Практическое значение биотестирования. Старт в науке

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

«Я утверждаю, что все рождающееся от земли живет за счет земной влаги,

и в каком состоянии находится эта влага, в таком

состоянии находится и растение»

Гиппократ

Ведение

Эти слова, сказанные Гиппократом еще в глубокой древности, не потеряли свою актуальность и сейчас. В наше время общество осознало опасность токсического загрязнения поверхностных вод и пришло к необходимости введения в практику мониторинга совершенно новых нетрадиционных подходов, в частности биологического тестирования. Биотестирование - исследование влияния различных веществ на живые организмы. Широкое внедрение методов биотестирования в практику оценки качества вод - настоятельная необходимость времени, так как никакая даже самая современная аналитическая химия не даст полной информации о токсичности среды. К тому же анализ существующих методов оценки качества природных вод показал, что биотестирование - наиболее точный, быстрый и дешёвый способ охраны природных вод.

В своем исследовании с помощью данного метода мы решили выяснить, в каком же состоянии находится вода нашего города, которую мы пьем и которой поливаем растения, используемые нами в пищу.

Гипотеза: с помощью методов биотестирования можно оценить степень загрязнения

природных вод.

Объект исследования: степень загрязнения природных вод г.Пятигорска.

Предмет исследования: однолетние растения семейства Злаковые (Gramíneae): овёс, ячмень, пшеница, однолетние растениясемейства Капустные, или Крестоцветные (Brassicaceae) - кресс-салат и редис.

Цель данной работы - оценить загрязнение природных вод г.Пятигорска по проросткам различных растений-индикаторов.

Задачи:

    провести анализ теоретических подходов в изучении данной темы;

    освоить методику биотестирования;

    установить сезонную динамику токсичности природных вод г.Пятигорска;

    определить зависимость развития тест-растений от токсичности природных вод.

1. Литературный обзор.

    1. Методы биотестирования.

Одной из главных причин негативных последствий антропогенного загрязнения природных сред является токсичность загрязняющих веществ для биоты. Именно присутствие токсикантов в окружающей среде приводит к гибели всего живого, выпадению из состава сообществ организмов обитателей чистых зон и замене их эврибионтными видами. Существуют различные физические и химические методы определения токсичности окружающей среды, но в последнее время стали широко использоваться и биологические методы позволяющие провести оценку состояния живых организмов (Приложение 1).

Ведь говоря о загрязнении воды, почвы, атмосферы, об их токсичности мы имеем в виду, то насколько они благоприятны для обитания в них живых организмов, для здоровья человека.К числу наиболее радикальных приёмов относятся методы токсикологического биотестирования. Под биотестом понимается испытание в строго определённых условиях действия вещества или комплекса веществ на водные организмы посредством регистрации изменений того или иного биологического показателя исследуемого объекта по сравнению с контролем. Исследуемые организмы называются тест-объетами, а опыт биотестированием (Лысенко, 1996). Этот дешевый и универсальный метод в последние годы широко используется во всем мире для оценки качества объектов окружающей среды. В России с 1996 года начат эксперимент по внедрению методов биотестирования сточных вод, сбрасываемых в природные водоемы и подаваемых на сооружения биологической очистки. С помощью биотестирования можно получить данные о токсичности конкретной пробы, загрязненной химическими веществами антропогенного или природного происхождения. Этот метод позволяет дать реальную оценку токсичности свойств какой-либо среды, обусловленной присутствием комплекса загрязняющих веществ и их метаболитов. Живые организмы всегда в той или иной степени реагируют на изменение окружающей среды, но в ряде случаев это нельзя выявить физическими или химическими методами, так как разрешающие возможности приборов или химических анализов ограничены. Чувствительные же организмы - индикаторы реагируют не только на малые дозы экологического фактора, но и дают адекватную реакцию на воздействие комплекса факторов (Груздева, 2002). .

Биотестирование позволяет установить районы и источники загрязнения. В качестве тест-объектов используются бактерии, водоросли, высшие растения, пиявки, дафнии, моллюски, рыбы и другие организмы. В порядке возрастания толерантности к загрязнениям организмы располагаются в следующий ряд: грибы, лишайники, хвойные, травянистые растения, листопадные растения. Каждый из них имеет преимущества, но, ни один не является универсальным, самым чувствительным ко всем веществам. Для гарантированного выявления присутствия в природных водах токсического агента неизвестного химического состава нужно использовать набор тест-объектов, представляющих различные группы организмов. При выборе тест-организмов исходят из видовой токсичности возможных загрязнителей, особенностей водоема и требований водопотребителей. Для тест-организмов могут быть выделены частные интегральные тест-функции. Интегральные параметры характеризуют состояние системы наиболее обобщённо. Для организмов к интегральным относят характеристики выживаемости, роста, плодовитости. Частными для организма, например, могут быть физиологические, биохимические и гистологические параметры.

    1. Биотестирование природных вод.

Биотестирование природных вод стало широко применяться в научно- исследовательских работах с начала 80-х годов (Приложение 2). Это объясняется существенным увеличением уровня загрязнения водных объектов и надеждами специалистов на то, что биотестирование сможет хотя бы частично заменить химический анализ вод, так как в водные объекты ежегодно сбрасывается около 55 км 3 сточных вод, из которых 20 км 3 загрязнен. (Степановских, 2001). До нормативного качества очищается лишь около 10% вод требующих очистки (Яблоков, 2005).

В 1991г. биотестирование введено как обязательный элемент контроля качества поверхностных вод, что предусмотрено «Правилами охраны поверхностных вод» (1991). Показатели биотестирования природных вод включены в перечень показателей для выявления зон чрезвычайной экологической ситуации и зон экологического бедствия (Туманов, Постнов, 1983). Методы биотестирования представляют собой характеристику степени воздействия на водные биоценозы. Так, А.М. Гродзинский Д.М. Гродзинский (1973) описывают ряд биологических проб для тестирования токсичности природных вод. Согласно принятому определению, биотестирование воды - это оценка качества воды по ответным реакциям организмов, являющихся тест-объектами. Тест на прорастание семян применяется для установления воздействия различных физиологически активных веществ. В качестве индикаторов токсичности используются семена сельскохозяйственных растений. Среди сельскохозяйственных культур наиболее чувствительны салат, люцерна, злаковые, крестоцветные, а к нечувствительным видам относят кукурузу, виноград, розоцветные, подорожник (Рамад,1981). Методы биотестирования должны отвечать следующим требованиям: относительная быстрота проведения, получение достаточно точных и воспроизводимых результатов, наличие, пригодных для индикации объектов в большом количестве. В настоящее время хорошо известны методы биотестирования, ориентированные на определение токсичности водной среды, обусловленной присутствием определенных групп химических соединений, в частности фосфорорганических. Наиболее апробирован на природных водах ферментативный метод В.И. Козловской.

    1. Достоинства методов биотестирования.

Главные достоинства биотестирования - простота и доступность приемов ее постановки, высокая чувствительность тест-организмов к минимальным концентрациям токсических агентов, быстрота, отсутствие надобности в дорогостоящих реактивах и оборудовании. По мнению ряда авторов ни один из отдельно взятых организмов не может служить универсальным тест-объектом к веществам различной химической природы, следовательно, для гарантированного выявления в среде токсичного агента должен использоваться набор биотестов (Брагинский и др. 1979; Лесников, 1983; Филенко, 1989).

Методами биотестирования выявляется токсичность, которая является интегральным показателем загрязнения природных сред. Как и все интегральные показатели, они имеют тот недостаток, что не раскрывают индивидуальные загрязняющие вещества, присутствующие в пробе. Работ по биотестированию водной среды опубликовано множество, но они были сделаны главным образом с целью оценки токсичности вновь синтезируемых химических препаратов, препаратов, приобретаемых по импорту, а также при разработке регламентов на химические соединения. Гораздо меньше публикаций по биотестированию сточных вод и ещё меньше - по биотестированию природных вод (Никаноров, Хоружая, 2001).

Методы биоиндикации, позволяющие изучать влияние техногенных загрязнителей на растительные и животные организмы на неживую природу являются наиболее доступными. Биоиндикация основана на тесной взаимосвязи живых организмов с условиями среды, в которой они обитают. Изменения этих условий, например повышение солености или рН воды может привести к исчезновению определенных видов организмов, наиболее чувствительных к этим показателям и появлению других, для которых такая среда будет оптимальной.

Существуют разные биологические индикаторы. О наличии некоторых загрязнителей можно судить по внешним признакам растений и животных. Благодаря «памяти» этих организмов, можно узнать и о роли тех факторов, которые в настоящее время уже не действуют. Например, появление черных пятен на листьях липы рассказывает о том, что в зимнее время дворники чрезмерно увлекались посыпанием снега солью для ускорения его таяния, о выбросах сернистого газа расскажут пятна на листьях подорожника большого. По ширине годичных колец сосен в окрестностях химического предприятия можно определить, в какие годы завод особенно сильно загрязнял среду. В годы сильного загрязнения атмосферы закладываются более тонкие кольца. По высоте некоторых растений можно судить о концентрации солей в воде. Так, например, тростник может достигать высоты 4 м, но если содержание солей в воде высокое — это растение не вырастет более чем на 0,5 м. Индикаторами загрязнения атмосферы являются некоторые мхи и лишайники. Например, при анализе лишайников в Швеции было установлено появление радиоактивной пыли от Чернобыльской АЭС. Существуют специальные живые приборы — бриометры — маленькие коробочки со мхами определенных видов, по которым определяют режим задымления атмосферы.

    Практическая часть.

