфракрасные лучи возбуждают эти рецепторы, что и вызывает у человека ощущение теплоты.


Инфракрасные лучи оказывают как местное, так и общее воздействие. Коротковолновое инфракрасное излучение , в отличии от длинноволнового инфракрасного излучения, может вызвать покраснение кожи в месте облучения, которое рефлекторно распространяется на 2-3 см. вокруг облучаемой области. Причина этого в том, что капиллярные сосуды расширяются, кровообращение усиливается. Вскоре на месте облучения может появиться волдырь, который позднее превращается в струп. Так же при попадании коротковолновых инфракрасных лучей на органы зрения может возникнуть катаракта.

Перечисленные выше, возможные последствия от воздействия коротковолнового ИК обогревателя , не следует путать с воздействием длинноволнового ИК обогревателя . Как уже было сказано, длинноволновые инфракрасные лучи поглощаются в самой верхней части слоя кожи и вызывает только простое тепловое воздействие.

Использование лучистого отопления не должно подвергать человека опасности и создавать дискомфортный микроклимат в помещении.

При лучистом отоплении можно обеспечить комфортные условия при более низкой температуре. При применении лучистого отопления воздух в помещении чище, поскольку меньше скорость воздушных потоков, благодаря чему уменьшается загрязнение пылью. Так же при данном отоплении не происходит разложение пыли, так как температура излучающей пластины длинноволнового обогревателя никогда не достигает температуры, необходимой для разложения пыли.

Чем холоднее излучатель тепла, тем он безвреднее для организма человека, тем дольше может находиться человек в зоне действия обогревателя.

Длительное нахождение человека вблизи ВЫСОКОТЕМПЕРАТУРНОГО источника тепла (более 300°С) вредно для здоровья человека.

Влияние на здоровье человека инфракрасного излучения.

Организм человека, как излучает инфракрасные лучи , так и поглощает их. ИК лучи проникают в организм человека через кожу, при этом разные слои кожи по-разному отражают и поглощают данные лучи. Длинноволновое излучение проникает в организм человека значительно меньше по сравнению с коротковолновым излучением . Влага, находящаяся в тканях кожи, поглощает более 90% попадающего на поверхность тела излучения. Нервные рецепторы, ощущающие теплоту, расположены в самом наружном слое кожи. Поглощаемые инфракрасные лучи возбуждают эти рецепторы, что и вызывает у человека ощущение теплоты. Коротковолновое ИК излучение наиболее глубоко проникает в организм, вызывая его максимальный прогрев. В результате этого воздействия повышается потенциальная энергия клеток организма, и из них будет уходить несвязанная вода, повышается деятельность специфических клеточных структур, растет уровень иммуноглобулинов, увеличивается активность ферментов и эстрогенов, происходят и другие биохимические реакции. Это касается всех типов клеток организма и крови. Однако длительное воздействие коротковолнового инфракрасного излучения на организм человека - нежелательно. Именно на этом свойстве основан эффект теплового лечения , широко используемого в физиотерапевтических кабинетах наших и зарубежных клиник и замете, длительность процедур - ограничена. Однако данные ограничения не распространяются на длинноволновые инфракрасные обогреватели. Важная характеристика инфракрасного излучения – длина волны (частота) излучения. Современные исследования в области биотехнологий показали, что именно длинноволновое инфракрасное излучение имеет исключительное значение в развитии всех форм жизни на Земле. По этой причине его называют также биогенетическими лучами или лучами жизни. Наше тело само излучает длинные инфракрасные волны , но оно само нуждается также и в постоянной подпитке длинноволновым теплом . Если это излучение начинает уменьшаться или нет постоянной подпитки им тела человека, то организм подвергается атакам различных заболеваний, человек быстро стареет на фоне общего ухудшения самочувствия. Дальнее инфракрасное излучение нормализует процесс обмена и устраняет причину болезни, а не только её симптомы.

С таким отоплением не будет болеть голова от духоты, вызываемой перегретым воздухом под потолком, как при работе конвективного отопления , - когда постоянно хочется открыть форточку и впустить свежий воздух (при этом выпуская нагретый).

