Строение и функция нервной регуляторной системы организма человека. Регуляторная система человека

Физиологические процессы в организме человека согласованно проте­кают благодаря существованию определенных механизмов их регуляции.

Регуляция различных процессов в организме осуществляется с помощью нервного и гуморального механизмов.

Гуморальная регуляция осуществляется с помощью гуморальных факторов (гормонов ), которые разносятся кровью и лимфой по всему организму.

Нервная регуляция осуществляется с помощью нервной системы.

Нервный и гуморальный способы регуляции функций тесно связаны между собой. На деятельность нервной системы постоянно оказывают влияние приносимые с током крови химические вещества, а образование большинства химических веществ и выделение их в кровь находится под постоянным контролем нервной системы.

Регуляция физиологических функций в организме не может осуществляться с помощью только нервной или только гуморальной регуляции - это единый комплекс нейрогуморалыюй регуляции функций.

В последнее время высказано предположение, что существуют не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная).

Нервная регуляция

Нервная регуляция - это координирующее влияние нервной системы на клетки, ткани и органы, один из основных механизмов саморегуляции функций целостного организма. Нервная регуляция осуществляется с помощью нервных импульсов. Нервная регуляция является быстрой и локальной, что особенно важно при регуляции движений, и затрагивает все(!) системы организма.

В основе нервной регуляции лежит рефлекторный принцип. Рефлекс является универсальной формой взаимодействия организма с окружающей средой, это ответная реакция организма на раздражение, которая осуществляется через центральную нервную систему и контролируется ею.

Структурно-функциональной основой рефлекса является рефлекторная дуга - последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление ответа на раздражение. Все рефлексы осуществляются I благодаря деятельности центральной нервной системы - головного и спинного мозга.

Гуморальная регуляция

Гуморальная регуляция - это координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (гормонов), выделяемых клетками, органами и тканями в процессе их жизнедеятельности.

Гуморальная регуляция возникла в процессе эволюции раньше, чем нервная. Она усложнялась в процессе эволюции, в результате чего возникла эндокринная система (железы внутренней секреции).

Гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции функций организма, которая играет важную роль в поддержании относительного пос­тоянства состава и свойств внутренней среды организма (гомеостаза) и его приспособлении к меняющимся условиям существования.


Иммунная регуляция

Иммунитет - это физиологическая функция, которая обеспечивает устойчивость организма к действию чужеродных антигенов. Иммунитет человека делает его невосприимчивым ко многим бактериям, вирусам, грибкам, глистам, простейшим, различным ядам животных, обеспечивает защиту организма от раковых клеток. Задачей иммунной системы является распознавать и разрушать все чужеродные структуры.

Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител , которые, например, могут связывать избыток гормонов.

Иммунологическая реакция, с одной стороны, является неотъемлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологическая реакция носит прицельный характер и тем самым напоминает нервную регуляцию.

Интенсивность иммунного ответа, в свою очередь, регулируется нейрофильным способом . Работа иммунной системы корректируется мозгом и через эндокринную систему. Такая нервная и гуморальная регуляция осуществляется с помощью нейромедиаторов, нейропептидов и гормонов. Промедиаторы и нейропептиды достигают органов иммунной системы по аксонам нервов, а гормоны выделяются эндокринными железами не­родственно в кровь и таким образом доставляются к органам иммунной системы. Фагоцит (клетка иммунитета), уничтожает бактериальные клетки

Начало формы

В результате изучения данной главы студенты должны:

знать

  • виды межклеточных коммуникаций;
  • свойства гормонов и гормоноподобных веществ;
  • строение гормональных рецепторов;
  • механизмы реализации гормональных аффектов;

уметь

  • давать характеристику основным группам гормонов и основным типам метаботропных рецепторов;
  • разобраться в местах локализации гормональных рецепторов и в механизмах экскреции гормонов;

владеть

Методами прогноза возможных физиологических эффектов на основе химической структуры гормона и типа рецептора.