Исследования проводились по методикам , предложенным А.И. Федоровой и А.Н. Никольской в «Практикуме по экологии и охране окружающей среды», 2003, а также в учебном пособии для вузов «Экологический мониторинг» под редакцией Т.Я. Ашихминой, 2005.

Работа по изучению метода биотестирования токсичности природных вод по проросткам растений индикаторов выполнялась в течение 2015 года.

Все исследования по теме проводились в лаборатории кабинетов химии и биологии МБОУ СОШ №5 г. Пятигорска в дневное время, при сочетании искусственного и естественного освещения в стандартных, оптимальных для тест-растений условиях. Оценить уровень загрязнения водоемов можно, используя тест на прорастание семян. Такое тестирование проводится как предварительное для выявления особенно загрязненных водоемов с целью последующего химического анализа. В качестве тест-растений были использованы проростки высших растений: пшеницы, ячменя, овса, кресс-салата, редиса. Предлагаемый метод биологической оценки токсичности природных вод по проросткам растений индикаторов проводился в двух вариантах:

1.Полив проростков тест-растений испытуемой водой.

2. Накапывание испытуемого раствора между семядолями двудольных растений.

В качестве тест-растений в первом варианте применяли семена пшеницы, овса, ячменя. Во втором варианте были использованы только проростки двудольных растений: кресс-салата, редиса.

Из всех используемых в исследованиях растений кресс-салат обладает повышенной чувствительностью к загрязнению воды тяжелыми металлами. Этот биоиндикатор отличается быстрым прорастанием семян и почти 100% всхожестью, которая заметно уменьшается в присутствии загрязнителей. Кроме того, побеги и корни кресс-салата под действием загрязнителей подвергаются заметным морфологическим изменениям (задержка роста и искривление побегов, уменьшение длины и массы корней) (Голубкина, 2008). . С целью профилактики перед проращиванием семена протравливали. Сухие семена погружали в 1%-ный раствор марганцовокислого калия на 0,5 часа, а затем промывали дистиллированной водой, используя два слоя марли, обсушивали на фильтровальной бумаге на воздухе.

(1 вариант).

За 2-3 дня до опытов (сроки прорастания семян выяснялись заранее) семена тестовых объектов, пшеницы, овса, ячменя, замачивались на сутки в воде. Затем раскладывались пинцетом зародышем вверх (в одном направлении) в кювету, на дно которой был уложен слой гигроскопической ваты, а сверху - два слоя фильтровальной бумаги. Система увлажнялась водопроводной водой до полной влагоёмкости. Для этого вода наливалась под вату, а после её впитывания удалялся избыток. Кювета накрывалась плёнкой, края плёнки подгибались под кювету. Проращивание производилось при температуре +25 0 С - +26 0 С до размера основной массы проростков 10-15мм и появления корней, после чего ростки разделяют на фракции по длине.

В стаканчики помещают одинаковое количество промытого и покалённого песка, в каждый стаканчик высаживают по 10 одинаковых проростков тест-растений. Песок поливают сверху одинаковым количеством испытуемой воды из разных водоёмов. Повторность - трёхкратная. Контроль - полив отстоянной и очищенной водопроводной водой. После достижения ростками высоты 8-10см их выкапывают, обсушивают фильтровальной бумагой, разделяют бритвой на части (стебель, корни), измеряют и взвешивают. Данные обрабатывают статистически, выражают в процентах к контролю.

    1. Метод полива проростков тест-растений испытуемой водой

(2 вариант).

Воду, взятую из различных источников, концентрируют упариванием в 10 раз, хранят в холодильнике. Стаканчики наполняют одинаковым количеством промытого и прокалённого песка, вставляют стеклянную трубочку до дна, через которую производят полив, отстоянной водопроводной водой. 18-20 штук всхожих семян (кресс-салат, редис) высевают на небольшую глубину. После того, как ростки взойдут и раскроются семядоли, в стаканчиках оставляют по 10 одинаковых растений, остальные выщипывают пинцетом. Полив субстрата для выращивания производят одинаковым количеством воды через трубочку, используя воронку из фольги. Через 2-3 недели осторожно выкапывают проростки, промывают, обсушивают фильтровальной бумагой, измеряют и взвешивают отдельно надземную часть и корни. Данные обрабатывают статистически, выражают в процентах к контролю.

    1. Развитие проростков тест-растений при поливе их испытуемой водой (весенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

2. Новопятигорское озеро

4. Контроль -

водопроводная вода

Токсическое действие пробы считается доказанным, если в эксперименте зафиксирован токсический эффект торможения роста проростков, а именно их корней на 50 % (Груздева, 2002).

Из данных таблицы 1 видно, что наиболее благоприятной для роста и развития проростков тест-растений является проба № 2 - Новопятигорское озеро. Орловка. По степени роста и вегетативной мощности проростков можно сделать вывод о том, что в пробе № 1 (река Подкумок) наблюдается торможение роста корней проростков больше чем на 50 % по сравнению с контролем, следовательно, токсичность пробы № 1 высокая. В пробе № 3 (река Юца), наблюдается торможение роста и надземной части и корней проростков больше чем в пробе №1, поэтому токсичность пробы № 3 очень высокая.

2.4. Развитие проростков тест-растений при поливе их испытуемой водой

(осенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

2. Новопятигор-ское озеро

3. Река Юца

4. Контроль -

водопроводная вода

Из данных, представленных в таблице 2, видно, что в осенний период в большей степени наблюдается угнетение развития проростков в пробе № 3 - река Юца, торможение роста корней проростков в данной пробе более чем на 60% по сравнению с контролем. В пробах № 1 - река Подкумок и №2 - Новопятигорское озеро, также отмечается снижение в развитии вегетативных органов проростков.

В ходе последующей обработки материалов, по результатам, полученным в первом варианте исследований, были построены диаграммы биотестовых испытаний.

Рис. 1 Соотношение длины проростков тест-растений при поливе их испытуемой водой (весна, осень 2015г.)

Рис. 2 Соотношение массы проростков тест-растений при поливе их испытуемой водой (весна, осень 2015г.)

Таким образом, из результатов, полученных в 1 варианте, можно сделать выводы:

    токсичность природных вод в весенний период наиболее высокая в реках Подкумок и Юца;

    наиболее чувствительны к токсичности воды проростки овса.

2.5. Развитие проростков тест-растений (весенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

Кресс-салат

2. Новопятигор-ское озеро

Кресс-салат

3. Река Юца

Кресс-салат

4. Контроль -

водопроводная вода

Кресс-салат

По изменению надземной массы в опытных пробах по сравнению с контролем можно судить о токсичности данной пробы воды. Сильное угнетение надземной части растений тест-растений, более 20% по сравнению с контролем, показывает высокую степень токсичности пробы воды (Голубкина, 2008). Высокая токсичность наблюдается в пробе №3 - река Юца. У проростков наблюдается торможение развития надземной части на 53-55% больше чем в контрольной пробе. Пробы №1 - река Подкумок и №2 - Новопятигорское озеро также токсичны, но в меньшей степени.

2.6.Развитие проростков тест-растений (осенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

Кресс-салат

2. Новопятигор-ское озеро

Кресс-салат

3. Река Юца

Кресс-салат

4. Контроль -

водопроводная вода

Кресс-салат

Из данных таблицы 4 видно, наиболее токсична проба №3 - река Юца. Токсична проба воды №1 - река Подкумок. Проба №2 - Новопятигорское озеро имеет очень слабую токсичность.

По результатам, полученным во 2 варианте исследований, были построены диаграммы биотестовых испытаний.

Рис. 3 Соотношение длины проростков испытуемой (весна, осень 2015г.)

Рис.4 Соотношение массы проростков испытуемой водой (весна, осень 2015г.)

По результатам исследований можно сделать выводы:

    соотношение длины и массы проростков тест-растений зависит от токсичности природных вод, чем больше токсичных веществ в пробе воды, тем меньше длина и масса проростков тест-растений;

    наибольшую чувствительность к токсинам проявляет растение кресс-салата.

    токсичность природных вод выше в весенний период в пробах воды взятых из рек Подкумок и Юца;

    менее токсична проба воды из Новопятигорского озера.

В результате проведённых исследований была освоена методика биотестирования токсичности природных вод, проведен анализ теоретических подходов в изучении данной темы и сделаны следующие выводы:

    Выяснили, что токсичность природных вод водоемов г. Пятигорска изменяется по сезонам: в весенний период она больше, в осенний период токсичность уменьшается;

    Установили, что развитие и рост проростков тест-растений напрямую зависят от степени токсичности природных вод, наибольшую чувствительность к токсинам проявляют растения кресс-салата и овса;

    Определили, что при поливе проростков тест растений испытуемой водой в большей степени угнетается развитие корневой системы;

    Опытным путем установили, что наибольшей токсичностью характеризуются пробы воды рек Юца и Подкумок, менее токсична вода из Новопятигорскаго озера.

Таким образом, гипотеза о возможности оценки с помощью методов биотестирования степени загрязнения природных вод нашла свое подтверждение. На данном этапе работы в результате проведенного эксперимента без специального дорогостоящего оборудования, приборов и реактивов были установлены уровни загрязнения воды г. Пятигорска.

Наша работа может иметь продолжение в следующем учебном году. Для устранения погрешностей результата, на базе лаборатории можно провести химический анализ воды и еще раз проанализировать ситуацию.

Данный метод анализа природных вод можно рекомендовать садоводам-любителям и всем интересующимся данной проблемой жителям нашего города.

    Список литературы.

    Вишнякова В.Ф. Экология Ставропольского края. - Ставрополь, 2000.