При воздействии ИК-излучения интенсивностью 70-100 Вт/м2 в организме повышается активность биохимических процессов, что ведет к улучшению общего состояния человека. Однако существуют нормативы и их стоит придерживаться. Есть нормативы по безопасному отоплению бытовых и промышленных помещений, по длительности лечебных и косметологических процедур, по работе в ГОРЯЧИХ цехах и т.п. Не стоит об этом забывать. При правильном использовании инфракрасных обогревателей - отрицательного воздействия на организм ПОЛНОСТЬЮ ОТСУТСТВУЕТ.

Инфракрасное излучение, инфракрасные лучи, свойства инфракрасных лучей, спектр излучения инфракрасных обогревателей

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ, ИНФРАКРАСНЫЕ ЛУЧИ, СВОЙСТВА ИНФРАКРАСНЫХ ЛУЧЕЙ, СПЕКТР ИЗЛУЧЕНИЯ ИНФРАКРАСНЫХ ОБОГРЕВАТЕЛЕЙ Калининград

ОБОГРЕВАТЕЛИ СВОЙСТВА ИЗЛУЧЕНИЕ СПЕКТР ОБОГРЕВАТЕЛЕЙ ДЛИНА ВОЛНЫ ДЛИННОВОЛНОВЫЕ СРЕДНЕВОЛНОВЫЕ КОРОТКОВОЛНОВЫЕ СВЕТЛЫЕ ТЕМНЫЕ СЕРЫЕ ВРЕД ЗДОРОВЬЕ ВЛИЯНИЕ НА ЧЕЛОВЕКА Калининград

В 1800 году ученый Уильям Гершель объявил на заседании Лондонского Королевского общества о своем открытии. Он измерил температуру за пределами спектра и обнаружил невидимые лучи с большой нагревательной силой. Опыт проводился им с помощью светофильтров телескопа. Он заметил, что они в разной мере поглощают свет и тепло солнечных лучей.

Через 30 лет факт существования невидимых лучей, расположенных за красной частью видимого солнечного спектра, был неоспоримо доказан. Французский Беккерель назвал это излучение инфракрасным.

Свойства ИК-излучения

Спектр инфракрасного излучения состоит из отдельных линий и полос. Но он может быть так же непрерывным. Все зависит от источника ИК лучей. Иначе говоря, имеет значение кинетическая энергия или температура атома или молекулы. Любой элемент таблицы Менделеева в условиях разных температур имеет различные характеристики.

Например, инфракрасные спектры возбужденных атомов из-за относительного состояния покоя связки ядро - будут иметь строго линейчатые ИК-спектры. А возбужденные молекулы - полосатые, хаотично расположенные. Все зависит не только от механизма наложения собственных линейных спектров каждого атома. Но так же от взаимодействия этих атомов между собой.

При повышении температуры изменяется спектральная характеристика тела. Так, нагретые твердые и жидкие тела выделяют непрерывный инфракрасный спектр. При температурах ниже 300°С излучение нагретого твердого тела целиком расположено в инфракрасной области. От диапазона температур зависит как изучение ИК-волн, так применения их важнейших свойств.

Главные свойства ИК-лучей это поглощение и дальнейший нагрев тел. Принцип передачи тепла инфракрасными обогревателями отличается от принципов конвекции или теплопроводности. Находясь в потоке горячих газов, предмет теряет какое-то количество тепла, пока его температура ниже температуры нагретого газа.

И наоборот: если инфракрасные излучатели облучают предмет, еще не значит, что его поверхность данное излучение поглощает. Он может так же отражать, поглощать или пропускать лучи без потерь. Практически всегда облучаемый предмет поглощает часть этого облучения, часть отражает и часть пропускает.

Далеко не все светящиеся объекты или нагретые тела излучают ИК-волны. Например, люминесцентные лампы или пламя газовой плиты такого излучения не имеют. Принцип работы люминесцентных лам основан на свечении (фотолюминесценции). Ее спектр ближе всего к спектру дневного, белого света. Поэтому ИК-излучения в нём почти нет. А наибольшая интенсивность излучения пламени газовой плиты приходится на длину волны голубого цвета. У перечисленных нагретых тел ИК-излучение очень слабое.

Существуют так же вещества, которые прозрачны для видимого света, но не способны пропускать ИК-лучи. Например, слой воды толщиной несколько сантиметров не пропустит инфракрасное излучение с длиной волны больше 1 мкм. При этом человек может различить находящиеся на дне предметы невооруженным глазом.



Понравилась статья? Поделитесь ей
Наверх