Регуляторные системы организма. Виды гуморальной регуляции и место эндокринной системы

Организм человека состоит приблизительно из 10 13 клеток, и все эти клетки должны работать согласованно, обеспечивая его выживание и, более того, оптимальное существование в постоянно меняющихся условиях. Для того чтобы из миллиардов клеток создать целостный, интегрированный организм, способный к самовосстановлению, самовоспроизведению и адаптации, необходима постоянно действующая система межклеточных коммуникаций, без которых невозможна надежная система управления функциями.

Уровни управления в организме можно разделить на внутриклеточные (обеспечивающие управление на уровне клетки) и межклеточные (обеспечивающие согласованную работу различных тканей, органов и систем органов целостного организма). В каждом случае системы управления могут быть неспециализированными и специализированными. Для соединений, используемых в неспециализированных системах управления, функция передачи информации не является главной, а акцент сдвинут в сторону их использования в качестве источников пластического или энергетического материала. Таким веществом может быть, например, глюкоза. В специализированном управлении участвуют соединения, главной функцией которых является передача информации, поэтому их называют сигнальными.

В ходе эволюционного процесса сформировались три системы , так или иначе отвечающие названию «сигнальные»: нервная , эндокринная и иммунная. Они очень сильно связаны между собой, что дает основание говорить о единой нейро-иммунно-эндокринной системе, хотя их описание на первых порах приходится производить раздельно. Все эти системы способны к дистантному управлению процессами жизнедеятельности, но достигают этого разными способами.

В зависимости от расстояния действия сигнального соединения различают местное и системное управление.

К местному {региональному) управлению относятся внутриклеточная (интракринная), аутокринная, юкстакринная и паракринная системы контроля (рис. 1.1).

Рис. 1.1.

При внутриклеточном контроле вещество-регулятор вырабатывается в клетке и действует на ее работу через внутриклеточные рецепторы. При аутокринном, ткстакринном и паракринном контроле вещество-регулятор покидает клетку и воздействует на нее же или на соседние клетки.

Системное управление отличается большой дистантностыо воздействия и подразделяется на эндокринное, нейроэндокринное и нейрокрин- ное (рис. 1.2).

Рис. 1.2.

а - эндокринный; б - нсйрокринный; в - нейроэндокринный

При эндокринной форме регуляции клетки железы или какой-то иной клетки выделяют гормон (от греч. оррасо - возбуждаю), который попадает в системный кровоток и способен воздействовать на все структуры организма, в которых есть рецепторы к этому гормону. Форма гормонального ответа зависит от типа ткани и разновидностей рецептора, реагирующих на этот гормон.

При нейроэндокринной форме регуляции нейрогормон сегрегируется терминалями аксонов в специализированную капиллярную сеть и из нее поступает в системный кровоток. Далее происходят те же явления, что и в случае эндокринного способа системной регуляции.

При нейрокринной форме регуляции нейроны вырабатывают нейромедиаторы, воздействующие на близлежащие клеточные структуры через специализированные рецепторы. Следовательно, имеет место разновидность паракринной регуляции, при которой дистантность действия достигается длиной аксонов и количеством синаптических переключений.

Вещества, выполняющие специфические функции передачи информации от одной клетки к другой, называются информонами. Информоны обычно не выполняют энергетических или пластических функций, а действуют на клетки через специальные распознающие молекулы - рецепторы. Содержание информонов в крови очень мало (10 6 -10“ 12 моль), а время их жизни обычно очень коротко, хотя они могут запускать длительные регуляторные каскады как в отдельных клетках, так и организме в целом.

Среди информонов с некоторой долей условности выделяют группу тканевых гормонов (гистогормонов), участвующих главным образом в процессах местной регуляции. Однако гистогормоны могут включаться и в общую регуляторную систему организма. Обычно гистогормоны секре- тируются из отдельных клеток различных систем органов, не образуя специализированных желез. Примером могут служить простагландины и тромбоксаны. Гистогормоны обычно действуют короткое время и вблизи от места секреции.

