Ретикулярная формация располагается. Ретикулярная формация. Проявление повреждения структур

Лекция 6.

Ретикулярная формация — это комплекс нейронов ствола головного мозга и частично спинного мозга, который имеет обширные связи с различными нервными центрами, корой головного мозга и между собой. Ретикулярная формация представлена рассеянными клетками в покрышке ствола мозга и в спинном мозге.

Ряд клеток ретикулярной формации в стволе мозга являются жизненно важными центрами:

1. дыхательным (центр вдоха и выдоха) — в продолговатом мозге;

2. сосудодвигательным - в продолговатом мозге;

3. центром координации взора (ядра Кахаля и Даркшевича) — в среднем мозге;

4. центром терморегуляций — в промежуточном мозге;

5. центром голода и насыщения — в промежуточном мозге.
Ретикулярная формация выполняет следующие функции:

Обеспечение сегментарных рефлексов: рассеянные клетки являются
вставочными нейронами спинного мозга и ствола головного мозга
(рефлекс глотания);

Поддержание тонуса скелетной мускулатуры: клетки ядер ретикулярной формации посылают тонические импульсы на двигательные ядра черепных нервов и двигательные ядра передних рогов спинного мозга;

Обеспечение тонической активности ядер ствола головного мозга и
коры полушарий, что необходимо для дальнейшего проведения и
анализа нервных импульсов;

Коррекция при проведении нервных импульсов: благодаря ретикулярной формации импульсы могут либо существенно усиливаться, либо существенно ослабляться в зависимости от состояния нервной системы;

Активное влияние на высшие центры коры больших полушарий, что
приводит к либо снижению тонуса коры, апатии и наступлению сна,
либо к повышению работоспособности, эйфории;

Участие в регуляции сердечной деятельности, дыхания, тонуса сосудов,
секреции желез и других вегетативных функций (центры ствола мозга);

Участие в регуляции сна и бодрствования: голубое пятно, ядра шва —
проецируются на ромбовидную ямку;

Обеспечение сочетанного поворота головы и глаз: ядра Кахаля и
Даркшевича.

Основным нисходящим трактом ретикулярной формации является ретикулоспинальный, который проходит по стволу к нейронам двигательных ядер передних рогов спинного мозга и двигательных ядер черепных нервов, а также к вставочным нейронам вегетативной нервной системы.

От ретикулярных ядер зрительного бугра к различным областям коры больших полушарий идут таламо-корковые волокна: они заканчиваются во всех слоях коры большого мозга, осуществляя активацию коры, необходимую для восприятия специфических раздражений.

⇐ Предыдущая22232425262728293031

| Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:

Главная → Физиология → Механизм регуряции физиологических процессов ->

Функции ретикулярной формации

Ретикулярная формация ствола мозга рассматривается как один из важных интегративных аппаратов мозга.
К собственно интегративных функций ретикулярной формации относятся:

  1. контроль над состояниями сна и бодрствования
  2. мышечный (фазный и тонический) контроль
  3. обработка информационных сигналов окружающей и внутренней среды организма, которые поступают по разным каналам

Ретикулярная формация объединяет различные участки ствола мозга (ретикулярную формацию продолговатого мозга, варолиева моста и среднего мозга). В функциональном отношении в ретикулярной формации разных отделов мозга есть много общего, поэтому целесообразно рассматривать ее как единую структуру. Ретикулярная формация представляет собой диффузное накопление клеток разного вида и величины, которые разделены многими волокнами. Кроме этого, в середине ретикулярной формации выделяют около 40 ядер и пидьядер.

Ретикулярная формация мозга: строение и функции

Нейроны ретикулярной формации имеют широко разветвленные дендриты и продолговатые аксоны, часть которых делится Т-образно (один отросток направлен вниз, образуя ретикулярный-спинальный путь, а второй — в верхние отделы головного мозга).

В ретикулярной формации сходится большое количество афферентных путей из других мозговых структур: из коры большого мозга — коллатерали кортико-спинальных (пирамидных) путей, из мозжечка и других структур, а также коллатеральные волокна, которые подходят через ствол мозга, волокна сенсорных систем (зрительные, слуховые и т.д.). Все они заканчиваются синапсами на нейронах ретикулярной формации. Так, благодаря такой организации ретикулярная формация приспособлена к объединению влияний из различных структур мозга и способна влиять на них, то есть выполнять интегративные функции в деятельности ЦНС, определяя в значительной мере общий уровень ее активности.

Свойства ретикулярных нейронов. Нейроны ретикулярной формации способны к устойчивой фоновой импульсной активности. Большинство из них постоянно генерирует разряды частотой 5-10 Гц. Причиной такой постоянной фоновой активности ретикулярных нейронов являются: во-первых, массивная конвергенция различных афферентных влияний (от рецепторов кожных, мышечных, висцеральных, глаза, уши и др.)., А также воздействий из мозжечка, коры большого мозга, вестибулярных ядер и других мозговых структур на один и тот же ретикулярный нейрон. При этом зачастую в ответ на это возникает возбуждение. Во-вторых, активность ретикулярного нейрона может быть изменена гуморальными факторами (адреналин, ацетилхолин, напряжение С02 в крови, гипоксия и др.).. Эти непрерывные импульсы и химические вещества, содержащиеся в крови, поддерживают деполяризацию мембран ретикулярных нейронов, их способность к устойчивой импульсной активности. В связи с этим ретикулярная формация тоже оказывает на другие мозговые структуры постоянный тонический влияние.

Характерной особенностью ретикулярной формации также высокая чувствительность ее нейронов в различных физиологически активных веществ. Благодаря этому деятельность ретикулярных нейронов может быть сравнительно легко блокирована фармакологическими препаратами, которые связываются с циторецепторамы мембран этих нейронов. Особенно активными в этом отношении соединения барбитуровой кислоты (барбитураты), аминазин и другие лекарственные препараты, которые широко применяются в медицинской практике.

Характер неспецифических влияний ретикулярной формации. Ретикулярная формация ствола мозга участвует в регуляции вегетативных функций организма. Однако еще в 1946 г. американский нейрофизиолог Н. W. Megoun и его сотрудники обнаружили, что ретикулярная формация имеет непосредственное отношение к регуляции соматической рефлекторной деятельности. Было доказано, что ретикулярная формация оказывает диффузное неспецифическое, нисходящее и восходящее влияние на другие мозговые структуры.

Нисходящее влияние. При раздражении ретикулярной формации заднего мозга (особенно гигантоклеточной ядра продолговатого мозга и ретикулярного ядра моста, где принимают начало ретикулоспинальному пути), возникает торможение всех спинальных двигательных центров (сгибательных и разгибательных). Это торможение очень глубокое и продолжительное. Такое положение в естественных условиях может наблюдаться при глубоком сне.
Наряду с диффузными тормозящими влияниями, при раздражении определенных участков ретикулярной формации выявляется диффузное влияние, которое облегчает деятельность спинальной двигательной системы.

Ретикулярная формация играет важную роль в регуляции деятельности мышечных веретен, изменяя частоту разрядов, поступающие гамма-эфферентными волокнами к мышцам. Таким образом модулируется обратная импульсация в них.

Восходящий влияние. Исследования Н. W. Megoun, G. Moruzzi (1949) показали, что раздражение ретикулярной формации (заднего, среднего и промежуточного мозга) сказывается на деятельности высших отделов головного мозга, в частности коры большого мозга, обеспечивая переход ее в активное состояние. Это положение подтверждается данными многочисленными экспериментальными исследованиями и клиническими наблюдениями. Так, если животное находится в состоянии сна, то прямое раздражение ретикулярной формации (особенно варолиева моста) через введенные в эти структуры электроды вызывает поведенческую реакцию пробуждения животного. При этом на ЭЭГ возникает характерное изображение — изменение альфа-ритма бета-ритмом, т.е. фиксируется реакция десинхронизации или активизации. Указанная реакция не ограничивается определенным участком коры большого мозга, а охватывает большие ее массивы, т.е. носит генерализованный характер. При разрушении ретикулярной формации или выключении ее восходящих связей с корой большого мозга животное впадает в сноподобное состояние, не реагирует на световые и обонятельные раздражители, фактически не вступает в контакт с внешним миром. То есть конечный мозг прекращает активно функционировать.

Таким образом, ретикулярная формация ствола головного мозга выполняет функции восходящей активирующей системы мозга, которая поддерживает на высоком уровне возбудимость нейронов коры большого мозга.

Кроме ретикулярной формации ствола мозга, в восходящую активирующую систему головного мозга входят также неспецифические ядра таламуса, задний гипоталамус, лимбических структуры. Являясь важным интегративным центром, ретикулярная формация, в свою очередь, является частью более глобальных интеграционных систем мозга, которые включают гипоталамо-лимбические и неокортикальные структуры. Именно во взаимодействии с ними и формируется целесообразное поведение, направленное на приспособление организма к меняющимся условиям внешней и внутренней среды.

Одним из основных проявлений повреждения ретикулярных структур у человека является потеря сознания. Она бывает при черепно-мозговых травмах, нарушении мозгового кровообращения, опухолях и инфекционных процессах в стволе мозга. Длительность состояния обморока зависит от характера и выраженности нарушений функции ретикулярной активизирующей системы и колеблется от нескольких секунд до многих месяцев. Дисфункция восходящих ретикулярных влияний проявляется тоже потерей бодрости, постоянной патологической сонливостью или частыми приступами засыпания (пароксизмальная гиперсомия), беспокойным ночным сном. Наблюдаются также нарушения (чаще повышении) мышечного тонуса, различные вегетативные изменения, эмоционально-психические расстройства и др.
категории раздела

Тема 13. Ретикулярная формация.

Термин ретикулярная формация предложил в 1865 году немецкий ученый О. Дейтерс. Под этим термином Дейтерс понимал разбросанные в стволе головного мозга клетки, окруженные множеством волокон, идущих в различных направлениях. Именно сетевидное расположение волокон, связывающих между собой нервные клетки, послужило основой для предложенного названия.

В настоящее время морфологами и физиологами накоплен богатый материал о строении и функциях ретикулярной формации. Установлено, что структурные элементы ретикулярной формации локализуются в целом ряде мозговых образований, начиная с промежуточной зоны шейных сегментов спинного мозга (VII пластина), и заканчивая некоторыми структурами промежуточного мозга (интраламинарными ядрами, таламическим ретикулярным ядром). Ретикулярная формация состоит из значительного числа нервных клеток (в ней содержится почти 9/10 клеток всего ствола мозга). Общие черты строения ретикулярных структур — наличие особых ретикулярных нейронов и отличительный характер связей.

Рис. 1. Нейрон ретикулярной формации. Сагиттальный разрез ствола мозга крысенка.

На рисунке А представлен только один нейрон ретикулярной формации. Видно, что аксон разделяется на каудальный и ростральный сегменты, большой протяженности, со множеством коллатералей. Б. Коллатерали. Сагиттальный разрез нижней части ствола мозга крысенка, показывающий соединения коллатералей большого нисходящего пути (пирамидный путь) с ретикулярными нейронами. Коллатерали восходящих путей (сенсорные пути), отсутствующие на рисунке, соединяются с ретикулярными нейронами подобным же образом (по Шейбэлу М. Э. и Шейбэлу А. Б.)