    Голубкина Н.А. Лабораторный практикум по экологии.-М.,2008.

    Гродзинский А.М., Гродзинский Д.М. Краткий справочник по физиологии растений. - Киев; Наукова думка, 1973.

    Груздева Л.П. биоиндикация качества природных вод. // Биология в школе. 2002, № 6 с. 10

    Денисова С.И. Полевая практика по экологии. - Минск, 1999.

    Кулеш В.Ф., В.В. Маврищев Практикум по экологии. Минск, 2007.

    Лысенко Н.Л. Биоиндикация и биотестирование водных экосистем.// Биология в школе. 1996, № 5 с.12

    Никаноров А.М.,. Хоружая Т.А. Экология. - М., Приор, 2001.

    Рамад Ф. Основы прикладной экологии. - Л.: Гидрометеоиздат, 1981.

    Трифонова Т.А., Селиванова Н.В., Мищенко Н.В. Прикладная экология. М., Академический проект.,2007.

    Савельева В.В. География Ставропольского края. - Ставрополь, 2003.

    Степановских А.С. Охрана окружающей среды.- М.: ЮНИТИ-ДАНА, 2001.

    Теоретические вопросы биотестирования. - Волгоград, 1983.

    Фёдорова А.И., Никольская А.Н. Практикум по экологии и охране окружающей среды. - М., Владос, 2001.

    Филенко О.Ф. Методы биотестирования качества водной среды. - М.: МГУ, 1989

    Яблоков А.В. Экология России: состояние перспективы. 2005.

Приложение 1

Таблица 1

Основные характеристики методов оценки токсичности вод

Химические методы

Биологические методы

Биоиндикация

Биотестирование

Тип индикации

Индикация воздействия

Индикация отклика

Индикация воздействия

Объект анализа

Водные сообщества

Цель анализа

Измерение концентрации химических веществ

Оценка состояния природных сообществ

Интегральная оценка токсичности на тест-организмах

Показатели токсичности

Превышение установленных регламентов

Негативные изменения в сообществах

Развитие патологических (вплоть до гибели) изменений у тест-организмов

Регламенты

Предельно допустимые концентрации

Не установлены

Отсутствие острого и хронического токсического действия

Метрологические характеристики

Погрешность, сходимость, воспроизводимость

Не установлены

Сходимость, воспроизводимость

Таблица 2

Область применения методов биотестирования токсичности водной среды

Объект биотестирования

Цель биотестирования

Тест-организм

Химические вещества

Рыбохозяйственное нормирование; контроль токсичности в международной торговле

Гидробионты - представители основных трофических уровней водных экосистем. Стандартный набор тест - организмов

Производственные, технологические и сточные воды (точечные источники загрязнения)

Оценка эффективности очистки, выявление опасных компонентов, регламентация сброса, экологическая паспортизация предприятий

Наборы биотестов

Природные воды (неточечные источники загрязнения)

Проверка соответствия качества воды установленным регламентам. Оценка токсикологического состояния водных объектов. Выявление зон экологического бедствия и чрезвычайных ситуаций

Наборы биотестов

Приложение 2

Фото№1. Проростки кресс-салата Фото№2. Проростки кресс-салата

(контроль) (опыт)

При оценке экологической ситуации необходимо учитывать токсичность как анализируемых групп загрязняющих веществ, так и продуктов их метаболизма. Некоторые поллютанты в природной среде под воздействием ультрафиолетового излучения, при смене кислотно-щелочных условий и т. п. могут образовывать вещества более токсичные по сравнению с исходными. Кроме того, часто за рамками аналитических исследований, в силу научно-методических сложностей изучения, остается комбинированный эффект загрязняющих веществ, проявляющийся в аддитивности, потенцировании и ингибировании действия. В связи с этим в дополнение к обычным методам химико-аналитического контроля, применяемым для решения задач определения источников загрязнения, оценки качества состояния окружающей среды или экологического мониторинга, эффективно использование методов биотестиро- вания.

Биотестированием называется метод определения степени токсического воздействия физических, химических и биологических факторов среды, потенциально опасных для живых организмов данной экосистемы. Биотестироваиие осуществляется экспериментально в лабораторных или в естественных условиях путем регистрации изменения биологически значимых показателей исследуемых природных или природно-техногенных объектов с последующей оценкой их состояния в соответствии с выбранными критериями токсичности. По сути, биотестирование - это определение токсичности пробы (воды, почвы, донных осадков и т. д.) для данной культуры организмов в экспериментальных условиях.

Тест-объектами (организмами) могут быть бактерии, дрожжи, простейшие, водоросли, пиявки, моллюски, рыбы и т. д. Кроме того, наравне с целостными организмами в качестве тест-объектов выступают отдельные органы, ткани или клетки. Биотест ставится па определение общей токсичности, па мутагенность и канцероген- ность. В первом случае фиксируются показатели гибели организмов, морфологические нарушения, морфофункциональные изменения и отклонения в их поведении и двигательной активности. Изучение мутагенности и каицерогеииости проводится посредством кратковременных тестов по фиксации хромосомных повреждений, генных мутаций и повреждений ДНК с оценкой опасности вещества. Метод биотестирования иногда рассматривается в качестве альтернативы системе предельно допустимых концентраций загрязняющих веществ в различных компонентах окружающей среды, что, по мнению ряда исследователей (Опекунов, 2014), по своей научно-методической сути является мало обоснованным.

Воздействие па тест-объект может осуществляться посредством имитации всех возможных путей поступления вредного вещества в организм. Основными тестируемыми средами являются вода, реже атмосферный воздух. Возможно также изучение опосредованного воздействия на тест-объект твердых компонентов окружающей среды: почв, дойных осадков, грунтов. В этом случае используют поровые воды этих сред или водные вытяжки из них, получаемые с использованием общепринятых методик. Кроме того, биотесты могут проводиться в фазе взвешенных частиц. Однако основным объектом применения методов биотестироваиия являются все же сточные и природные воды.

В последние годы методы биотестироваиия стали активно применяться при оценке качества морской среды. В первую очередь это связано с масштабным освоением нефтеуглеводородных ресурсов континентального шельфа и материкового склона Мирового океана. Тесты направлены па оценку качества морской среды, а также токсичности промышленных и буровых вод и буровых шламов. При этом наиболее сложной проблемой тестирования морской среды остается выбор тест-объектов, которые в уже сложившейся практике биологического контроля представлены в основном пресноводными формами организмов. Поэтому в настоящий период при проведении биотестироваиия морской среды предпочтение отдается видам, естественно обитающим па данных акваториях.

В основе методики биотестироваиия лежит сравнение тестируемых образцов с контрольными пробами в течение определенного времени. При этом могут проводиться экспериментальное биотестироваиие (до нескольких часов), оценка острого токсического воздействия (в течение 1-3 суток экспозиции), хронического токсического воздействия (через 7-10 суток экспозиции), а также прогноз отдаленных последствий (через 2-3 педели экспозиции). Всего к настоящему времени разработано более 50 стандартов.

Наиболее часто используемым тест-объектом является рачок Daphnia тадпа , который применяется при контроле токсичности сточных вод и выявлении источников загрязнения. Широкую апробацию получили тесты на поведенческие и физиологические реакции рыб (метод рыбной пробы), в частности на реакцию ухода рыбы из опасной зоны. В качестве показателей токсичности среды используются также изменения двигательной функции пиявок, реакции закрытия створок моллюсков, скорости потребления кислорода голотурией и др.

Для определения токсичности природных пресных вод и дойных отложений, сточных вод и отработанных буровых растворов МПР РФ (2002) рекомендовано применение методик биотестирования по снижению уровня биолюминесценции бактерий Photobacterium phosphoreum , уменьшению прироста количества инфузорий Tetrahymena pyriformis , угнетению роста пресноводных водорослей Scenedesmus quadricauda, гибели ракообразных Daphnia тадпа и Ceriodaphnia affinis, выживаемости и плодовитости ракообразных Ceriodaphnia affinis, гибели рыб гуппи Poecillia reticulata.

Оценку токсичности морских вод и донных отложений, сточных вод разной степени солености и отработанных буровых растворов, сбрасываемых в морские воды, МПР РФ рекомендуется проводить с помощью методик биотестироваиия по угнетению роста одноклеточных морских водорослей Phaeodactilum tricomutum , гибели ракообразных Artemia salina и рыб Poecillia reticulata, снижению уровня биолюминесценции бактерий Photobacterium phosphoreum.

Анализ флуоресценции водорослей и высших растений используется в целом ряде биологических тест-систем, применяемых в экотоксикологии. По интенсивности флуоресценции, возбуждаемой постоянным светом, можно определить в морской воде концентрацию хлорофилла при низких ее значениях (до 0,05 мг/м 3 хлорофилла а). Изменения флуоресценции при варьировании интенсивности возбуждения могут служить показателем фотосиптетической активности и физиологического состояния фотосинтезирующих организмов. Методика измерений обилия и индикации изменения состояния фитопланктона в природных водах флуоресцентным методом (ФР.1.39.2011.11246, ПНДФ 14.2.268-2012) допущена для целей государственного экологического контроля по разделу «Количественный химический анализ вод» (Котелевцев и др., 2012). В целом метод позволяет дать интегральную оценку качества природной воды, поскольку изменение фотосинтетической активности может быть вызвано и ее загрязнением, и неблагоприятными факторами среды, такими как высокая температура и соленость, недостаток элементов минерального питания и др. (Мелехова, 2007; Кузнецова и др., 2011). В современной практике широко используются стандартизированные методы биотестирования токсичности проб поверхностных пресных, грунтовых, питьевых, сточных вод, водных вытяжек из почвы, осадков сточных вод и отходов на пресноводных зеленых микроводорослях рода Chlorella и Scenedesmus , культивируемых по общепринятой методике. Основными показателями токсического действия служат рост и выживаемость культуры, изменение уровня флуоресценции хлорофилла и численности клеток водорослей (К). С. Григорьев // ПНД Ф Т 14,1:2:4,10-04, М.2004 ФР. 1.39.2007.03223; Н.С.Жмур, Т. Л. Орлова // ФР.1.39.2007.03223/2007 и др.). В последнее время появились работы по биотестированию влияния наиочастиц на экосистемы (рис. 26). Перспективными объектами для тестирования наноматери- алов считаются водоросли, в которых в качестве биосеисоров токсикологического воздействия исследовались ингибирование роста, изменение морфологии клеток и флуоресценция (Котелевцев и др., 2012). Так, например, обнаружено влияние наиочастиц серебра, иаиотрубок, ианоалмазов и наиокомпозитов на флуоресценцию водорослей Chlorella vulgaris и Chlamydomonas reinhardtii (Маторин и др., 2009).

Для комплексного экологического мониторинга изменения морской среды в районах разработки морских нефтегазовых месторождений С. А. Патин (1997) предлагает использовать тест-реакции бактерий, простейших Stylonichia mytilis, Tintinnop-

Рис. 26.

sis biroidea, Noctiluca seintillans, Cristigera , одноклеточных водорослей Coscinodis- cus, Ditylum, Gyrodinium, Exuviella , макрофитов , зоопланктона Acartia, Eurotimora, Tigriopus, Calanipeda, Artemia salina , рыб Salmo gairdner, Trachurus trachurus, Limanda limanda, Gadus morhua, Scophthalmus ma- ximus, Sprattus sprattus, Spicara smarts и макробентоса и др. (табл. 10).

Для определения токсичности техногенно загрязненных почв широко применяются измерение всхожести семян и длины корней проростков высших растений (РД 52.18.344-93, ИСО 11269 и др.). В частности, с этой целью изучаются семена овса Ovena sativa (Методика СПб НИЦЭБ РАН, ФР. 1.39.2006.02264), редиса Raphanus sativus (Нечаева и др., 2010; Воронина, 2013), кресс-салата Lepidium sativum (Ерем- ченко, 2013; Зейферт и др., 2013; Майстренко и др., 2013), гороха Pisum sativum (Крятов и др., 2013), горчицы Brassica juncea L. (Лисовицкая, 2013), сосны обыкновенной Pinus sylvestris (Фрейберг и др., 2002; Стеценко, 2004) и др.

Для оценки устойчивости растений к повышенному содержанию в среде ТМ в лаборатории экологии растительных сообществ Ботанического института АН СССР была разработана модификация метода корневого теста (Алексеева-Попова, 1985, 1991). Благодаря простоте и оперативности (экспрессиости), достаточно высокой чувствительности он является наиболее широко применяемым в вегетационных опытах. Это экспресс-метод определения устойчивости объектов на проростках в течеТаблица 10. Рекомендуемые группы и виды морских организмов и их тест-реакции для использования при биотестировании в системах комплексного экологического

мониторинга (Патин, 1997)

Группа и вид тест-организмов

Тестируемая среда

Тест-реакция и показатель

Гетеротрофный микропланктон, бактерии

Вода, поверхностный микрослой толщиной около 1 мм (ПМС)

Изменение динамики ВПК, видового доминирования, скорости разрушения субстратов, мутагенной активности

Простейшие (Stylonichia mytilis, Tintinnopsis biroidea, Noctiluca seintillans, Cristigera)

Донные осадки, норовые воды, элюаты, шламы, стоки

Снижение выживаемости, изменения темпов размножения и скорости роста, нарушения подвижности и морфологии

Одноклеточные водоросли, региональные доминанты (Coscinodiscus, Ditylum, Gyrodinium, Exuviella идр.)

Вода, стоки

Изменение скорости деления и численности клеток, нарушения интенсивности фотосинтеза и флуоресценции, аномалии пигментного состава и др.

Макрофиты (Laminaria, Macrocystis pyrifera и др.)

Вода, стоки

Изменение скорости роста, нарушения оседания зооспор, морфологические и электрофизиологи- ческие аномалии

Зоопланктонные фильтраты (Acar- tia, Eurotimora, Tigriopus, Calanipe- da, Artemia salina и др.)

Вода, ПМС, стоки

Снижение выживаемости и плодовитости, нарушение воспроизводства, поведения и трофической активности, морфологические и другие аномалии

Рыбы (икра, личинки, молодь) (Sal- mo gairdner, Trachurus trachurus, Limanda limanda, Gadus morhua, Scophthalmus maximus, Sprattus sprattus, Spicara smarts и др.)

Вода, ПМС, стоки

Повышение смертности и частоты морфологических аномалий, нарушения питания, роста, дыхания, поведения, физиологических и других показателей

Макробентос (взрослые эмбрионы, личинки) (Mytilus edulis, Crassostrea gigans, Macoma, Echinocardium, Arenicola и др.)

Вода, ПМС, донные осадки, стоки, шламы

Снижение выживаемости, нарушение размножения, замедление роста, поведенческие, физиологические и другие отклонения от нормы

ние 2-3 недель: состав контрольного раствора позволяет выращивать растения разных таксонов и опробовать большой диапазон концентраций металлов. В условиях одного опыта возможна оценка специфичности действия отдельных металлов, а также сравнение устойчивости разных видов и популяций одного вида к определенному металлу. Под воздействием токсичных концентраций ТМ наблюдается ингибирование ростовых процессов. Снижение прироста корней коррелирует с концентрацией металлов, причем реакция корней ярко проявляется даже при незначительном увеличении дозы металла. С помощью метода корневого теста установлены меж- и внутривидовые различия устойчивости к Си, Ni, Mn, Zn, Pb и Сс1 растений различных систематических таксонов (злаков сем. Роасеае - пшеницы, овса, ячменя; двудольных -сем. бобовых Fabaceae, сем. крестоцветных Brassicaceae , сем. сложноцветных Asteraceae , сем. губоцветных Lamiaceae и др.). Результаты проведенных лабораторных исследований позволяют рекомендовать метод корневого теста для выделения металлоустойчивых популяций видов, пригодных для выращивания па сельхозугодьях в загрязненных условиях, а также для рекультивации нарушенных земель.

Биотестирование является значительно более оперативным способом оценки качества вод по сравнению с традиционными подходами к контролю состояния окружающей среды. Этот способ менее дорогостоящ, а методы его проведения и результаты более доступны для понимания неспециалистом. Методы биотестироваиия постоянно совершенствуются, предлагаются новые подходы и аппаратура для проведения экспериментов, проводится их аттестация и патентование (Григорьев, Шашкова, 2006; Жмур, 2007; Жмур, Орлова, 2007; Маячкина, Чугунова, 2009; Мальцева, Охапкина, 2010; Григорьев, Тютькова, 2011; Бардина и др., 2013; Григорьев, 2013 и др.).

В настоящее время как в России, так и за рубежом интенсивно развиваются исследования по созданию средств автоматического контроля загрязнения акваторий в режиме реального времени. Наиболее перспективными в этом отношении считаются методы, основанные на измерениях реакций физиологических и поведенческих биомаркеров (Куриленко, 2004; Кармазинов и др., 2007; Холодкевич и др., 2006, 2011 и др.). Чаще всего используются методы регистрации кардиоактивности бентосных беспозвоночных с жестким наружным покровом, например раков, крабов, моллюсков. В каждой конкретной акватории в качестве «вида-мишени» могут выступать различные представители бентосных сообществ. Так, например, в настоящее время на всех водозаборах водопроводных станций Санкт-Петербурга применяется разработанная в СПб НИЦЭБ РАН установка биологического мониторинга качества воды, осуществляющая в реальном времени определение токсичности воды, поступающей из реки Невы. В качестве биомаркеров используются частота сердечных сокращений и стресс-индекс - одна из важнейших характеристик вариационной пульсометрии. Непрерывность и бесперебойность измерений этих физиологических параметров обеспечивается с помощью специальных проточных аквариумных систем, содержащих по три пары речных раков Pontastacus leptodactylus Esch.

В целом при оценке уровня токсичности среды метод биотестироваиия, как дополняющий химико-аналитический комплекс, обладает рядом несомненных достоинств:

  • 1) тест-объект, как правило, реагирует на относительно слабые антропогенные нагрузки вследствие эффекта кумуляции дозы вредного воздействия;
  • 2) в тесте суммируется действие всех без исключения биологически вредных антропогенных факторов, включая физические и химические воздействия;
  • 3) по результатам тестов достаточно надежно вскрываются тенденции изменения ситуации в окружающей среде.

Однако выявлен и целый ряд трудностей применения обсуждаемого метода. Существенной проблемой использования простейших организмов является их несопоставимость с многоклеточными, реакция которых па те же самые изменения в водной среде может быть отличной. Так, например, для инфузории реакция на ТМ отмечается уже при концентрациях па несколько порядков ниже ПДК в воде. В отношении биогенных соединений всё наоборот: реакция проявляется при концентрациях, па несколько порядков превышающих ПДК. Кроме того, недостатками метода являются низкая надежность, сложность трактовки результатов и их переноса с одного вида на другой, отсутствие разработанных оценочных шкал. Все это сильно осложняет процесс стандартизации метода, без чего сам механизм государственного тестового контроля отладить практически невозможно.