Наряду с многочисленными отдельно лежащими нейронами, различными но форме и величине, в ретикулярной формации головного мозга имеются ядра. Рассеянные нейроны ретикулярной формации прежде всего играют важную роль в обеспечении сегментарных рефлексов, замыкающихся на уровне ствола головного мозга. Они выступают в качестве вставочных нейронов при осуществлении таких рефлекторных актов, как моргание, роговичный рефлекс и т. д.

Выяснено значение многих ядер ретикулярной формации. Так, ядра, расположенные в продолговатом мозге, имеют связи с вегетативными ядрами блуждающего и языкоглоточного нервов, симпатическими ядрами спинного мозга, они участвуют в регуляции сердечной деятельности, дыхания, тонуса сосудов, секреции желез и т. д.

Установлена роль голубого пятна и ядер шва в регуляции сна и бодрствования. Голубое пятно , находится в верхнелатеральной части ромбовидной ямки. Нейроны этого ядра продуцируют биологически активное вещество — норадреналин , который оказывает активирующее воздействие на нейроны вышележащих отделов мозга. Особенно высока активность нейронов голубого пятна во время бодрствования, во время глубокого сна она угасает почти полностью. Ядра шва располагаются по срединной линии продолговатого мозга. Нейроны этих ядер вырабатывают серотонин , который вызывает процессы разлитого торможения и состояние сна.

Ядра Кахаля и Даркшевича , относящиеся к ретикулярной формации среднего мозга, имеют связи, с ядрами III, IV, VI, VIII и XI пар черепных нервов. Они координируют работу этих нервных центров, что очень важно для обеспечения сочетанного поворота головы и глаз. Ретикулярная формация ствола головного мозга имеет важное значение в поддержании тонуса скелетной мускулатуры, посылая тонические импульсы на мотонейроны двигательных ядер черепных нервов и двигательных ядер передних рогов спинного мозга. В процессе эволюции из ретикулярной формации выделились такие самостоятельные образования, как красное ядро, черное вещество.

По структурно-функциональным критериям ретикулярная формация делится на 3 зоны:

1. Медианную, расположенную по средней линии;

2. Медиальную, занимающую медиальные отделы ствола;

3. Латеральную, нейроны которой лежат вблизи сенсорных образований.

Медианная зона представлена элементами шва, состоящие из ядер, нейроны которых синтезируют медиатор – серотонин. Система ядер шва принимает участие в организации агрессивного и полового поведения, в регуляции сна.

Медиальная (осевая) зона состоит из мелких нейронов, которые не ветвятся.

Что такое ретикулярная формация

В зоне располагается большое количество ядер. Встречаются также крупные мультиполярные нейроны с большим числом густо ветвящихся дендритов. Они образуют восходящие нервные волокна в кору больших полушарий и нисходящие нервные волокна в спинной мозг. Восходящие пути связи медиальной зоны оказывают активирующее влияние (прямо или опосредованно через таламус) на новую кору. Нисходящие пути оказывают тормозящее влияние.

Латеральная зона – к ней относятся ретикулярные образования, расположенные в стволе мозга вблизи сенсорных систем, а также ретикулярные нейроны, лежащие внутри сенсорных образований. Основным компонентом этой зоны является группы ядер, которые примыкают к ядру тройничного нерва. Все ядра латеральной зоны (за исключением ретикулярного латерального ядра продолговатого мозга) состоят из нейронов малой и средней величины и лишены крупных элементов. В этой зоне располагаются восходящие и нисходящие пути, обеспечивающие связь сенсорных образований с медиальной зоной ретикулярной формации и моторными ядрами ствола. Эта часть ретикулярной формации является более молодым и возможно прогрессивнее, с ее развитием связан факт уменьшения объема осевой ретикулярной формации в ходе эволюционного развития. Таким образом, латеральная зона – это совокупность элементарных интегративных единиц, сформированных вблизи и внутри специфических сенсорных систем.

Рис. 2. Ядра ретикулярной формации (РФ) (по: Niuwenhuys еt. аl, 1978).

1-6 - медианная зона РФ: 1-4- ядра шва (1 - бледное, 2 - темное, 3 - большое, 4- мостовое), 5 - верхнее центральное, 6 - дорсальное ядро шва, 7-13 - медиальная зона РФ: 7 - ретикулярное парамедианное, 8 - гигантоклеточное, 9 - ретикулярное ядро покрышки моста, 10, 11 - каудальное (10) и оральное (11) ядра моста, 12 - дорсальное покрышечное ядро (Гуддена), 13 - клиновидное ядро, 14- I5-латеральная зона РФ: 14 - центральное ретикулярное ядро продолговатого мозга, 15 - латеральное ретикулярное ядро, 16, 17 - медиальное (16) и латеральное (17) парабрахиальные ядра, 18, 19 - компактная (18) и рассеянная (19) части педункуло-понтийного ядра.

Благодаря нисходящим влияниям ретикулярная формация оказывает тоническое влияние и на мотонейроны спинного мозга, что в свою очередь повышает тонус скелетной мускулатуры, совершенствует систему обратной афферентной связи. В результате любой двигательный акт совершается значительно эффективнее, осуществляет более точный контроль за движением, но чрезмерное возбуждение клеток ретикулярной формации может привести к дрожанию мышц.

В ядрах ретикулярной формации находятся центры сна и бодрствования, и стимуляция тех или иных центров приводит или к наступлению сна, или к пробуждению. На этом основано применение снотворных. В ретикулярной формации расположены нейроны, реагирующие на болевые раздражения, идущие от мышц или внутренних органов. В ней также расположены специальные нейроны, которые обеспечивают быструю реакцию на внезапные, неопределенные сигналы.

Ретикулярная формация тесно связана с корой больших полушарий, благодаря этому формируется функциональная связь между внешними отделами ЦНС и стволом головного мозга. Ретикулярная формация играет важную роль как в интеграции сенсорной информации, так и в контроле над деятельностью всех эффекторных нейронов (моторных и вегетативных). Она имеет также первостепенное значение для активации коры больших полушарий, для поддержания сознания.

Необходимо отметить, что кора полушарий большого мозга, и в свою очередь, посылает по корково-ретикулярным путям импульсы в ретикулярную формацию. Эти импульсы возникают в основном в коре лобной доли и проходят в составе пирамидных путей. Корково-ретикулярные связи оказывают либо тормозное, либо возбуждающее действие на ретикулярную формацию ствола головного мозга, они осуществляют корректировку прохождения импульсов по эфферентным путям (отбор эфферентной информации).

Таким образом, между ретикулярной формацией и корой полушарий большого мозга имеется двусторонняя связь, которая обеспечивает саморегуляцию в деятельности нервной системы. От функционального состояния ретикулярной формации зависит тонус мускулатуры, работа внутренних органов, настроение, концентрация внимания, память и т. д. В целом ретикулярная формация создает и поддерживает условия для осуществления сложной рефлекторной деятельности с участием коры полушарий большого мозга.

Поиск Лекций

IV. Ретикулярная формация

Ретикулярная формация – протяженная структура в стволе мозга – важная интегративная область неспецифической системы. Первые описания ретикулярной формации (РФ) ствола мозга были сделаны немецкими морфологами: в 1861 г. К. Рейхертом (Reichert K., 1811-1883) и в 1863 г. О. Дейтерсом (Deiters O., 1834-1863); из отечественных исследователей большой вклад в ее изучение внес В.М. Бехтерев. РФ — это совокупность нервных клеток и их отростков, расположенных в покрышке всех уровней ствола между ядрами черепных нервов, оливами, проходящими здесь афферентными и эфферентными проводящими путями (рисунок 17). К ретикулярной формации иногда от носят и некоторые медиальные структуры промежуточного мозга, в том числе медиальные ядра таламуса.

Клетки РФ различны по форме и величине, длине аксонов, расположены преимущественно диффузно, местами образуют скопления — ядра, которые обеспечивают интеграцию импульсов, поступающих от расположенных поблизости черепных ядер или проникающих сюда по коллатералям от проходящих через ствол афферентных и эфферентных проводящих путей. Среди связей ретикулярной формации ствола мозга важнейшими можно считать корково- ретикулярные, спинно-ретикулярные пути, связи между РФ ствола с образованиями промежуточного мозга и стриопаллидарной системой, мозжечково-ретикулярные пути. Отростки клеток РФ формируют афферентные и эфферентные связи между содержащимися в покрышке ствола ядрами черепных нервов и проекционными проводящими путями, входящими в состав покрышки ствола. По коллатералям от проходящих через ствол мозга афферентным путям РФ получает «подзаряжающие» ее импульсы и выполняет при этом функции аккумулятора и генератора энергии. Следует отметить и высокую чувствительность РФ к гуморальным факторам, в том числе к гормонам, лекарственным средствам, молекулы которых достигают ее гематогенным путем.

Рис.17. Ретикулярная формация.

Нейроны ретикулярной формации собраны в ядра, выполняющие специфические функции, и посылают отростки в большинство областей мозговой коры. Различают восходящую ретикулярную систему (слева), вызывающую активацию коры, и нисходящую ретикулярную систему (справа), главным образом регулирующую постуральный тонус (поддержание позы) благодаря тормозному и облегчающему влиянию на двигательные пути, спускающиеся из моторной коры в спинной мозг

К восходящей активирующей системе относятся ядра ретикулярной формации, расположенные, главным образом, на уровне среднего мозга, к которым подходят коллатерали от восходящих чувствительных систем. Возникающие в этих ядрах нервные импульсы по полисинаптическим проводящим путям, проходя через интраламинарные ядра таламуса, субталамические ядра к коре больших полушарий, оказывают на нее активирующее влияние. Восходящие влияния неспецифической активирующей ретикулярной системы имеют большое значение в регуляции тонуса коры больших полушарий, а также в регуляции процессов сна и бодрствования.

В случаях поражения активирующих структур ретикулярной формации, а также при нарушении ее связей с корой больших полушарий возникает снижение уровня сознания, активности психической деятельности, в частности когнитивных функций, двигательной активности. Возможны проявления оглушенности, общей и речевой гипокинезии, акинетического мутизма, сопора, комы, вегетативного состояния.

В составе РФ имеются отдельные территории, получившие в процессе эволюции элементы специализации — вазомоторный центр (депрессорные и прессорные его зоны), дыхательный центр (экспираторный и инспираторный), рвотный центр. РФ содержит структуры, влияющие на соматопсиховегетативную интеграцию . РФ обеспечивает поддержание витальных рефлекторных функций — дыхания и сердечно-сосудистой деятельности, принимает участие в формировании таких сложных двигательных актов, как кашель, чиханье, жевание, рвота, сочетанная работа речедвигательного аппарата, общей двигательной активности.

Нисходящие влияния РФ на спинной мозг сказываются прежде всего на состоянии мышечного тонуса и могут быть активирующими или понижающими мышечный тонус, что важно для формирования двигательных актов. Обычно активация или торможение восходящих и нисходящих влияний РФ осуществляется параллельно. Так, во время сна, для которого характерно торможение восходящих активирующих влияний, происходит торможение и нисходящих неспецифических проекций, что проявляется, в частности, снижением тонуса мышц.

Функции РФ еще не вполне изучены. Считается, что она участвует в ряде процессов:

– регуляция возбудимости коры: уровня осознания стимулов и реакций, ритма сон–бодрствование (восходящая активирующая ретикулярная система);

– придание аффективно–эмоциональной окраски сенсорным стимулам, особенно болевым, за счет передачи афферентной информации в лимбическую систему;

– двигательная регуляция функций, в том числе жизненно важных рефлексов (кровообращения, дыхания, глотания, кашля и чихания), при которых должны взаимно координироваться разные афферентные и эфферентные системы;

– участие в регуляции позных и целенаправленных движений в качестве важного компонента двигательных центров ствола мозга.