Во избежание хотя бы части перечисленных трудностей в последние годы специалистами предлагаются новые научно-методические подходы к выбору тест-организмов на основе эволюционных, физиологических, психо-поведенческих и других особенностей (Зайцева, Ковалев, 1994). Суть этих предложений заключается в учете основных особенностей адаптационных процессов и данных о чувствительности и резистентности тест-организмов, во введении в практику биотестировапия элементов отологического анализа, а также в правильности определения сроков тестирования. По перечисленным критериям наиболее подходящими являются беспозвоночные гидробиоиты (ракообразные и брюхоногие моллюски), обладающие достаточно высоким уровнем организации. Применительно к тестированию дойных осадков в качестве тест-объектов рекомендуются донные беспозвоночные (Гудимов, Гудимова, 2002). Обосновывается целесообразность одновременного с общей оценкой токсичности вод проведения тестов па загрязняющие вещества. В этом случае может быть использована способность некоторых организмов реагировать па конкретные поллютанты. Серьезные усилия необходимо приложить к разработке единых шкал биологической оценки токсичности сред.

Кроме того, при проведении биотестирования твердых компонентов необходимо учитывать несколько аспектов. Во-первых, результаты определения токсичности почв и водных вытяжек из них методом биотестирования в некоторых случаях могут существенно различаться (Бакина и др., 2004; Маячкина, Чугунова, 2009). Например, токсичность почв, определяемая методом проращивания семян высших растений непосредственно в почве, выше, чем токсичность водных вытяжек из этих же почв, определяемая па традиционных для водной токсикологии тест-объектах. Разница результатов особенно велика при загрязнении почв токсикантами, малорастворимыми в воде, например пефтыо или продуктами гидролиза иприта. Во-вторых, при определении степени токсичности почв методами биотестирования большое значение имеет чувствительность подопытных организмов к токсикантам. Наиболее корректный результат достигается при использовании нескольких тест-объектов из разных систематических групп. В нормативных документах рекомендовано использовать как минимум два тест-оргаиизма. В научной литературе опубликованы разработки по созданию тест-системы, состоящей из трех-четырех представителей животного и растительного мира. Так, например, в качестве тест-организмов могут быть задействованы представители трех трофических уровней: продуцентов - Triticum vulgare L коисумеитов - Daphnia magna Straus, Paramecium caudatum ; редуцентов - почвенные микроорганизмы (Бардина и др., 2013; Капелькииа и др., 2013). Показательны проведение биотестирования, например, с аквариумными рыбками гуппи, моллюсками и рачками дафнии или применение системы Paramecium caudatum - Chlorella vulgaris - Escherichia coli. При этом используются следующие критерии: в случае гибели 50% особей одного организма вода оценивается как слабо токсичная, в случае гибели 50% особей всех испытуемых видов - как сильно токсичная.

Верификация комплекса биоиидикациоииых методов для оценки состояния окружающей среды может проводиться как в лаборатории в условиях контролируемого эксперимента, так и с помощью различных статистических приемов оценки достоверности взаимосвязи индикатора с объектом индикации. К их числу относятся регрессионный, факторный и кластерный анализы. Выбор метода зависит от конкретных задач и масштабов индикационной оценки территории.

Таким образом, в настоящее время разработано и широко используется в практике экологического мониторинга большое количество методов и приемов биоииди- кации. Фитоиндикационный метод позволяет оценить комплексное антропогенное воздействие и его экологические последствия в естественных природных и техно- генно нарушенных ландшафтах. Он незаменим при выполнении изысканий в труднодоступных районах и там, где отсутствуют посты мониторинговых наблюдений. В зависимости от интенсивности антропогенной нагрузки комплекс методов фитоиндикации изменяется. Физиологические и биохимические признаки индикаторных видов позволяют установить нарушения на ранних стадиях антропогенного воздействия па экосистемы. Морфологический анализ и использование тест-объектов рекомендуются во всех типах экосистем для получения оценки комплексного антропогенного воздействия. Применение тест-объектов в условиях опыта позволяет установить количественные связи в системе «доза -эффект». Для экспресс-оценки экологического состояния индустриальных регионов с разной степенью нарушенное™ перспективно применение различных фитоиидикациоиных методов. Флористический и фитоцеиотический методы могут быть использованы в районах природных геохимических аномалий и в слабоиарушениых природных экосистемах. Морфологический анализ и применение тест-объектов рекомендуются во всех типах экосистем для получения качественной оценки комплексного антропогенного воздействия. Для количественной характеристики и идентификации источника загрязнения в комплекс методов должен входить анализ содержания поллютантов.

В слабоиарушениых природных экосистемах под влиянием локальных источников загрязнения фитоиидикация направлена на контроль за одним или несколькими основными факторами антропогенного воздействия. В зависимости от характера источника загрязнения система рекомендуемых методов фитоиидикации будет меняться. Поскольку в этих условиях доминирует природный режим функционирования экосистем, то, к примеру, при контроле эмиссионных выбросов в атмосферу эффективны лихеноиндикация, дендроиндикация, сравнительный анализ биопродук- тивности естественных и нарушенных земель, контроль за изменением химического состава компонентов экосистем. Изучение эпифитного лишайникового покрова может быть рекомендовано для внедрения в практику мониторинговых работ, так как методика предусматривает возможность учета как всего видового разнообразия и обилия лишайников, так и суммарного проективного покрытия эпифитного покрова в целом. Последнее не требует глубоких знаний лихенологии и может использоваться широким кругом специалистов.

При деструктивных антропогенных изменениях ландшафтов, включающих де- форестизацию, мелиорацию земель, рекреационную и пастбищную дигрессию и т. д., наибольший эффект дает флористический подход (изменение видового состава фитоценозов, появление или исчезновение индикаторных видов) в сочетании с анализом изменения биопродуктивиости. Состояние фитоцеиозов можно оценивать традиционными способами учета биомассы методами укосов и транссект, по высоте травостоя или индикаторных видов растений и по ежегодному линейному и радиальному приросту деревьев. Изменение химического состава растений в этом случае менее специфично и не является обязательным.

В экосистемах в районах техногенных аномалий трансформация ПТК настолько велика, что в этих условиях невозможно использование фитоценотических и лихе- ноиндикациониых приемов. Для оценки пространственной дифференциации местности по степени загрязнения необходим выбор одного-двух (взаимозамеияюгцих) индикаторных видов, повсеместно распространенных па территории исследований. Антропогенное воздействие, сопровождающееся загрязнением компонентов экосистем, приводит наряду с изменением химического состава растений к угнетению жизненных функций и всевозможным нарушениям в ходе физиологических процессов, и прежде всего в фотосинтетической деятельности. Чувствительным показателем является соотношение содержаний хлорофиллов а и 6, однако такие исследования требуют достаточно хорошо оснащенной лаборатории и определенной подготовки специалистов. При проведении крупномасштабных мониторинговых работ удобнее использовать боиитировочиые шкалы хлорозов и некрозов листьев, а также возраста хвои отдельно стоящих деревьев или кустарников. Изучение изменчивости спектральных отражательных свойств фотосинтезирующих органов перспективно для экспресс-оценки антропогенных воздействий.

Особое значение имеет выбор биоиидикациоииых методов оценки урбанизированных территорий - урбоэкосистем. Наибольшая напряженность экологической обстановки наблюдается в крупных индустриальных городских агломерациях. Растения, как главные аккумуляторы токсических соединений, в городской среде играют важную роль в ее оздоровлении, испытывая при этом воздействие загрязняющих веществ, угнетающих их жизнедеятельность. Накопление поллютантов в растениях отражает уровень атмосферного и почвенного загрязнения урбоэкосистем. Использование фитоиидикаторов позволяет установить временную динамику загрязнения, дифференцировать основные его источники и определить их вклад в суммарное загрязнение. При изучении крупных городов одной из серьезных проблем является выбор эталонов сравнения. Частично эта проблема решается благодаря использованию тест-объектов. Тестирование среды успешно применяется как для оценки загрязнения городской среды, так и для экологического картографирования отдельных промышленных районов города. Наиболее эффективно в этом отношении брио- и лихеноиндикационное тестирование среды. Изучение состояния самого растения - угнетения жизненных функций, хлороза и некроза, морфологической изменчивости - лежит в основе экспресс-методов оценки загрязнения городской среды. Характер адаптации растений к техногенным нагрузкам во многом аналогичен адаптационной стратегии растений природных геохимических аномалий. Поэтому перспективны изучение и сравнительный анализ природных и техногенных популяций растений, устойчивых к высоким концентрациям металлов.

Таким образом, подводя итог вышесказанному, нужно подчеркнуть, что к числу преимуществ биоиидикации перед инструментальными методами следует отнести ее относительно низкую стоимость, высокую скорость получения информации и возможность характеризовать состояние среды за длительный промежуток времени. Применение биоиидикациоииых методов в сочетании с компьютерными технологиями и экспертной оценкой дает возможность сделать прогноз изменения экосистем при нарастании антропогенной нагрузки, сформулировать рекомендации по оптимальному режиму природопользования, оценить степень экологического риска антропогенного загрязнения.

Для решения ряда прикладных задач природопользования необходимы экспресс- методы экологической оценки состояния среды. К ним относятся прежде всего морфологический, флористический и фитоценотический методы. Преимущество их обусловлено относительной простотой натурных исследований и сбора информации, а также возможностью определения суммарного воздействия всего комплекса факторов в конкретных условиях.

Биоиидикация позволяет оценить комплексное антропогенное воздействие как на природные объекты, так и на территории урбо- и агроландшафтов. При этом можно использовать два подхода в оценке реакций организмов на воздействие окружающей среды. Первый предусматривает изучение реакций видов и их сообществ, распространенных на исследуемой территории, второй - изучение реакций растительных тест-объектов, искусственно размещенных на дайной территории.