V. Мозжечок

Мозжечок располагается под дубликатурой твердой мозговой оболочки, известной как намет мозжечка , который разделяет полость черепа на два неравных пространства — супратенториальное и субтенториальное. В субтенториальном пространстве, дном которого является задняя черепная ямка, помимо мозжечка, находится ствол мозга. Объем мозжечка составляет в среднем 162 см3. Масса его варьирует в пределах 136-169 г.

Мозжечок находится над мостом и продолговатым мозгом. Вместе с верхним и нижним мозговыми парусами он составляет крышу IV желудочка мозга, дном которого является так называемая ромбовидная ямка. Над мозжечком находятся затылочные доли большого мозга, отделенные от него наметом мозжечка.

В мозжечке различают два полушария . Между ними в сагиттальной плоскости над IV желудочком мозга располагается филогенетически наиболее древняя часть мозжечка — его червь . Червь и полушария мозжечка фрагментируются на дольки глубокими поперечными бороздами.

Мозжечок состоит из серого и белого веществ. Серое вещество формирует кору мозжечка и находящиеся в его глубине парные ядра (рисунок 18). Самые крупные из них — зубчатые ядра — расположены в полушариях. В центральной части червя имеются ядра шатра , между ними и зубчатыми ядрами находятся шаровидные и пробковидные ядра .

Рис. 18.Ядра мозжечка.

1 — зубчатое ядро; 2 — пробковидное ядро; 3 — ядро шатра; 4 — шаровидное ядро.

Рис. 19. Сагиттальный срез мозжечка и ствола мозга.

1 — мозжечок; 2 — «древо жизни»; 3 — передний мозговой парус; 4 — пластинка четверохолмия; 5 — водопровод мозга; 6 — ножка мозга; 7 — мост; 8 — IV желудочек, его сосудистое сплетение и шатер; 9 — продолговатый мозг.

Ввиду того, что кора покрывает всю поверхность мозжечка и проникает в глубину его борозд, на сагиттальном разрезе мозжечка ткань его имеет рисунок листа, прожилки которого образованы белым веществом (рисунок 19), составляющим так называемое древо жизни мозжечка . В основании древа жизни находится клиновидная выемка, являющаяся верхней частью полости IV желудочка; края этой выемки образуют его шатер. Крышей шатра служит червь мозжечка, а переднюю и заднюю его стенки составляют тонкие мозговые пластинки, известные под названием переднего и заднего мозговых парусов.

В кору мозжечка импульсы поступают по проникающим в нее из белого вещества мшистым и ползучим волокнам, составляющим афферентные пути мозжечка.

Функции ретикулярной формации

По мшистым волокнам импульсы, поступающие из спинного мозга, вестибулярных ядер и ядер моста, передаются на клетки зернистого слоя коры. Аксоны этих клеток вместе с ползучими волокнами, проходящими через зернистый слой транзитом и несущими в мозжечок импульсы от нижних олив, доходят до поверхностного, молекулярного слоя мозжечка. Здесь аксоны клеток зернистого слоя и ползучие волокна Т-образно делятся, причем в молекулярном слое их разветвления принимают направление, продольное поверхности мозжечка.

Импульсы, достигшие молекулярного слоя коры, пройдя через синаптические контакты, попадают на располагающиеся здесь же разветвления дендритов клеток Пуркинье. Далее они следуют по дендритам клеток Пуркинье к их телам, расположенным на границе молекулярного и зернистого слоев. Затем по аксонам тех же клеток, пересекающих зернистый слой, проникают в глубину белого вещества. Заканчиваются аксоны клеток Пуркинье в ядрах мозжечка. Главным образом в зубчатом ядре. Эфферентные импульсы, идущие от мозжечка по аксонам клеток, составляющих его ядра и принимающих участие в формировании мозжечковых ножек, покидают мозжечок.

Мозжечок имеет три пары ножек: нижнюю, среднюю и верхнюю. Нижняя ножка связывает его с продолговатым мозгом, средняя — с мостом, верхняя — со средним мозгом. Ножки мозга составляют проводящие пути, несущие импульсы к мозжечку и от него.

Червь мозжечка обеспечивает стабилизацию центра тяжести тела, его равновесие, устойчивость, регуляцию тонуса реципрокных мышечных групп, главным образом шеи и туловища, и возникновение при этом физиологических мозжечковых синергий, стабилизирующих равновесие тела.

Для успешного поддержания равновесия тела мозжечок постоянно получает информацию, проходящую по спиноцеребеллярным путям от проприоцепторов различных частей тела, а также от вестибулярных ядер, нижних олив, ретикулярной формации и других образований, участвующих в контроле за положением частей тела в пространстве. Большинство афферентных путей, идущих к мозжечку, проходит через нижнюю мозжечковую ножку, часть их расположена в верхней мозжечковой ножке.

Через свои средние ножки мозжечок получает импульсы из коры больших полушарий мозга. Эти импульсы проходят по корково-мостомозжечковым путям.

Часть импульсов, возникших в коре больших полушарий мозга, достигает противоположного полушария мозжечка, принося информацию не о произведенном, а лишь о намечаемом к выполнению активном движении. Получив такую информацию, мозжечок моментально высылает импульсы, корригирующие произвольные движения, главным образом, путем погашения инерции и наиболее рациональной регуляции тонуса реципрокных мышц мышц-агонистов и антагонистов. В результате создается своеобразная эйметрия,делающая произвольные движения четкими, отточенными, лишенными нецелесообразных компонентов.

Пути, выходящие из мозжечка, состоят из аксонов клеток, тела которых формируют его ядра. Большинство эфферентных путей, в том числе пути, идущие от зубчатых ядер, покидают мозжечок через его верхнюю ножку. На уровне нижних бугров четверохолмия совершается перекрест эфферентных мозжечковых путей (перекрест верхних мозжечковых ножек Вернекинга). После перекреста каждый из них достигает красных ядер противоположной стороны среднего мозга. В красных ядрах мозжечковые импульсы переключаются на следующий нейрон и дальше движутся по аксонам клеток, тела которых заложены в красных ядрах. Эти аксоны формируются в красноядерно-спинномозговые проводящие пути , которые вскоре после выхода из красных ядер подвергаются перекресту (перекрест покрышки или перекрест Фореля), после чего спускаются в спинной мозг. В спинном мозге красноядерноспинномозговые пути располагаются в боковых канатиках; составляющие их волокна заканчиваются у клеток передних рогов спинного мозга.

Из ядер червя мозжечка эфферентные пути идут в основном через нижнюю мозжечковую ножку к ретикулярной формации ствола мозга и вестибулярным ядрам. Отсюда по ретикулоспинномозговым и вестибулоспинномозговым путям, проходящим по передним канатикам спинного мозга, они также достигают клеток передних рогов. Часть импульсов, идущих от мозжечка, пройдя через вестибулярные ядра, попадает в медиальный продольный пучок, доходит до ядер III, IV и VI черепных нервов, обеспечивающих движения глазных яблок, и оказывает влияние на их функцию.

Таким образом:

1. Каждая половина мозжечка получает импульсы в основном а) из гомолатеральной половины тела, б) из противоположного полушария мозга, имеющего кортико-спинальные связи с той же половиной тела.

2. От каждой половины мозжечка эфферентные импульсы направляются к клеткам передних рогов гомолатеральной половины спинного мозга и к ядрам черепных нервов, обеспечивающих движения глазных яблок.

Такой характер мозжечковых связей позволяет понять, почему при поражении одной половины мозжечка мозжечковые расстройства возникают преимущественно в той же, т.е. гомолатеральной, половине тела. Это особенно отчетливо проявляется при поражении полушарий мозжечка.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Ретикулярная формация

Термин «ретикулярная формация» (англ. ret – сеть) был введен впервые Дейтерсом более 100 лет назад. Ретикулярная формация (РФ) располагается в центральной части мозгового ствола, заходя ростральным концом в таламус, а каудальным – в спинной мозг. Благодаря наличию сетевых связей почти со всеми структурами центральной нервной системы она получила название ретикулярной, или сетевой, формации.

Различные по форме и величине нейроны РФ имеют длинные дендриты и короткий аксон, хотя встречаются гигантские нейроны с длинными аксонами, образующими, например, руброспинальный и ретикулоспинальный тракты. На одной нервной клетке может заканчиваться до 40 000 синапсов, что указывает на широкие межнейрональные связи в пределах РФ. В ней был выделен целый ряд ядер и ядерных групп, отличающихся как в структурном отношении, так и выполняемыми ими функциями.

Ретикулярная формация образует многочисленные как афферентные пути: спиноретикулярный, церебеллоретикулярный, корково‑подкорково‑ретикулярный (от коры, базальных ганглиев, гипоталамуса), от структур каждого уровня ствола мозга (от среднего мозга, варолиева моста, продолговатого мозга), так и эфферентные: нисходящие ретикулоспинальные, ретикулокорково‑подкорковые, ретикуломозжечковые, а также пути к другим структурам ствола мозга.

Ретикулярная формация оказывает генерализованное, тонизирующее, активирующее влияние на передние отделы головного мозга и кору больших полушарий (восходящая активирующая система РФ) и нисходящее, контролирующее деятельность спинного.мозга (нисходящая ретикулоспинальная система), которое может быть как облегчающим на многие функции организма, так и тормозным. Одним из видов тормозного влияния РФ на рефлекторную деятельность спинного мозга является сеченовское торможение, заключающееся в угнетении спинальных рефлексов при раздражении таламической ретикулярной формации кристалликом соли.

Г. Мэгун показал, что локальное электрическое раздражение гигантоклеточного ядра РФ продолговатого мозга вызывает торможение сгибательного и разгибательного рефлексов спинного мозга, а на мотонейроне возникает длительный ТПСП и постсинаптическое торможение по типу гиперполяризации.

Тормозные влияния на сгибательные рефлексы оказывает преимущественно медиальная ретикулярная формация продолговатого мозга, а облегчающие – латеральные зоны РФ моста.

Ретикулярная формация принимает участие в реализации многих функций организма. Так, РФ контролирует двигательную активность, постуральный тонус и фазные движения.

В 1944 г. в США во время эпидемии полиомиелита – заболевания, нарушающего двигательную активность, основные структурные изменения были обнаружены в ретикулярной формации. Это навело американского ученого Г. Мэгуна на мысль об участии РФ в моторной активности. Основными ее структурами, отвечающими за этот вид деятельности, являются ядро Дейтерса продолговатого мозга и красное ядро среднего мозга. Ядро Дейтерса поддерживает тонус альфа‑ и гамма‑мотонейронов спинного мозга, иннервирующих мышцы‑разгибатели, и тормозит альфа‑ и гамма‑мотонейроны мышц‑сгибателей. Красное ядро, напротив, тонизирует альфа‑ и гамма‑мотонейроны мышц‑сгибателей и тормозит альфа‑ и гаммамотонейроны мышц‑разгибателей. Красное ядро оказывает тормозное влияние на ядро Дейтерса, поддерживая равномерный тонус мышц‑разгибателей. Повреждения или перерезка мозга между средним и продолговатым приводит к снятию тормозных влияний со стороны красного ядра на ядро Дейтерса, а значит, и на тонус мышц‑разгибателей, который начинает преобладать над тонусом мышц‑сгибателей и возникает децеребрационная ригидность или повышенный тонус мышц, проявляющийся в сильном сопротивлении растяжению. Такое животное имеет характерную позу тела: запрокинута голова, вытянуты передние и задние конечности. Поставленное на ноги, оно при малейшем толчке падает, так как отсутствует тонкая регуляция позы тела.