Введение

Многие известные заболевания человека имеют соответствие в генетическом коде плодовой мушки. Исследования на дрозофиле помогают понять фундаментальные биологические процессы, которые непосредственно связаны с человеком и его здоровьем. Они используются в моделировании некоторых заболеваний человека, например, таких как, болезни Паркинсона, Хантингтона и Альцгеймера, а также для изучения механизмов, которые лежат в основе рака, диабета, иммунитета, наркотической зависимости и многих других.

Drosophila melanogaster широко используется и для оценки качества окружающей среды. Так же она является генетической моделью при исследованиях насекомых, которые могут переносить опасные инфекционные болезни человека (Например, Culex pipiens - Вирус Западного Нила, Anopheles gambiae - малярию, Aedes aegypu - лихорадку Денге). Результаты исследований, полученные на дрозофиле, также дают ключ к пониманию генетических процессов, выявляемых при изучении важных для сельского хозяйства насекомых, таких как пчелы и тутовый шелкопряд, и насекомых - вредителей, к которым относится саранча и многие виды жуков и тлей.

Актуальность темы дипломной работы состоит в том, что Drosophila melanogaster широко используется и имеет огромное значение в жизни человека. Но во время ее культивирования и использования в исследованиях можно столкнуться с рядом проблем, которые необходимо изучать для облегчения работы с ней. Кроме того, существует мало литературы по методам ее культивирования.

Объект исследования - методика культивирования и использования Drosophila melanogaster в биотестировании.

Предмет исследования - эффективность методики.

Цель работы - разработать методы оптимизации использования Drosophila melanogaster в целях биотестирования.

Для того чтобы достигнуть поставленной цели были поставлены следующие задачи:

1. Выделить проблемы, связанные с биотестированием Drosophila melanogaster.

2. Найти подходы к реализации решения проблем.

3. Экспериментальным путем установить эффективность собственных и известных из литературы путей повышения эффективности использования Drosophila melanogaster как тест - объекта.

Биотестирование, как метод экологического исследования

Суть биотестирования и предъявляемые к его методам требования

молекулярный генетический дрозофила биотестирование

Биотестирование -- это такая процедура установления токсичности среды, при которой специальные тест - объекты информируют об опасности, при этом не зависят от того, какие вещества и в каком сочетании вызывают изменения жизненно важных функций [Ляшенко, 2012].

Определение характера и степени токсичности тестируемой среды и является целью биотестирования.

Само биотестирование основано на регистрации биологически важных показателей, так называемых тест - функций, исследуемых тест - объектов. После регистрации этих показателей производиться оценка их состояния в соответствии с выбранным критерием токсичности. В свою очередь тест - функции бывают биологические и физиологические. К биологическим функциям относятся выживаемость, плодовитость, размножение и качество потомства, а к физиологическим - дыхание, показатели крови, активность питания, обмен веществ [Ляшенко, 2012].

Тест - объектами (или иначе тест - организмами) называют такие биологические объекты, которые используют для оценки токсичности химических веществ. Проявляющийся токсический эффект регистрируют и оценивают в эксперименте.

Биотестирование в отличие от аналитических методов подразумевает слежение за антропогенными и природными процессами в биологических средах, которые включают всю совокупность взаимодействия агентов внешней среды с живым, в том числе и такие как выяснение ответной реакции биосред на антропогенные и природные воздействия [Иваныкина, 2010]. Такими ответами могут служить реакции на стресс - факторы. Методы имеют много преимуществ. Например, они более информативны для определения прямой реакции экосистемы на антропогенное воздействие. С помощью данных подходов в экологическом мониторинге можно получать объективную, а также количественную оценку процессов регенерирования объектов окружающей среды. Можно также, благодаря этим методам, оценить эффективность мероприятий по охране природы [Балакирев, 2013]. Также еще одним достоинством метода является определение общей токсичности, которые создаются присутствием экотоксикантов, не нормирующиеся существующими стандартами, но обладающие способностью вызывать разнообразные генотоксические, токсические, цитотоксические или мутагенные эффекты [Журавлева, 2006].

Кроме того, химико-аналитические и гидрохимические методы могут быть неэффективными, в силу их недостаточно высокой чувствительности. Биота может подвергаться токсическим воздействиям, которые не регистрируются техническими средствами связи с тем, что любой аналитический датчик не способен воспринимать такие низкие концентрации веществ по сравнению с живыми объектами [Мелехова, 2007].

В основе биотестирования лежит метод биологического моделирования. В определенной мере всякая модель является специфической формой отражения действительности. При биотестировании происходит перенос знаний с примитивной системы (смоделированной в лаборатории) на более сложную систему (экосистема в реальных условиях) [Маячкина, 2009]. По некоторым данным биотестирование - обязательное дополнение к химическому анализу, а также является интегральным методом оценки токсичности водной среды [Туманов, Постнов, 1983]. В стандарты по контролю качества вод различного назначения включены и методы биотестирования [Александрова, 2013].

Для того чтобы оценить состояние разных организмов, находящихся под воздействием естественных или антропогенных факторов проводят тестирование на биологических объектах, которые представляют собой комплекс различных подходов. Эффективность физиологических процессов, которые обеспечивают нормальное функционирование организма (например, такие как дыхание, обмен веществ, активность питания и тому подобное) является основным показателем их состояния. На воздействие среды организм реагирует посредством сложной физиологической системы буферных гомеостатических механизмов, но только при оптимальных условиях поддерживает оптимальное протекание процессов развития. Под воздействием неблагоприятных условий гомеостаз может быть нарушен, что приводит к состоянию стресса. Эти нарушения могут происходить до появления изменений, которые используются параметрами жизнеспособности. Таким образом, методы биотестирования, основываются на исследовании механизмов гомеостаза и его эффективности, а также позволяют уловить присутствие воздействия стресс - фактора раньше, чем другие, обычно используемые методы [Мелехова, 2007].

Проблемы чистой воды и охраны гидросферы становятся все более острыми по мере развития научно-технического прогресса. Уже сейчас во многих районах земного шара наблюдаются большие трудности в обеспечении водопотребления и водопользования вследствие количественного и качественного истощения водных ресурсов. В первую очередь это связано с загрязнением водоемов и забором из них больших объемов воды (зарегулирование, переброска части стока рек и др.), ведущегося в интересах энергетики, орошения земель, навигации и в других целях.

Настоящая работа была выполнена по заданию Воронежского Областного Комитета по экологии и охране природных ресурсов. В его штате отсутствуют гидробиологи, однако результаты гидробиологического тестирования сточных вод очень важны и интересуют Комитет. Пробы для тестирования были предоставлены лабораторией Комитета, а небольшое количество дафний для разведения и дальнейшего использования в опытах – кафедрой зоологии беспозвоночных Воронежского государственного университета.

Для тестирования были взяты стоки вод в прудах-отстойниках шести сахарных заводов области.

Результаты экспериментов переданы в Областной Комитет по экологии и охране природных ресурсов.

Современное состояние проблемы загрязнения водоемов и очистки сточных вод

Загрязнение водоемов в наибольшей степени связано со сбросом в них промышленных, сельскохозяйственных и бытовых стоков, с попаданием загрязняющих веществ из атмосферы и в результате деятельности человека на самих водоемах. Во многих водоемах загрязнение настолько велико, что привело к полной деградации их экосистемы, потере их хозяйственной и ландшафтной ценности.

Под загрязнением водоемов понимается ухудшение их экономического значения и биосферных функций в результате антропогенного поступления в них вредных веществ.

Из загрязняющих веществ наибольшее значение для водных экосистем имеет нефть и продукты ее переработки, пестициды, соединения тяжелых металлов, детергенты, антисептики. Чрезвычайно опасным стало загрязнение водоемов радионуклидами. Значительную роль в загрязнении водоемов играют бытовые стоки, лесосплав, отходя деревообрабатывающих предприятий и многие другие загрязнения, не относящиеся к токсическим, но ухудшающие среду гидробионтов.

Сточные воды – это воды, использованные на бытовые, производственные и другие нужды и загрязненные различными примесями, изменившими их первоначальный химический состав и физические свойства, а также воды, стекающие с территории населенных пунктов и промышленных предприятий в результате выпадения атмосферных осадков или поливки улиц.

В зависимости от происхождения, вида и состава сточные воды подразделяются на три основные категории:

1. Бытовые (от туалетных комнат, кухонь, столовых, больниц. Они поступают от жилых и общественных зданий, а также от бытовых помещений промышленных предприятий)

2. Производственные (воды, использованные в технических процессах, не отвечающие более требованиям, предъявляемым к их качеству)

3. Атмосферные (дождевые и талые, вместе с атмосферными отводятся воды от полива улиц, от фонтанов и дренажей)

Сточные воды представляют собой сложные гетерогенные смеси, содержащие примеси органического и минерального происхождения, которые находятся в нерастворенном, коллоидном и растворенном состоянии. Степень загрязнения сточных вод оценивается концентрацией, т. е. массой примесей в единице объема (мг/л). Наиболее сложны по составу сточные воды промышленных предприятий. На формирование производственных сточных вод влияют перерабатываемое сырье, технический процесс производства, применяемые реагенты, промежуточные изделия и продукты, состав исходной воды, местные условия и др.

Эти воды могут различаться по концентрации загрязняющих веществ, по степени агрессивности и т. д.