Раздражение ретикулярной формации вызывает тремор, спастический тонус.

РФ среднего мозга играет роль в координации сокращений глазных мышц. Получив информацию от верхних бугров четверохолмия, мозжечка, вестибулярных ядер, зрительных областей коры головного мозга, РФ ее интегрирует, что приводит к рефлекторным изменениям работы глазодвигательного аппарата, особенно при внезапном появлении движущихся объектов, изменении положения головы и глаз.

Ретикулярная формация регулирует вегетативные функции, в реализации которых принимают участие так называемые стартовые нейроны РФ, запускающие процесс возбуждения внутри определенной группы нейронов, отвечающих за дыхательные и сосудодвигательные функции. В РФ продолговатого мозга расположены два ядра, одно из них отвечает за вдох, другое – за выдох. Их деятельность контролируется пневмотаксическим центром РФ варолиева моста. Раздражением этих участков РФ можно воспроизвести различные дыхательные акты.

Сосудодвигательный центр расположен в ромбовидной ямке дна четвертого желудочка, входящего в состав РФ. При электрораздражении определенных точек варолиева моста и продолговатого мозга возникают сосудодвигательные реакции.

Ретикулярная формация связана со всеми отделами коры мозга с помощью диффузной неспецифической проекционной афферентной системы, которая, в отличие от специфической, проводит возникшее на периферии возбуждение к коре больших полушарий медленно через последовательно связанные многонейронные системы.

Ретикулярная формация

РФ оказывает активирующее восходящее влияние на кору больших полушарий. Раздражение РФ вызывает «реакцию пробуждения», а на электроэнцефалограмме – десинхронизацию альфа‑ритма и ориентировочный рефлекс.

Перерезка головного мозга ниже РФ вызывает картину бодрствования, выше – сна. РФ регулирует цикл «сон‑бодрствование».

Ретикулярная формация оказывает влияние на сенсорные системы мозга: на остроту слуха, зрения, обонятельные ощущения. Так, повреждение РФ и барбитуровый наркоз приводят к усилению сенсорных импульсов, которые в норме находятся под тормозным, регулирующим влиянием РФ. Восприятие различных ощущений при сосредоточении внимания на каком‑либо другом ощущении, привыкание к повторяющимся раздражителям также объясняется ретикулярными влияниями.

В ретикулярной формации продолговатого, среднего мозга и таламуса имеются нейроны, реагирующие на болевые раздражения от мышц и внутренних органов, при этом создается ощущение тупой боли.

Ретикулярной формацией называется сеть нейронов различных типов и размеров, имеющих многочисленные связи между собой, а также со всеми структурами ЦНС. Она располагается в толще серого вещества продолговатого, среднего и промежуточного мозга и регулирует уровень функциональной активности (возбудимость) всех нервных центров этих отделов ЦНС. Таким же образом она влияет на кору больших полушарий.

В ЦНС выделяют две подсистемы, выполняющие разные организующие функции: специфическую и неспецифическую . Первая обеспечивает восприятие, проведение, анализ и синтез сигналов специфической чувствительности. К ним относятся все ее виды, т.е. зрительная, слуховая, болевая и т.д.

Неспецифической подсистемой является ретикулярная формация. Она оказывает генерализованное возбуждающее или тормозящее влияние на многие структуры мозга. Следовательно, она может регулировать уровень функциональной активности моторной, сенсорной, висцеральных систем и организма в целом. Когда нервные импульсы идут по специфическим проводящим путям, по коллатералям этих путей они поступают и к нейронам ретикулярной формации. Это приводит к их диффузному возбуждению. От нейронов ретикулярной формации возбуждение передается на кору, что сопровождается возбуждением нейронов всех ее зон и слоев. Благодаря этому восходящему активирующему влиянию ретикулярной формации, повышается активность аналитико-синтетической деятельности, увеличивается скорость рефлексов, организм подготавливается к реакции на неожиданную ситуацию. Поэтому ретикулярная формация участвует в организации оборонительного, полового, пищеварительного поведения. С другой стороны, она может избирательно активировать или тормозить определенные системы мозга. В свою очередь кора больших полушарий, через нисходящие пути, может оказывать возбуждающее действие на ретикулярную формацию.

Нисходящие ретикулоспинальные пути идут от ретикулярной формации к нейронам спинного мозга. Поэтому она может оказывать нисходящие возбуждающие и тормозящие влияния на его нейроны. Например, ее гипоталамические и мезэнцефальные отделы повышают активность альфа-мотонейронов спинного мозга. В результате этого растет тонус скелетных мышц, усиливаются двигательные рефлексы. Тормозящее влияние ретикулярной формации на спинальные двигательные центры осуществляется через тормозные нейроны Реншоу. Это приводит к торможению спинальных рефлексов.

Ретикулярная формация контролирует передачу сенсорной информации через продолговатый, средний мозг, а также ядра таламуса.

Она непосредственно участвует в регуляции бодрствования и сна, за счет синхронизирующих центров сна и бодрствования, находящихся в ней.

На нейроны ретикулярной формации оказывают влияние различные фармакологические вещества: амфетамины, кофеин, LSB – 25, морфин (опыт Эдисона).

Функции мозжечка.

Мозжечок состоит их двух полушарий и червя между ними. Серое вещество образует кору и ядра. Белое образовано отростками нейронов. Мозжечок получает афферентные нервные импульсы от тактильных рецепторов, рецепторов вестибулярного аппарата, проприорецепторов мышц и сухожилий, а также двигательных зон коры. Эфферентные импульсы от мозжечка идут к красному ядру среднего мозга, ядру Дейтерса продолговатого мозга, к таламусу, а затем к мотонейроным зонам коры больших полушарий и подкорковым ядрам.

Общей функцией мозжечка является регуляция позы и движения. Эту функцию он осуществляет путем координации активности других двигательных центров: вестибулярных ядер, красного ядра, пирамидных нейронов коры. Поэтому он выполняет следующие двигательные функции:

    Регуляцию мышечного тонуса позы.

    Коррекцию медленных целенаправленных движений в ходе их выполнения, а также координацию этих движений с рефлексами положения тела.

    Контроль за правильным выполнением быстрых движений, осуществляемых корой.

В связи с тем, что мозжечок выполняет данные функции. При его удалении у животного развивается комплекс двигательных нарушений, называемый триадой Лючиани . Он включает:

    Атония и дистония – снижение и неправильное распределение тонуса скелетных мышц.

    Астазия – невозможность слитного сокращения мышц, а как следствие, сохранения устойчивого положения тела при стоянии, сидении (покачивание).

    Астения – быстрое утомление мышц.

    Атаксия – плохая координация движений при ходьбе. Неустойчивая «пьяная» походка.

    Адиадохокинез – нарушение правильной последовательности быстрых целенаправленных движений.

В клинике умеренные поражения мозжечка проявляются триадой Шарко :

    Нистагм глаз в состоянии покоя.

    Тремор конечностей, возникающий при их движениях.

    Дизартрия – нарушение речи.

Л. А. Орбели установил, что мозжечок влияет и на различные вегетативные функции. Это влияния могут быть возбуждающими и тормозящими. Например, при раздражении мозжечка увеличивается или снижается кровяное давление, изменяется частота сердцебиений, дыхание, пищеварение. Мозжечок влияет на обмен веществ. На эти функции он воздействует через вегетативные нервные центры, координация их активности с движением. Функции внутренних органов изменяются в связи с изменением обменных процессов в них. Поэтому мозжечок оказывает на них адаптационно-трофическое влияние.

Ретикулярная формация (лат. rete - сеть) представляет собой совокупность клеток, клеточных скоплений и нервных волокон, расположенных на всем протяжении ствола мозга (продолговатый мозг, мост, средний и промежуточный мозг) и в центральных отделах спинного мозга. Ретикулярная формация получает информацию от всех органов чувств, внутренних и других органов, оценивает ее, фильтрует и передает в лимбическую систему и кору большого мозга. Она регулирует уровень возбудимости и тонуса различных отделов центральной нервной системы, включая кору большого мозга, играет важную роль в сознании, мышлении, памяти, восприятии, эмоциях, сне, бодрствовании, вегетативных функциях, целенаправленных движениях, а также в механизмах формирования целостных реакций организма. Ретикулярная формация прежде всего выполняет функцию фильтра, который позволяет важным для организма сенсорным сигналам активировать кору мозга, но не пропускает привычные для него или повторяющиеся сигналы.

Ретикулярная формация представляет собой важный пункт на пути восходящей неспецифической соматосенсорной системы. Соматовисцеральные афференты идут в составе спиноретикулярного тракта (переднебоковой канатик), а также, возможно, в составе проприоспинальных (полисинаптических) путей и соответствующих путей от ядра спинального тройничного тракта. К ретикулярной формации приходят также пути от всех других афферентных черепномозговых нервов, т.е. практически от всех органов чувств. Дополнительная афферентация поступает от многих других отделов головного мозга - от моторных областей коры и сенсорных областей коры, от таламуса и гипоталамуса. Имеется также множество эфферентных связей - нисходящие к спинному мозгу и восходящие через неспецифические таламические ядра к коре головного мозга, гипоталамусу и лимбической системе. Большинство нейронов образует синапсы с двумя - тремя афферентами разного происхождения, такая полисенсорная конвергенция характерна для нейронов ретикулярной формации. Другими их свойствами являются большие рецептивные поля поверхности тела, часто билатеральные, длительный латентный период ответа на периферическую стимуляцию (вследствие мультисинаптического проведения), слабая воспроизводимость реакции (стохастические колебания числа потенциалов действия при повторной стимуляции). Все эти свойства противоположны свойствам лемнисковых нейронов в специфических ядрах соматосенсорной системы (рис.9-7 и рис. 5-13).

Функции ретикулярной формации изучены не полностью. Считается, что она участвует в следующих процессах:

1. в регуляции уровня сознания путем воздействия на активность корковых нейронов, например, участие в цикле сон / бодрствование,

2. в придании аффективно-эмоциональной окраски сенсорным стимулам, в том числе болевым сигналам, идущим по переднебоковому канатику, путем проведения афферентной информации к лимбической системе,

3. в вегетативных регулирующих функциях, в том числе во многих жизненно важных рефлексах (циркуляторных рефлексах и дыхательных рефлексах, рефлекторных актах глотания, кашля, чихания), при которых должны взаимно координироваться разные афферентные и эфферентные системы,

4. в целенаправленных движениях в качестве важного компонента двигательных центров ствола мозга.

Вопрс48. Сравнительная характеристика кабельного и сальтаторного видов проведения возбуждения

Нервная ткань обладает таким физиологическим свойством как проводимость, т. е. способностью проводить возбуждение по ходу нервного волокна в виде потенциала действия. Выделяют два вида проведения возбуждения в зависимости от строения нервного волокна. Различают два вида нервных волокон: мякотные (миелиновые) и безмякотные (немиелиновые). В безмякотных нервных волокнах наблюдается непрерывное распространение возбуждения, в основе которого лежат локальные или круговые токи. Как было сказано раньше, возбужденный электроотрицательный участок нервного волокна становится раздражителем для ближайшего невозбужденного электроположительного участка, который возбуждается (возбужденный участок как бы разряжается в сторону невозбужденного, следствием чего и являются появление локальных или круговых токов).

Миелин, прокрывающий нервное волокно, располагается сегментами, т. е. прерывисто. Миелин - хороший изолятор и, если бы он сплошным слоем покрывал нервное волокно, то возбуждение не распространялось бы. Миелиновая оболочка образуется клетками неврилеммы или шванновскими клетками. Плазматическая мембрана одной шванновской клетки обвертывает спирально в несколько слоев участок аксона, длиной в несколько сотых микрон. Между участками аксона, покрытого миелиновой оболочкой, остаются немиеленизированные зоны. Эти зоны называются перехватами Ранвье.

В волокнах, покрытых миелиновой оболочкой (мякотные волокна) возбуждение распространяется скачкообразно (сальтаторно), т. е. по перехватам Ранвье. Как было показано японским физиологом Тасаки, это создает своеобразную систему надежности для распространения возбуждения (разности потенциалов между возбужденным и невозбужденным участками волокна хватает на 5-6 перехватов Ранвье). В случае, если появится повреждение на небольшом участке волокна вследствие большого электрического поля распространение потенциала действия не нарушается. Как известно, начальная часть аксона в нервной клетке не покрыта миелиновой оболочкой. Именно в этом участке волокна и формируется потенциал действия. Возникает разность потенциалов между возбужденным и невозбужденным участком первого перехвата Ранвье, который под влиянием этого электрического поля возбуждается. Затем разность потенциалов формируется между возбужденным первым перехватом Ранвье и следующим, который перезаряжается и возбуждение приобретает распространяющий характер. Таким образом, в основе распространения возбуждения по мякотному волокну, как и безмякотному, лежат также местные (круговые, вихревые) токи. В перехватах Ранвье, находящихся друг от друга на расстоянии 2 мм, обнаружена большая плотность натриевых каналов - до 1200 на 1 мкм2, что значительно облегчает проведение возбуждения по нервному волокну. Прерывистое распространение возбуждения имеет некоторые преимущества по сравнению с непрерывным. Во-первых, скорость распространения возбуждения в волокнах, покрытых миелином, в 8-10 раз быстрее, чем в безмякотных. Во-вторых, на распространение возбуждения прерывистого типа затрачивается меньше энергии, оно более экономично, что, по всей вероятности, связано с большой плотностью натриевых каналов в перехватах Ранвье.

При распространении возбуждения по нервному волокну следует учитывать чисто физические или кабельные свойства проводника (нерв можно представить как кабель, помещенный в морскую воду). К кабельным свойствам относится, в частности, диаметр (поперечное сечение) проводника - чем толще нервное волокно (или больше поперечное сечение), тем меньше сопротивление. Следовательно, тем быстрее будет распространение возбуждения в виде импульса. Большое значение при возбуждении имеет также емкость и сопротивление мембраны. Так, если входное сопротивление мембраны больше, то и возбудимость в этом месте уменьшается. К кабельным свойствам относится также и электротон, оказывающий большое влияние на проводимость: чем выраженнее катэлектротон, тем быстрее проводится потенциал действия. Анэлектротонические изменения, напротив, ухудшают проведение возбуждения по нервной ткани.

В зависимости от скорости проведения возбуждения все нервные волокна делятся на три группы: А, В и С. Нервные волокна группы А - это высокоскоростные волокна, исключительно мякотного типа. В зависти от сечения нервного волокна скорость проведения возбуждения их колеблется в пределах 20-120 м/с. Различают А- волокна - самые скоростные - 70-120 м/с (диаметр волокна 12-20 мкм - a-волокна, их средняя скорость проведения возбуждения составляет 70-120 м/с; диаметр 8-12 мкм - b-волокна, проводящие возбуждение со скоростью 40-70 м/с; диаметр волокна 4-8 мкм - g-волокна, проводящие возбуждение со скоростью 20-40 м/с). Таким образом, чем толще проводник, тем больше скорость проведения возбуждения. Нервные волокна группы В представляют собой в основном безмякотные волокна, скорость распространения возбуждения которых составляет 6-20 м/с. Нервные волокна группы С представлены исключительно безмякотными волокнами вегетативной природы, скорость проведения возбуждения их составляет 0,5-6 м/с.

В физиологии имеется три закона распространения возбуждения.

Закон целостности нерва (закон непрерывности). Нерв проводит возбуждение только в том случае, если он сохраняет свою гистологическую и функциональную целостность. Любые отклонения этих показателей приводят к нарушению его проводимости. Действие местных анестетиков (новокаин) основано на том, что молекулы новокаина блокируют натриевые каналы, в результате чего прекращается натриевый ток и ткань теряет способность возбуждаться. Возбуждение при раздражении болевых рецепторов доходит до места, где действует новокаин и блокируется, вследствие чего болевые импульсы не достигают болевого центра.

Закон двустороннего проведения возбуждения. Нервное волокно способно проводить возбуждение от рецепторов к центрам и наоборот, от центров к периферическим образованиям. Такая закономерность была показана в классических исследования Кюне и Бабухина. Так, опыт Кюне заключался в следующем: если нарушить целостность мышцы между двумя ее участками, которые иннервируются двумя разветвлениями одного аксона, то электрическое раздражение любого из ответвлений аксона приводит к сокращению обеих частей мышцы.

Закон изолированного распространения возбуждения. Известно, что потенциал действия в волокнах, покрытых миелином, не перебрасывается с одного нервного волокна на другое благодаря хорошим изоляционным свойствам миелина. Такое изолированное проведение возбуждения обеспечивает мелкие и точные профессиональные сокращения мышц (игра на пианино, работа часового мастера и др.). Сразу после рождения достаточная миелинизация нервных волокон отсутствует и на любое раздражение новорожденные в большинстве случаев отвечают не локальными, а диффузными сокращениями большой группы мышц. Подобная же ответная реакция наблюдается во всех гладких мышцах, которые иннервируются безмякотными нервными волокнами, не обладающими изоляционнымитсвойствами.

Ретикулярная формация - совокупность нейронов отростки которых образуют своеобразную сеть в пределах центральной нервной системы.Ретикулярная формация открыта Дейтерсом, изучалась В. Бехтеревым, обнаружена в стволе мозга и спинном мозге. Основную роль выполняет ретикулярная формация ствола мозга. Ретикулярная формация занимает центральную часть на уровне продолговатого мозга, варолиевого моста, среднего и промежуточного мозга. Нейроны ретикулярной формации - клетки разнообразной формы, они имеют длинные ветвящиеся аксоны и длинные неветвящиеся дендриты. Дендриты образуют синапсы на нервных клетках. Некоторые дендриты выходят за пределы ствола мозга и доходят до поясничного отдела спинного мозга - они образуют нисходящий ретикулоспинальный путь.
Ретикулярная формация имеет связи с различными отделами центральной нервной системы: в ретикулярную формацию поступают импульсы от различных афферентных нейронов. Они поступают по коллатералям других проводящих путей. Ретикулярная формация не имеет непосредственных контактов с афферентной системой; ретикулярная формация имеет 2-х сторонние связи с нейронами спинного мозга - в основном с мотонейронами; с образованиями ствола мозга (с промежуточным и средним мозгом); с мозжечком, с подкорковыми ядрами (базальными ганглиями), с корой больших полушарий.
В ретикулярной формации ствола мозга различают 2 отдела:

растральный - ретикулярная формация на уровне промежуточного мозга;

каудальный - ретикулярная формация продолговатого мозга, моста и среднего мозга.

Изучены 48 пар ядер ретикулярной формации.

Функции ретикулярной формации изучены в 40-е гг. XX века Мэгуном и Моруции. Они проводили опыты на кошках, помещая электроды в различные ядра ретикулярной формации.

Ретикулярная формация обладает нисходящим и восходящим влиянием.

Нисходящее влияние - на нейроны спинного мозга. Оно (влияние) может быть активирующим и тормозным.

Восходящее влияние - на нейроны коры головного мозга - тоже тормозное и активизирующее. За счет особенности своих нейронов ретикулярная формация способна изменять функциональное состояние нейронов центральной нервной системы.

Особенности нейронов ретикулярной формации:

постоянная спонтанная электрическая активность - обеспечивается гуморальным влиянием и влиянием вышележащих отделов центральной нервной системы. Эта активность не имеет рефлекторного происхождения;

явление конвергенции - к ретикулярной формации идут импульсы по коллатералям различных проводящих путей. Сходясь к телам одних и тех же нейронов импульсы теряют свою специфичность; импульсы, поступая к нейронам ретикулярной формации, изменяют ее функциональную активность - если нейроны обладают выраженной электрической активностью, то под влиянием афферентных импульсов электрическая активность уменьшается и наоборот, т. е. модулируется активность нейронов ретикулярной формации; у нейронов ретикулярной формации низкий порог раздражения и, как следствие, высокая возбудимость; у нейронов ретикулярной формации высокая чувствительность к действию гуморальных факторов: биологически активных веществ, гормонов (адреналина), избытку СО2, недостатку О2 и т. д.;

в состав ретикулярной формации входят нейроны с различными медиаторами: адренэргические, холин-, серотонин-, дофаминэргические.

Ретикулярная формация ствола мозга рассматривается как один из важных интегративных аппаратов мозга. К собственно интегративных функций ретикулярной формации относятся:
1) контроль над состояниями сна и бодрствования,
2) мышечный (фазный и тонический) контроль;
3) обработка информационных сигналов окружающей и внутренней среды организма, которые поступают по разным каналам.
Ретикулярная формация объединяет различные участки ствола мозга (ретикулярную формацию продолговатого мозга, варолиева моста и среднего мозга). В функциональном отношении в ретикулярной формации разных отделов мозга есть много общего, поэтому целесообразно рассматривать ее как единую структуру. Ретикулярная формация представляет собой диффузное накопление клеток разного вида и величины, которые разделены многими волокнами. Кроме этого, в середине ретикулярной формации выделяют около 40 ядер и пидьядер. Нейроны ретикулярной формации имеют широко разветвленные дендриты и продолговатые аксоны, часть которых делится Т-образно (один отросток направлен вниз, образуя ретикулярной-спинальный путь, а второй - в верхние отделы головного мозга).
В ретикулярной формации сходится большое количество афферентных путей из других мозговых структур: из коры большого мозга - коллатерали кортико-спинальных (пирамидных) путей, из мозжечка и других структур, а также коллатеральные волокна, которые подходят через ствол мозга, волокна сенсорных систем (зрительные, слуховые и т.д.). Все они заканчиваются синапсами на нейронах ретикулярной формации. Так, благодаря такой организации ретикулярная формация приспособлена к объединению влияний из различных структур мозга и способна влиять на них, то есть выполнять интегративные функции в деятельности ЦНС, определяя в значительной мере общий уровень ее активности.
Свойства ретикулярных нейронов. Нейроны ретикулярной формации способны к устойчивой фоновой импульсной активности. Большинство из них постоянно генерирует разряды частотой 5-10 Гц. Причиной такой постоянной фоновой активности ретикулярных нейронов являются: во-первых, массивная конвергенция различных афферентных влияний (от рецепторов кожных, мышечных, висцеральных, глаза, уши и др.)., А также воздействий из мозжечка, коры большого мозга, вестибулярных ядер и других мозговых структур на один и тот же ретикулярный нейрон. При этом зачастую в ответ на это возникает возбуждение. Во-вторых, активность ретикулярного нейрона может быть изменена гуморальными факторами (адреналин, ацетилхолин, напряжение С02 в крови, гипоксия и др.).. Эти непрерывные импульсы и химические вещества, содержащиеся в крови, поддерживают деполяризацию мембран ретикулярных нейронов, их способность к устойчивой импульсной активности. В связи с этим ретикулярная формация тоже оказывает на другие мозговые структуры постоянный тонический влияние.
Характерной особенностью ретикулярной формации также высокая чувствительность ее нейронов в различных физиологически активных веществ. Благодаря этому деятельность ретикулярных нейронов может быть сравнительно легко блокирована фармакологическими препаратами, которые связываются с циторецепторамы мембран этих нейронов. Особенно активными в этом отношении соединения барбитуровой кислоты (барбитураты), аминазин и другие лекарственные препараты, которые широко применяются в медицинской практике.
Характер неспецифических влияний ретикулярной формации. Ретикулярная формация ствола мозга участвует в регуляции вегетативных функций организма. Однако еще в 1946 г. американский нейрофизиолог Н. W. Megoun и его сотрудники обнаружили, что ретикулярная формация имеет непосредственное отношение к регуляции соматической рефлекторной деятельности. Было доказано, что ретикулярная формация оказывает диффузный неспецифический, нисходящий и восходящий влияние на другие мозговые структуры.
Нисходящее влияние.