Водоемы загрязняются в основном в результате спуска в них сточных вод от промышленных предприятий и населенных пунктов. В результате сброса сточных вод изменяются физические свойства воды (повышается температура, уменьшается прозрачность, появляются привкусы, окраска, запахи), на поверхности водоемов появляются плавающие вещества, а на дне образуются осадки, изменяется химический состав воды (увеличивается содержание органических и неорганических веществ, появляются токсические вещества, уменьшается содержание кислорода, изменяется активная реакция среды и др.), изменяется качественные и количественные бактериальный состав, появляются болезнетворные бактерии. Загрязненные водоемы становятся непригодными для питьевого и технического водоснабжения, теряют рыбохозяйственное значение.

Первые шаги к усовершенствованию процесса очистки сточных вод связано с прямым использованием природного самоочищения и фильтрационной способности почвы. Уже в 19 столетии вокруг крупных промышленных центров были выделены специальные земельные участки, которые служили для очистки сточных вод. Они получили название полей фильтрации и полей орошения. Но длительность срока очистки и большие земельные площади делают эти способы малоэкономичными при быстро развивающемся производстве. При таком способе очистки возникают так же определенные санитарно-эпидемиологические трудности.

Следующим этапом развития способов очистки сточных вод было использование биологических прудов. Процесс очистки воды в них проходит по принципу естественного очищения обычного для водоемов и только отчасти регулируется человеком. Так очищаются стоки мясокомбинатов, молочных и сахарных заводов, кондитерских и других предприятий. Нередко такие пруды обеспечиваются принудительной аэрацией и циркуляцией воды. Отрицательным моментом работы биопрудов является длительность процесса очистки, который продолжается до 30 суток. Процесс очистки считается окончательным при следах азота аммонийного в воде.

Технический прогресс и все усиливающийся процесс индустриализации привели уже в начале 20 века к необходимости изыскать более быстрые и экономичные методы очистки сточных вод.

Методы искусственной биологической очистки, основанные на активной деятельности живых организмов, остаются в настоящее время основными экономичными и эффективными, обеспечивающие наиболее полное разложение загрязнений по сравнению со всеми иными индустриальными методами.

3. Методы анализа и тестирования сточных вод

Среди методов гидробиологического анализа поверхностных вод сапробиологический анализ занимает одно из важнейших мест. Разработанный еще в начале 20 века ботаником Кольквитцем и зоологом Марссоном сапробиологический анализ продолжает успешно применяться в повседневной практике гидробиологического контроля качества поверхностных вод.

Первоначально под сапробностью понималась способность организмов развиваться при большем или меньшем содержании в воде органических загрязнений. Затем экспериментально было доказано, что сапробность организма обусловливается как его потребностью в органическом питании, так и резистентностью по отношению к вредным продуктам распада и дефициту кислорода в загрязненных водах.

Теперь установлено, что в ряду организмов олигосапробы-мезосапробы-полисапробы возрастает не только специфическая стойкость к органическим загрязнителям и к таким их последствиям, как дефицит кислорода, но и их неспецифическая способность существовать при резко различных условиях среды. Это положение значительно расширяет возможности использования сапробиологического анализа не только в случае загрязнения вод бытовыми стоками, но и при их промышленном загрязнении.

В классической системе показательные организмы разделяются на три группы:

1. организмы сильно загрязненных вод – полисапробионты, или полисапробы;

2. организмы умеренно загрязненных вод – мезосапробионты, или мезосапробы;

3. организмы слабо загрязненных вод – олигосапробионты, или олигосапробы.

Полисапробные воды характеризуются бедностью кислорода и большим содержанием углекислоты и высокомолекулярных легко разлагающихся органических веществ – белков, углеводов. Население полисапробных вод обладает малым видовым разнообразием, но отдельные виды могут достигать большой численности. Здесь особенно распространены бесцветные жгутиконосцы и бактерии.

Мезасапробные воды характеризуются энергичным самоочищением. Большой численностью обладают грибы, бактерии и водоросли. В этих водах обитают беспозвоночные организмы, а также нетребовательные к кислороду виды рыб. Деревенские пруды, рвы и канавы на полях орошения обычно содержат мазосапробные воды.

В олигосапробных водах процессы самоочищения протекают менее интенсивно, чем в мезосапробных. В них доминируют окислительные процессы, нередко наблюдается пресыщение кислородом, преобладают такие продукты как аммонийные соединения, нитриты и нитраты. В этих водах разнообразно представлены животные и растительные организмы.

Олигосапробные воды – это практические чистые воды больших озер. Если такие воды произошли путем минерализации из загрязненных вод, то для них характерна почти полная минерализация органических веществ.

Дафния является мезосапробным организмом. С ее помощью можно определить достаточно хорошую степень очистки сточных вод. Так как она очень чувствительна к изменениям водной среды мы можем определить и недостаточную степень очистки воды. Поэтому мы проводили биотестирование сточных вод методом Дафния.

4. Биотестирование сточных вод методом Daphnia

К настоящему времени апробированы и используются на практике большое количество предельно допустимых концентраций различных веществ, успешно внедряются в практику народного хозяйства также нормы предельно допустимых стоков.

При избыточном поступлении стоков с высокими концентрациями вредных веществ нарушаются природные качества воды, и она становится непригодной для выполнения биологических функций организма. Это отрицательно сказывается на состоянии и развитии всех водных организмов и приводит к негативным состояниям стабилизированных экосистем, структура которых в большинстве случаев упрощается.

Часть ее компонентов, в первую очередь полезных человеку, частично вымирает, а ограниченное число отдельных представителей флоры и фауны может интенсивно развиваться и способствовать ухудшению природных качеств вод.

Задача настоящей работы заключается в контроле качества сточных вод, выбрасываемых сахарными заводами области. Контроль производится одним из самых допустимых биологических методов на ветвистоусом рачке Daphnia magna из отряда листоногие раки.

Для проведения данной работы требуются следующие материалы и оборудование:

Микроскоп МБС, лупы, гидробиологический сачок для отлова дафний, сачки для переноса дафний в сосуд для биотестирования, аквариум-отсадник объемом 5 л, цилиндры мерные объемом 0,5-2 л, пипетки мерные на 1,2,10 мл, стаканы химические объемом 200,100,50 мл, воронки стеклянные, чашки Петри, фильтровальная бумага

5. Характеристика тест-объектов

Род Daphniaвключает 50 видов и имеет повсеместное распространение. В пресных водоемах нашей области широко распространены 5 видов дафний.

Рачки вида Daphnia magna имеют более крупные размеры и их применение в токсикологических экспериментах предпочтительнее. Они обитают в стоячий водоемах и слабопроточных водах, особенно часто во временных пересыхающих водоемах, лужах. На территории нашей страны распространены повсеместно, кроме Заполярья и Дальнего Востока. Являются типичными мезосапробами, переносят осоление до 6%.

Короткий биологический цикл развития позволяет проследить рост и развитие дафний на всех жизненных стадиях. В течение жизни дафнии выделяют ряд стадий, сопровождающихся линьками: первые 3 следуют через 20-24-36 часов, четвертая – созревание яиц в яичнике и пятая – откладка яиц в выводковую камеру следуют с интервалами 1 -1,5 суток. Начиная с шестой стадии, каждая линька сопровождается откладыванием яиц. Растет дафния наиболее интенсивно в первые дни после рождения, после наступления половозрелости рост замедляется. Новорожденная молодь имеет размеры 0,7-0,9 мм в длину, к моменту половозрелости самки достигают 2,2 – 2,4 мм, а самцы – 2,0 – 2,1 мм. Максимальная длина тела самок может достигать 6,0 мм.

При благоприятных условиях и в лаборатории дафнии большую часть года размножаются без оплодотворения – партеногенетически, производят потомство, состоящее из самок. При недостатке пищи, перенаселении, изменении температурных условий и уменьшения светового дня в популяции дафний появляются самцы, и дафнии переходят к половому размножению, откладывая после оплодотворения «зимние яйца» (1-2) в эфиппиум, образованный из части створок раковины самок.

Период созревания рачков при оптимальной температуре 20-220С с хорошим питанием – 5 -8 дней. Длительность эмбрионального развития обычно 3-4 дня, а при повышении температуры до 25-46 часов. По истечении этого времени происходит вымет молоди. Партеногенетические поколения следуют одно за другим каждые 3-4 дня. Формирование яиц в кладке прекращается за 2-3 дня до смерти. В природе дафнии живут в среднем 20-25 дней, а в лаборатории при оптимальном режиме 3-4 месяца и более. При температурах свыше 250С продолжительность жизни дафний может сократиться до 25 дней.

Источником питания дафний в природных водоемах являются бактерии, одноклеточные водоросли, детрит, растворенные органические вещества. Интенсивность потребления корма зависит от его характера, концентрации в среде, температуры и возраста рачков. Процесс питания дафний непосредственно связан с движением грудных ножек, направляющих ток воды во внутрь раковины. Пищевые частицы, отфильтрованные на «сите», поступают в продольный желоб и передаются ко рту рачка.

Функции грудных ножек связаны с процессами дыхания. В жабрах (овальные выросты ножек) происходит газообмен. Дафния устойчива к изменению кислородного режима (от 2 мг О2/л), что связано со способностью синтезировать гемоглобин. В условиях пониженной концентрации растворенного кислорода дафнии приобретают красноватый цвет, а при благоприятных условиях – розовато-желтый цвет.

В лабораторных условиях мы использовали дрожжевой корм, который готовили следующим образом: 1 г свежих или 0,3 г воздушно-сухих дрожжей заливали 100 мл дистиллированной воды. После набухания дрожжи тщательно перемешиваются. Отстаивают 30 минут. Добавляют надосадочную жидкость в сосуды с рачками в количестве 3 мл на 1 л воды.