Восходящий влияние. Исследования Н. W. Megoun, G. Moruzzi (1949) показали, что раздражение ретикулярной формации (заднего, среднего и промежуточного мозга) сказывается на деятельности высших отделов головного мозга, в частности коры большого мозга, обеспечивая переход ее в активный (неепання) состояние. Это положение подтверждается данными многочисленных экспериментальных исследований и клинических наблюдений. Так, если животное находится в состоянии сна, то прямое раздражение ретикулярной формации (особенно варолиева моста) через введенные в эти структуры электроды вызывает поведенческую реакцию пробуждения животного. При этом на ЭЭГ возникает характерное изображение - изменение альфа-ритма бета-ритмом, т.е. фиксируется реакция десинхронизации или активизации. Указанная реакция не ограничивается определенным участком коры большого мозга, а охватывает большие ее массивы, т.е. носит генерализованный характер. При разрушении ретикулярной формации или выключении ее восходящих связей с корой большого мозга животное впадает в соноподибний состояние, не реагирует на световые и обонятельные раздражители, фактически не вступает в контакт с внешним миром. То есть конечный мозг прекращает активно функционировать.
Таким образом, ретикулярная формация ствола головного мозга выполняет функции восходящей активирующей системы мозга, которая поддерживает на высоком уровне возбудимость нейронов коры большого мозга.
Кроме ретикулярной формации ствола мозга, в восходящую активирующую систему головного мозга входят также неспецифические ядра таламуса (дим. с. 89), задний гипоталамус, лимбических структуры. Являясь важным интегративным центром, ретикулярная формация, в свою очередь, является частью более глобальных интеграционных систем мозга, которые включают гипоталамо-лимбических и неокортикальных структуры. Именно во взаимодействии с ними и формируется целесообразна поведение, направленное на приспособление организма к меняющимся условиям внешней и внутренней среды.
Одним из основных проявлений повреждения ретикулярных структур у человека есть потеря сознания. Она бывает при черепно-мозговых травмах, нарушении мозгового кровообращения, опухолях и инфекционных процессах в стволе мозга. Длительность состояния обморока зависит от характера и выраженности нарушений функции ретикулярной активизирующего системы и колеблется от нескольких секунд до многих месяцев. Дисфункция восходящих ретикулярных влияний проявляется тоже потерей бодрости, постоянной патологической сонливостью или частыми приступами засыпания (пароксизмальная гиперсомия), беспокойным ночным сном. Наблюдаются также нарушения (чаще повышении) мышечного тонуса, различные вегетативные изменения, эмоционально-психические расстройства и др.

45. Физиология мозжечка. Влияние мозжечка на двигательные функции организма. Симптомы поражения мозжечка. Влияние мозжечка на вегетативные функции организма .

Мозжечок - отдел головного мозга позвоночных, отвечающий за координацию движений, регуляцию равновесия и мышечного тонуса.

Мозжечок представляет собой мозговой центр, который имеет в высшей степени важное значение для координации и регуляции двигательной активности и поддержания позы. Мозжечок работает главным образом рефлекторно, поддерживая равновесие тела и его ориентацию в пространстве. Также он играет важную роль (особенно у млекопитающих) в локомоции (перемещении в пространстве).

Соответственно главными функциями мозжечка являются:

1. координация движений

2. регуляция равновесия

3. регуляция мышечного тонуса

4. мышечная память

Симптоматика поражения.

Для поражения мозжечка характерны расстройства статики и координации движений, а также мышечная гипотония. Данная триада характерна как для человека, так и других позвоночных. При этом симптомы поражения мозжечка наиболее детально описаны для человека, так как имеют непосредственное прикладное значение в медицине.

Поражение мозжечка, прежде всего его червя (архи- и палеоцеребеллума) , ведёт обычно к нарушению статики тела - способности поддержания стабильного положения его центра тяжести, обеспечивающего устойчивость. При расстройстве указанной функции возникает статическая атаксия –нарушение движений проявляющееся в расстройстве их координации. Больной становится неустойчивым, поэтому в положении стоя он стремится широко расставить ноги, сбалансировать руками. Особенно чётко статическая атаксия проявляется в позе Ромберга. Больному предлагается встать, плотно сдвинув ступни, слегка поднять голову и вытянуть вперёд руки. При наличии мозжечковых расстройств больной в этой позе оказывается неустойчивым, тело его раскачивается. Больной может упасть. В случае поражения червя мозжечка больной обычно раскачивается из стороны в сторону и чаще падает назад, при патологии полушария мозжечка его клонит преимущественно в сторону патологического очага. Если расстройство статики выражено умеренно, его легче выявить у больного в так называемой усложнённой или сенсибилизированной позе Ромберга . При этом больному предлагается поставить ступни на одну линию с тем, чтобы носок одной ступни упирался в пятку другой. Оценка устойчивости та же, что и в обычной позе Ромберга.

В норме, когда человек стоит, мышцы его ног напряжены (реакция опоры ), при угрозе падения в сторону нога его на этой стороне перемещается в том же направлении, а другая нога отрывается от пола (реакция прыжка ). При поражении мозжечка, главным образом его червя, у больного нарушаются реакции опоры и прыжка. Нарушение реакции опоры проявляется неустойчивостью больного в положении стоя, особенно если ноги его при этом близко сдвинуты. Нарушение реакции прыжка приводит к тому, что, если врач, встав позади больного и подстраховывая его, толкает больного в ту или иную сторону, то последний падает при небольшом толчке (симптом толкания ).

Походка у больного с мозжечковой патологией весьма характерна и носит название «мозжечковой». Больной в связи с неустойчивостью тела идёт неуверенно, широко расставляя ноги, при этом его «бросает» из стороны в сторону, а при поражении полушария мозжечка отклоняется при ходьбе от заданного направления в сторону патологического очага. Особенно отчётлива неустойчивость при поворотах. Во время ходьбы туловище человека избыточно выпрямлено (симптом Тома ). Походка больного с поражением мозжечка во многом напоминает походку пьяного человека.

Если статическая атаксия оказывается резко выраженной, то больные полностью теряют способность владеть своим телом и не могут не только ходить и стоять, но даже сидеть.

Преимущественное поражение полушарий мозжечка (неоцеребеллума) ведёт к расстройству его противоинерционных влияний и, в частности, к возникновению динамической атаксии. Она проявляется неловкостью движений конечностей, которая оказывается особенно выраженной при движениях, требующих точности. Для выявления динамической атаксии проводится ряд координационных проб.

Проба на диадохокинез - больному предлагается закрыть глаза, вытянуть вперёд руки и быстро, ритмично супинировать и пронировать (вращать кнаружи и внутрь) кисти рук. В случае поражения полушария мозжечка движения кисти на стороне патологического процесса оказываются более размашистыми, в результате эта кисть начинает отставать. Тогда говорят о наличии адиадохокинеза.

Пальце-носовая проба - больной с закрытыми глазами отводит руку, а затем указательным пальцем пытается попасть в кончик своего носа. В случае мозжечковой патологии рука на стороне патологического очага совершает избыточное по объёму движение, в результате чего больной промахивается. Также выявляется характерный для мозжечковой патологии интенционный тремор (дрожание пальцев), выраженность которого нарастает по мере приближения пальца к цели.

Пяточно-коленная проба - больной, лежащий на спине с закрытыми глазами, поднимает высоко ногу и пытается пяткой попасть в колено другой ноги. При мозжечковой патологии отмечается промахивание, особенно при выполнении пробы гомолатеральной (на той же стороне) поражённому полушарию мозжечка ногой. Если всё-таки пятка достигает колена, то предлагается провести ею, слегка касаясь голени, по гребню большеберцовой кости вниз к голеностопному суставу. При этом в случае мозжечковой патологии пятка всё время соскальзывает то в одну, то в другую сторону.

Указательная (пальце-пальцевая) проба - больному предлагается попасть указательным пальцем в кончик направленного на него пальца исследующего. В случае мозжечковой патологии отмечается мимопопадание. Палец больного при этом обычно отклоняется в сторону поражённого полушария мозжечка.

Симптом Тома-Жументи - захватывая предмет, больной несоразмерно широко раздвигает пальцы.

«Проба с чашей» - больной, держащий в руке стакан с водой, расплёскивает воду.

Нистагм - подёргивание глазных яблок при взгляде в стороны или вверх. При поражении мозжечка нистагм рассматривается как результат интенционного дрожания глазных яблок. При этом плоскость нистагма совпадает с плоскостью произвольных движений глаз - при взгляде в стороны нистагм горизонтальный, при взгляде вверх - вертикальный.

Расстройство речи - возникает в результате нарушения координации работы мышц, составляющих речедвигательный аппарат. Речь делается замедленной (брадилалия), теряется её плавность. Она приобретает взрывчатый, скандированный характер (ударения расставляются не по смыслу, а через равномерные интервалы).

Изменения почерка - почерк больного становится неровным, буквы исковерканными, чрезмерно крупными (мегалография ).

Симптом Стюарта-Холмса (симптом отсутствия обратного толчка) - исследующий просит больного сгибать супинированное предплечье и в то же время, взяв его руку за запястье, оказывает сопротивление этому движению. Если исследующий при этом неожиданно отпустит руку больного, то больной не сможет вовремя притормозить дальнейшее сгибание руки, и она, сгибаясь по инерции, с силой ударит его в грудь.

Пронаторный феномен - больному предлагается удерживать вытянутые вперёд руки ладонями вверх. При этом на стороне поражённого полушария мозжечка происходит спонтанная пронация (поворот ладони внутрь и книзу).

Симптом Гоффа-Шильдера - если больной держит руки вытянутыми вперёд, то на стороне патологического очага рука отводится кнаружи.

Феномен Дойникова (изменение постуральных рефлексов) - сидящему больному предлагается кисти с разведёнными пальцами положить на свои бёдра вверх ладонями и закрыть глаза. В случае мозжечковой патологии на стороне патологического очага отмечается спонтанное сгибание пальцев и пронация кисти.

Проба Шильдера - больному предлагают вытянуть руки вперёд, закрыть глаза, поднять одну руку кверху и опустить её до уровня другой руки, а затем сделать наоборот. При поражении мозжечка больной опустит руку ниже вытянутой.

Мышечная гипотония выявляется при пассивных движениях, производимых исследующим в различных суставах конечностей больного. Поражение червя мозжечка ведёт обычно к диффузной гипотонии мышц, тогда как при поражении полушария мозжечка снижение мышечного тонуса отмечается на стороне патологического очага.

Маятникообразные рефлексы обусловлены также гипотонией. При исследовании коленного рефлекса в положении сидя со свободно свисающими с кушетки ногами после удара молоточком наблюдается несколько «качательных» движений голени.

Асинергии - выпадение физиологических синергичных (содружественных) движений при сложных двигательных актах.

Наиболее распространены следующие пробы на асинергию:

Больному, стоящему со сдвинутыми ногами, предлагают перегнуться назад. В норме одновременно с запрокидыванием головы ноги синергично сгибаются в коленных суставах, что позволяет сохранить устойчивость тела. При мозжечковой патологии содружественное движение в коленных суставах отсутствует и, запрокидывая голову назад, больной сразу же теряет равновесие и падает в том же направлении.

Больному, стоящему со сдвинутыми ногами, предлагается опереться на ладони врача, который затем неожиданно их убирает. При наличии у больного мозжечковой асинергии он падает вперёд (симптом Ожеховского ). В норме же происходит лёгкое отклонение корпуса назад или же человек сохраняет неподвижность.

Больному, лежащему на спине на твёрдой постели без подушки, с ногами, раздвинутыми на ширину надплечий, предлагают скрестить руки на груди и затем сесть. Ввиду отсутствия содружественных сокращений ягодичных мышц больной с мозжечковой патологией не может фиксировать ноги и таз к площади опоры, в результате сесть ему не удаётся, при этом ноги больного, отрываясь от постели, поднимаются вверх (асинергия по Бабинскому).

Влияние мозжечка на вегетативные функции. Мозжечок оказывает угнетающее и стимулирующее влияние на работу сердечно­сосудистой, дыхательной, пищеварительной и других систем организма. В результате двойственного влияния мозжечок стабилизи­рует, оптимизирует функции систем организма.

Сердечно-сосудистая система реагирует на раздражение мозжечка либо усилением (например, прессорные рефлексы), либо снижением этой реакции. Направленность реакции зависит от фона, на котором она вызывается. При раздражении мозжечка высокое кровяное давление снижается, а исходное низкое - повышается. Раздражение мозжечка на фоне учащенного дыхания (гиперпноэ) снижает частоту дыхания. При этом одностороннее раздражение мозжечка вызывает на своей стороне снижение, а на противоположной - повышение тонуса дыхательных мышц.

Удаление или повреждение мозжечка приводит к уменьшению тонуса мускулатуры кишечника, из-за низкого тонуса нарушается эвакуация содержимого желудка и кишечника. Нарушается также нормальная динамика секреции и всасывания в желудке и кишеч­нике.

Обменные процессы при повреждении мозжечка идут более интенсивно, гипергликемическая реакция (увеличение количества глюкозы в крови) на введение глюкозы в кровь или на прием ее с пищей возрастает и сохраняется дольше, чем в норме, ухудшается аппетит, наблюдается исхудание, замедляется заживление ран, волокна скелетных мышц подвергаются жировому перерождению.

При повреждении мозжечка нарушается генеративная функция, что проявляется в нарушении последовательности процессов родовой деятельности. При возбуждении или повреждении мозжечка мышечные сокращения, сосудистый тонус, обмен веществ и т. д. реагируют так же, как при активации или повреждении симпатического отдела вегетативной нервной системы.

Таким образом, мозжечок принимает участие в различных видах деятельности организма: моторной, соматической, вегетативной, сенсорной, интегративной и т. д. Однако эти функции мозжечок реализует через другие структуры центральной нервной системы. Мозжечок выполняет функцию оптимизации отношений между различными отделами нервной системы, что реализуется, с одной стороны, активацией отдельных центров, с другой - удержанием этой активности в определенных рамках возбуждения, лабильности и т. д. После частичного повреждения мозжечка могут сохраняться все функции организма, но сами функции, порядок их реализации, количественное соответствие потребностям трофики организма на­рушаются.

Таким образом, мозжечок играет первостепенную роль в регуляции позы и движений. Многие движения могут оптимально осуществляться только при участии мозжечка. В то же время он не принадлежит к числу жизненно важных органов, поскольку у людей, рожденных без мозжечка, отсутствуют серьезные двигательные нарушения. Мозжечок состоит из двух полушарий и имеет кору из серого вещества. В коре находятся клетки с многочисленными дендритами, получающие импульсы из многих источников, связанных с мышечной деятельностью: проприоцепторовсухожилий, суставов и мышц, а также от моторных центров коры. Поэтому мозжечок интегрирует информацию и координирует работу всех мышц, участвующих в движении или сохранении позы. При повреждении мозжечка движения становятся резкими, а не плавными. Мозжечок абсолютно необходим для координации быстрых движений таких, как бег, набор текста на клавиатуре, разговор.

Все функции мозжечка осуществляются без участия коры больших полушарий, т.е. бессознательно. Однако на ранних этапах онтогенеза или научения они могут включать элементы тренировки. В это время кора управляет мозжечком, и необходимы определенные волевые усилия для реализации двигательных актов. Например, это имеет место при обучении езде на велосипеде, плаванию и т.д. После же выработки и закрепления двигательных актов мозжечок берет на себя функцию контроля соответствующих рефлексов.

43. Нисходящие влияния ретикулярной формации. Её участие в регуляции мышечного тонуса.

Нисходящие влияния. В Р. ф. различают области, которые оказывают тормозящие и облегчающие влияния на двигательные реакцииспинного мозга.

При раздражении ретикулярной формации заднего мозга (особенно гигантоклеточной ядра продолговатого мозга и ретикулярного ядра моста, где принимают лочаток ретикулоспинальному пути), возникает торможение всех спинальных двигательных центров (сгибательных и разгибательных). Это торможение очень глубокое и продолжительное. Такое положение в естественных условиях может наблюдаться при глубоком сне.
Наряду с диффузными тормозящими влияниями, при раздражении определенных участков ретикулярной формации выявляется диффузный
влияние, которое облегчает деятельность спинальной двигательной системы.
Ретикулярная формация играет важную роль в регуляции деятельности мышечных веретен, изменяя частоту разрядов, поступающие гамма-эфферентными волокнами к мышцам. Таким образом модулируется обратная импульсация в них.

Ретикулярная формация - совокупность различных , расположенных на протяжении ствола мозга, оказывающих активирующее или тормозящее влияние на различные структуры центральной нервной системы, тем самым контролируя их рефлекторную деятельность.

Ретикулярная формация ствола мозга оказывает активирующее влияние на клетки и тормозное действие на мотонейроны спинного мозга. Посылая в спинной мозг к его двигательным нейронам тормозящие и возбуждающие импульсы ретикулярная формация участвует в регуляции тонуса скелетных мышц.

Ретикулярная формация поддерживает тонус вегетативных центров, интегрирует симпатические и парасимпатические влияния, передает модулирующее влияние от гипоталамуса и мозжечка к внутренним органам.

Функции ретикулярной формации

Соматодвигательный контроль (активация скелетной мускулатуры), может быть прямым через tr. reticulospinalis и непрямым через , оливы, бугорки четверохолмия, красное ядро, черное вещество, полосатое тело, ядра таламуса и даже соматомоторные зоны коры.

Соматочувствительный контроль , т.е. снижение уровней соматосенсорной информации — «медленная боль», модификация восприятия различных видов сенсорной чувствительности (слуха, зрения, вестибуляции, обоняния).

Висцеромоторный контроль состояния сердечно-сосудистой, дыхательной систем, активности гладкой мускулатуры различных внутренних органов.

Нейроэндокринная трансдукция через влияние на нейромедиаторы, центры гипоталамуса и далее гипофиз.

Биоритмы через связи с гипоталамусом и шишковидной железой.

Различные функциональные состояния организма (сон, пробуждение, состояние сознания, поведение) осуществляются посредством многочисленных связей ядер ретикулярной формации со всеми частями ЦНС.

Координация работы разных центров ствола мозга , обеспечивающих сложные висцеральные рефлекторные ответы (чихание, кашель, рвота, зевота, жевание, сосание, глотание и др.).

Строение ретикулярной формации

Ретикулярная формация образована совокупностью многочисленных нейронов , лежащих отдельно или сгруппированных в ядра (см. рис. 1 и 2). Ее структуры локализуются в центральных участках ствола, начиная с верхних сегментов шейного отдела спинного мозга до верхнего уровня ствола мозга, где они постепенно сливаются с ядерными группами . Ретикулярная формация занимает пространства между ядрами черепных нервов, другими ядрами и трактами, проходящими через ствол мозга.

Нейроны ретикулярной формации характеризуются большим разнообразием форм и размеров, но их общим признаком является то, что они образуют длинными дендритами и широко ветвящимися аксонами многочисленные синаптические контакты как между собой, так и с нейронами других ядер мозга. Эти ветвления формируют своеобразную сеть (ретикулум ), откуда произошло название — ретикулярная формация. У нейронов, формирующих ядра ретикулярной формации, имеются длинные аксоны , образующие проводящие пути к спинному мозгу, ядрам ствола мозга, и других областей головного мозга.

Рис. 1. Важнейшие структурные образования среднего мозга (поперечный срез)

К нейронам ретикулярной формации поступают многочисленные афферентные сигналы из различных структур ЦНС. Можно выделить несколько групп нейронов, к которым поступают эти сигналы. Это группа нейронов латерального ядра ретикулярной формации, расположенного в продолговатом мозге. Нейроны ядра получают афферентные сигналы от вставочных нейронов спинного мозга и входят в состав одного из непрямых спиномозжечковых путей. Кроме того, они получают сигналы от вестибулярных ядер и могут интегрировать информацию о состоянии активности вставочных нейронов, связанных с мотонейронами спинного мозга, и о положении тела и головы в пространстве.

Следующая группа — это нейроны ретикулотегментального ядра , расположенные на границе дорсального края моста. Они получают афферентные синаптические входы от нейронов претектальных ядер и верхних холмиков четверохолмия и посылают свои аксоны в структуры мозжечка, участвующие в контроле движений глаз.

Нейроны ретикулярной формации получают разнообразные сигналы через пути, связывающие их с корой головного мозга (кортикоретикулоспинальные пути), черной субстанцией, и .

Рис. 2. Расположение некоторых ядер в стволе мозга и гипоталамусе: 1 — паравентрикулярное; 2 — дорсомедиальное: 3 — преоптическое; 4 — супраоптическое; 5 — заднее

Кроме описанных афферентных путей в ретикулярную формацию поступают сигналы по аксонным коллатералям проводящих путей сенсорных систем. При этом на один и тот же могут конвергировать сигналы от разных рецепторов (тактильных, зрительных, слуховых, вестибулярных, болевых, температурных, проприорецепторов, рецепторов внутренних органов).

Из приведенного перечня основных афферентных связей ретикулярной формации с другими областями ЦНС видно, что состояние ее тонической нейронной активности определяется притоком практически всех типов сенсорных сигналов от чувствительных нейронов, а также сигналов от большинства структур ЦНС.