Подготовка дафний к биотестированию проходила по следующей схеме: 30-40 рачков с выводковыми камерами полными яиц или зародышей на 3-4 суток до тестирования пересаживают в 1-2-хлитровые емкости (стаканы) с аквариумной водой, в которую перед посадкой дафний вносят корм. После появления молоди (каждая самка может выметать от 10 до 40 молодых дафний) взрослых особей удаляют с помощью стеклянной трубки, а одно-двухдневную молодь используют для биотестирования. Необходимое для тестирование количество дафний определяется числом контрольных проб воды и их разбавлений. Так, для тестирования одной пробы с одним повтором, в трехкратной повторности, потребуется 60 дафний (в каждый сосуд для тестирования помещают по 10 рачков)

6. Тесты токсичности на Daphnia

Существуют несколько тестов-методов определения токсичности природных и сточных вод на Daphnia, разработанных разными авторами. Мы пользовались тестом Министерства мелиорации и водного хозяйства СССР 1986 года «Биотестирование сточных вод с использованием Daphnia»

При биотестировании определяют острое и хроническое токсическое воздействие вредных веществ на животных. За острое принимается действие, оказываемое сточной водой на Daphnia в течение от 10 минут до 96 часов и проявляющееся в их обездвижении или гибели. Перед биотестированием проводились подготовительные работы, включающие получение исходного материала для лабораторной культуры и ее выращивания. Для биотестирования отбирали пробу сточной воды из прудов отстойников шести сахарных заводов области. Для сравнения с фоном отбирали пробу воды вне зоны влияния сточных вод.

Пробы помещали в стеклянные емкости, которые заполняли под крышку, чтобы исключить доступ воздуха. Не допускается замораживание и консервирование отобранных проб. Биотестирование проводили сразу после отбора проб и доставки их в лабораторию. Запас воды для биотестирования хранили в холодильнике. Температура тестируемой воды +18-240С.

Биотестирование установившихся сбросов сточных вод производится для выявления и последующего осуществления контроля источников ЭВЗ (экстемально высокого загрязнения). Определяется острое действие тестируемых проб на дафний. Критерием острого токсического действия является выживаемость рачков, показатель выживаемости – количество выживших дафний за период тестирования. Тестируют сточную воду без разбавления и воду контрольную.

По 100 мл аквариумной и соответствующих проб воды наливают в сосуды для тестирования. В каждый помещают по 10 особей молоди дафний. Их вносят в сосуды для тестирования с помощью сачка диаметром 3-4 см из планктонного газа или пипеткой с резиновой грушей. Повторность трехкратная. Сосуды оставляют при рассеянном свете. Дафний в течение всего периода биотестирования не кормят. Подсчитывают количество погибших и обездвиженных дафний, последних включают в число погибших. Обездвиженным считается опустившийся на дно рачок, не поднимающийся в толщу воды через 10-30 секунд после встряхивания сосуда. Определяют количество выживших дафний. Учет проводят каждый час в течение первых 8 часов наблюдений, затем через 12 и 24 часа от начала тестирования, в последующем – в начале и конце рабочего дня.

7. Обработка и оценка результатов

Определяют среднюю арифметическую величину выживаемости дафний в тестируемой воде по сравнению с контролем и высчитывают процент отклонения от контроля. Тестируемая вода оказывает острое токсическое действие на дафний в том случае, если процент отклонения от контрольного показателя выживаемости дафний в течение 96 часов составляет менее 10. Результаты биотестирования выражают в баллах

В случае получения 0 баллов ситуация считается благополучной и не требует применения дополнительных водоохранных мер. При получении оценочного балла 1 ситуация считается неблагополучной и принимаются меры по улучшению работы имеющихся водоохранных сооружений. При оценочном балле 2 необходимо провести биотестирование соответсвующих проб воды для определения хронического токсического действия. Результаты биотестирования, выражающиеся в баллах 3,4,5 свидетельствуют о ситуации, которая может нанести существенный ущерб водному объекту и требуют принятия мер по организации дополнительных водоохранных мероприятий. Предприятия, на которых тестируемые пробы воды из контрольного створа водного объекта оценены баллом 3 и выше, включаются в перечень потенциальных источников ЭВЗ водных объектов и подлежат токсикологическому контролю

8. Выводы и предложения

В результате проведенных анализов были получены следующие результаты:

Без разбавления: Два сахарных завода (Эртильский и Грибановский) проводят сброс гипертоксических вод (5 баллов) в пруды-отстойники. Садовский сахарный завод проводит сброс высокотоксичных вод (4 балла), а три сахарных завода (Елань-Коленовский, Нижнее-Кисляйский и Перелешинский) проводят сброс среднетоксичных вод (3 балла) в пруды-отстойники.

При разбавлении 1:10: токсичность с гипертоксичной снижается до высокотоксичной.

При разбавлении 1:100: Гипертоксичность снижается, вода становится среднетоксичной.

Данные экспериментов были переданы в Областной Комитет по экологии и охране природных ресурсов. Все заводы занесены в перечень потенциальных источников ЭВЗ ввозных объектов и подлежат токсикологическому контролю.

Проведенная работа показала, что методика биотестирования проста и доступна. Ее можно рекомендовать для широкого применения в практике как специалистам гидробиологам природоохранных организаций и вузов, так и студентам вузов, техникумов и учащимся технических училищ и школ.

Катериненко Мария

Исследование качества воды методом биотестирования. Методика определения токсичности различных сред на приборе "Биотестер-2", основана на контроле хемотаксической реакции инфузории-туфельки.

Скачать:

Предварительный просмотр:

Исследование качества воды методом биотестирования.

Катериненко Мария. 8 А класс, ГБОУ Школа №359.
Руководитель: Набатова А.В.

Цель работы: Изучить возможности применения биотестирования, как способа оценки качества воды.

Актуальность: Роль воды в жизни человека трудно переоценить. Мозг взрослого человека состоит из воды на 74,5%, кровь - на 83%, в мышцах воды 75,8%, в костях - 22%.

Потеря всего 3% воды организмом лишает человека возможности бегать, 5% - лишает возможности переносить существенные физические нагрузки, а потеря организмом 10% воды представляет опасность для жизни. Метод биотестирования позволяет быстро и сравнительно дешево произвести анализ, устраняя риски, связанные с употреблением некачественной воды.

Задачи исследования:

  1. Знать особенности инфузории туфельки как тест-объекта;
  2. Понимать механизм воздействия на тест-объект и его ответную реакцию;
  3. Уметь проводить эксперимент;
  4. Сравнить реакцию тест-объекта в различных пробах воды;
  5. Оценить полученные результаты и сделать выводы на основе полученных результатов.

Подписи к слайдам:

Исследование качества воды методом биотестирования. Работа выполнена: Катериненко Марией Вадимовной. Класс 8 «А». ГБОУ Школа №359. Руководитель: Набатова А.В.

Цель исследования: Изучить возможности применения биотестирования как способа оценки качества воды.

Задачи исследования: Знать особенности инфузории туфельки как тест-объекта. Понимать механизм воздействия на тест-объект, вызывающий ответную реакцию. Уметь проводить эксперимент.

Задачи исследования: Сравнивать реакцию тест-объекта в различных пробах воды. Оценивать полученные результаты. Делать выводы на основе полученных результатов.

Биотестирование. Биотестирование - это определение степени опасности среды с помощью биологических объектов: водорослей, простейших и пр.

Строение Инфузории туфельки: 1. большое ядро; 2. малое ядро; 3 - реснички; 4 - предротовое углубление; 5 - пищеварительные вакуоли; 6 - порошица; 7 - выделительные вакуоли с приводящими канальцами.

Среда Лозина-Лозинского. Дистиллированная вода - 100 мл; 0,1 г - NaC l ; 0,01 г - КС l ; 0,01 г – СаС l 2 ; 0,01 г - MgC l 2 ; 0,02 г – NaHCO 2 .

Подсчёт Инфузорий Туфелек в капле воды.

Биотестирование.

Итоги исследования:

Вывод: Качество сырой воды дало самые низкие результаты. Кипяченая вода показала самые лучшие результаты. Бутилированная вода - средний показатель. Качество фильтрованной воды не является показательным в данном исследовании.

Список литературы Бухвалов В.,Богданова Л.Экологическая экспертиза.-М.:ЛА Варяг,1995 Грин Н., Стаут У., Тейлор Д. Биология в 3-т. Под ред. Р. Сопера. – М.:Мир, 1996 Догель В.А. Зоология Беспозвоночных.-М.:Высшая школа,1981 Жизнь животных.Т.1.-М.:Просвещение,1986 Захаров И.С.,Величко А.Н. Исследование возможности применения температурных популяционных реакций инфузорий как информативных показателей вредных факторов в среде.-СПб:ИБРР,2013 Захаров И.С., Пожаров А.В. Биотехнические методы охраны окружающей среды. -СПб: Изд-во СПбГЭТУ «ЛЭТИ», 2001 Захаров И.С., Пожаров А.В., Сидоренко В.М. Экспрессные методы интегральной оценки экологического состояния объектов окружающей среды. СПб: Изд-во СПбГЭТУ «ЛЭТИ», 2007. Энциклопедия для детей Т.2.Биология.-М.:Аванта+,1999 http://chemister.ru/Database/words-description.php?dbid=1&id=49 http://www.bioind.narod.ru/Articles/guppi.htm http://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BE%D0%B8%D0%BD%D0%B4%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D1%8F

Спасибо за внимание!



Понравилась статья? Поделитесь ей
Наверх