Классификация ретикулярной формации в зависимости от направлении волокон

Отделы

Характеристика

Нисходящий отдел

Вегетативные центры:

  • дыхательный;
  • сосудодвигательный;
  • слюноотделительный и др.

Двигательные центры:

  • специфические центры, формирующие специфические ретикулоспинальные пути;
  • неспецифические центры, формируют неспецифические ретикулоспинальные пути двух видов — активирующие, тормозные

Восходящий отдел

Ретикулоталамические

Ретикулогипоталамические

Ретикуломозжечковые

Ретикулокортикальные: активирующие; гипногенные

Ядра ретикулярной формации и их функции

Долгое время считалось, что ретикулярная формация, строение которой характеризуется широкими межнейронными связями, интегрирует сигналы различной модальности, не выделяя при этом специфической информации. Однако становится все более очевидным, что ретикулярная формация является не только морфологически, но и функционально гетерогенной, хотя различия между функциями ее отдельных частей не столь очевидны, как это характерно для других областей мозга.

Действительно, многие нейронные группы ретикулярной формации формируют ее ядра (центры), выполняющие специфические функции. Это нейронные группы, формирующие сосудодвигательный центр продолговатого мозга (гигантоклеточное, парамедианное, латеральное, вентральное, каудальное ядра продолговатого мозга), дыхательный центр (гигантоклеточное, мелкоклеточное ядра продолговатого мозга, оральное и каудальное ядра моста), центры жевания и глотания (латеральное, парамедианное ядра продолговатого мозга), центры движений глаз (парамедианная часть моста, ростральная часть среднего мозга), центры регуляции тонуса мышц (ростральное ядро моста и каудальное — продолговатого мозга) и др.

Одной из важнейших неспецифических функций ретикулярной формации является регуляция общей нейронной активности коры и других структур ЦНС. В ретикулярной формации проводится оценка биологической значимости поступающих сенсорных сигналов, и в зависимости от результатов этой оценки она может активировать или тормозить через неспецифические или специфические нейронные группы таламуса нейронные процессы во всей коре головного мозга или в се отдельных зонах. Поэтому стволовая ретикулярная формация называется также активирующей системой ствола мозга. Благодаря этим свойствам ретикулярная формация может оказывать влияние на уровень общей активности коры, поддержание которой является важнейшим условием для сохранения сознания, состояния бодрствования, формирования направленности внимания.

Повышение активности ретикулярной формации (на общем высоком фоне) в отдельных сенсорных, ассоциативных областях коры обеспечивает возможность выделения и обработки специфической, наиболее важной в данный момент времени информации для организма и организации адекватных ответных поведенческих реакций. Обычно эти реакции, организуемые при участии ретикулярной формации ствола мозга, предваряются ориентационными движениями глаз, головы и тела в направлении источника сигнала, изменениями дыхания и кровообращения.

Активирующее влияние ретикулярной формации на кору и другие структуры ЦНС осуществляется по восходящим путям, идущим от гигантоклеточного, латерального и вентрального ретикулярных ядер продолговатого мозга, а также от ядер моста и среднего мозга. По этим путям потоки нервных импульсов проводятся к нейронам неспецифических ядер таламуса и после их обработки переключаются в таламических ядрах для последующей передачи к коре. Кроме того, от перечисленных ретикулярных ядер потоки сигналов проводятся к нейронам заднего гипоталамуса и базальных ганглиев.

Кроме регуляции нейронной активности высших отделов мозга ретикулярная формация может регулировать сенсорные функции. Это осуществляется путем влияния на проведение афферентных сигналов в нервные центры, на возбудимость нейронов нервных центров, а также на чувствительность рецепторов. Повышение активности ретикулярной формации сопровождается повышением активности нейронов симпатической нервной системы, иннервирующей органы чувств. В результате может повышаться острота зрения, слуха, тактильная чувствительность.

Наряду с восходящими активирующими и тормозящими влияниями на высшие отделы головного мозга ретикулярная формация принимает участие в регуляции движений , оказывая активирующие и тормозные воздействия на спинной мозг. На ее ядрах происходит переключение как восходящих путей, идущих от проприорецепторов и спинного мозга к головному мозгу, так и нисходящих двигательных путей от коры мозга, базальных ядер, мозжечка и красного ядра. Хотя восходящие нейронные пути, идущие из ретикулярной формации в таламус и кору, играют роль преимущественно в поддержании общего уровня активности коры больших полушарий мозга, но именно эта их функция важна для осуществления бодрствующей корой планирования, запуска, исполнения движений и контроля за их исполнением. Между восходящими и нисходящими через ретикулярную формацию путями имеется большое число коллатеральных связей, через которые они могут оказывать взаимное влияние. Существование такого тесного взаимодействия создает условия для взаимного воздействия области ретикулярной формации, влияющей через таламус на активность коры, планирующей и инициирующей движения, и области ретикулярной формации, влияющей на исполнительные нейронные механизмы спинного мозга. В ретикулярной формации имеются группы нейронов, которые посылают большинство аксонов в мозжечок, участвующий в регуляции и координации сложных движений.

По нисходящим ретикулоспинальным путям ретикулярная формация непосредственно воздействует на функции спинного мозга. Прямое влияние на его двигательные центры осуществляется по медиальному ретикулоспинальному тракту, идущему от ядер моста и активирующему преимущественно интер- и у-моторные нейроны разгибателей и тормозящему моторные нейроны мышц-сгибателей туловища и конечностей. По латеральному ретикулоспинальному тракту , начинающемуся от гигантоклеточного ядра продолговатого мозга, ретикулярная формация оказывает активирующее влияние на интер- и у-моторные нейроны мышц-сгибателей конечностей и тормозящее на нейроны мышц-разгибателей.

Из экспериментальных наблюдений на животных известно, что стимуляция более рострально расположенных нейронов ретикулярной формации на уровне продолговатого и среднего мозга, оказывает диффузное облегчающее влияние на спинальные рефлексы, а стимуляция нейронов каудальной части продолговатого мозга сопровождается торможением сиинальных рефлексов.

Активирующее и тормозное влияние ретикулярной формации на моторные центры спинного мозга может осуществляться через у-мотонейроны. При этом ретикулярные нейроны рострального участка ретикулярной формации активируют у-мотонейроны, которые своими аксонами иннервируют интрафузальные мышечные волокна, вызывают их сокращение, активируют рецепторы мышечных веретен. Поток сигналов от этих рецепторов активирует а-мотонейроны и вызывает сокращение соответствующей мышцы. Нейроны каудального участка ретикулярной формации тормозят активность у-мотонейронов спинного мозга и вызывают расслабление мышц. От баланса нейронной активности этих участков ретикулярной формации зависит распределение тонуса в больших мышечных группах. Поскольку этот баланс зависит от нисходящих влияний на ретикулярную формацию коры головного мозга, базальных ганглиев, гипоталамуса, мозжечка, то эти структуры мозга также могут через ретикулярную формацию и другие ядра ствола мозга воздействовать на распределение тонуса мышц и позу тела.

Широкое ветвление аксонов ретикулоспинальных путей в спинном мозге создает условия для влияния ретикулярной формации практически на все моторные нейроны и соответственно на состояние мышц различных частей тела. Такая особенность обеспечивает эффективное воздействие ретикулярной формации на рефлекторное распределение тонуса мышц, позу, ориентацию головы и тела в направлении действия внешних раздражителей и участие ретикулярной формации в осуществлении произвольных движений мышц проксимальных частей тела.

В центральной части ретикулярного гигантоклеточного ядра располагается участок, раздражение которого тормозит все двигательные рефлексы спинного мозга. Наличие такого торможения структур головного мозга на спинной мозг было открыто И.М. Сеченовым в опытах на лягушках. Суть опытов состояла в исследовании состояния рефлексов спинного мозга после перересечения ствола мозга на уровне промежуточного мозга и раздражении каудального участка разреза кристалликом поваренной соли. Оказалось, что двигательные спинальные рефлексы при раздражении не проявлялись или становились ослабленными и восстанавливались после устранения раздражения. Таким образом было впервые выявлено, что один нервный центр может тормозить активность другого. Это явление назвали центральным торможением.

Ретикулярная формация играет важную роль в регуляции не только соматических, но и вегетативных функций (ретикулярные ядра ствола мозга входят в структуру жизненно важных отделов дыхательного центра и центров регуляции кровообращения). Латеральная группа ретикулярных ядер моста и дорсолатеральное ядро покрышки формируют мочевыделительный центр моста. Аксоны нейронов ядер этого центра достигают преганглионарных нейронов крестцового отдела спинного мозга. Стимуляция нейронов этих ядер в мосту сопровождается сокращением мускулатуры стенки мочевого пузыря и мочевыделением.

В дорсолатеральном мосту расположено парабрахиальное ядро, на нейронах которого заканчиваются волокна сенсорных нейронов вкуса. Нейроны ядра, подобно нейронам голубоватого пятна и черной субстанции, содержат нейромеланин. Число таких нейронов в парабрахиальном ядре уменьшается при болезни Паркинсона. Нейроны парабрахиального ядра имеют связи с нейронами гипоталамуса, амигдалы, ядрами шва, одиночного тракта и другими ядрами ствола мозга. Предполагают, что парабрахиальные ядра имеют отношение к регуляции вегетативных функций и понижение их числа при паркинсонизме объясняет возникновение вегетативных нарушений при этом заболевании.

В опытах на животных было показано, что при раздражении некоторых локальных участков ретикулярных структур продолговатого мозга и моста можно вызвать торможение активности коры и сон. На ЭЭГ при этом возникают низкочастотные (1-4 Гц) волны. На основе описанных фактов считают, что важнейшими функциями восходящих влияний ретикулярной формации являются регуляция цикла сон — бодрствование и уровня сознания. Оказалось, что к формированию этих состояний имеют прямое отношение ряд ядер ретикулярной формации ствола мозга.

Так, с каждой стороны центрального шва моста располагаются парамедианные ретикулярные ядра, или ядра шва , содержащие серотонинергические нейроны. В каудальной части моста они включают нижнее центральное ядро, которое является продолжением ядра шва продолговатого мозга, а в ростральной части моста в состав ядер шва моста входит верхнее центральное ядро, называемое ядром Бехтерева, или срединным ядром шва.

В ростральной части моста на дорсальной стороне покрышки располагается группа ядер голубоватого пятна. В них имеется около 16 000-18 000 меланинсодержащих норадренергических нейронов, аксоны которых широко представлены в различных отделах ЦНС — гипоталамусе, гиппокампс, коре больших полушарий мозга, мозжечке и спинном мозге. Голубоватое пятно простирается в средний мозг, и его нейроны прослеживаются в ссром веществе околоводопроводного пространства. Число нейронов в ядрах голубоватого пятна уменьшается при паркинсонизме, болезни Альцгеймера и синдроме Дауна.

Как серотонинергические, так и норадреналинергические нейроны ретикулярной формации играют роль в контроле цикла сон — бодрствование. Подавление синтеза серотонина в ядрах шва ведет к развитию бессонницы. Предполагают, что серотонинергические нейроны являются частью нервной сети регуляции медленноволнового сна. При действии серотонина на нейроны голубоватого пятна возникает парадоксальный сон. Разрушение ядер голубоватого пятна у экспериментальных животных не ведет к развитию бессонницы, но вызывает на несколько недель исчезновение фазы парадоксального сна.



Понравилась статья? Поделитесь ей
Наверх