Вторая группа информонов - гормоны. Гормоны обычно образуются в особых секреторных клетках, которые или образуют компактные органы - железы, или расположены по одной или группами внутри органов. Секреторным клеткам свойственны некоторые морфологические особенности. Обычно синтез и «упаковка» гормонов происходят в одной части клеток, а их выброс в кровь - в другой. Чаще всего синтезируемые гормоны накапливаются к комплексе Гольджи - основном «складском помещении» клетки. Там, по мере надобности, гормоны упаковываются в маленькие секреторные пузырьки - гранулы, которые отпочковываются от комплекса Гольджи и передвигаются по цитоплазме к наружной мембране клетки, через которую гормон выбрасывается в кровь. Некоторые гормоны, например половые, не упаковываются в гранулы и выходят из секретирующей клетки в виде отдельных молекул. Выброс гормона в кровь происходит не постоянно, но только в том случае, когда к секретирующей клетке приходит специальный сигнал, под действием которого пузырьки высвобождают гормон во внеклеточную среду.

Однако в последние годы стало очевидно, что гормоны смогут выделяться не только из клеток специализированных эндокринных желез, но и из клеток многих других органов и тканей. Так, нейроны гипоталамуса способны вырабатывать целый набор гормональных факторов, таких как либерины, статины и другие гормоны, клетки сердечной мышцы выделяют в кровь натрийуретический пептид, лимфоциты выделяют ряд гормонов - стимуляторов иммунитета, наконец, множество пептидных гормонов синтезируются в слизистой кишечника.

В зависимости от характера иннервации органов и тканей нервную систему делят на соматическую и вегетативную . Соматическая нервная система регулирует произвольные движения скелетной мускулатуры и обеспечивает чувствительность. Вегетативная нервная система координирует деятельность внутренних органов, желез, сердечно-сосудистой системы и осуществляет иннервацию всех обменных процессов в теле человека. Работа этой регуляторной системы не подконтрольна сознанию и осуществляется благодаря слаженной работе двух ее отделов: симпатического и парасимпатического. В большинстве случаев активация этих отделов имеет противоположный эффект. Симпатическое влияние наиболее ярко проявляется в том случае, когда организм находится в состоянии стресса или интенсивной работы. Симпатическая нервная система – это система тревоги и мобилизации резервов, необходимых для защиты организма от воздействий внешней среды. Она подает сигналы, которые активируют деятельность мозга и мобилизуют защитные реакции (процесс терморегуляции, иммунные реакции, механизмы свертывания крови). При активации симпатической нервной системы увеличивается частота сердечных сокращений, замедляются процессы пищеварения, увеличивается частота дыхания и усиливается газообмен, увеличивается концентрация глюкозы и жирных кислот в крови за счет выделения их печенью и жировой тканью (рис.5).

Парасимпатический отдел вегетативной нервной системы регулирует работу внутренних органов в состоянии покоя, т.е. это система текущей регуляции физиологических процессов в организме. Преобладание активности парасимпатической части вегетативной нервной системы создает условия для отдыха и восстановления функций организма. При ее активации снижается частота и сила сердечных сокращений, стимулируются процессы пищеварения, уменьшается просвет дыхательных путей (рис.5). Все внутренние органы иннервируются как симпатическим, так и парасимпатическим отделами автономной нервной системы. Кожа и опорно-двигательный аппарат имеет только симпатическую иннервацию.

Рис.5. Регуляция различных физиологических процессов человеческого организма под действием симпатического и парасимпатического отделов вегетативной нервной системы

Вегетативная нервная система обладает сенсорным (чувствительным) компонентом, представленным рецепторами (чувствительным устройствами), располагающимися во внутренних органах. Эти рецепторы воспринимают показатели состояния внутренней среды организма (например, концентрацию углекислого газа, давление, концентрацию питательных веществ в кровеносном русле) и передают эту информацию по центростремительным нервным волокнам в центральную нервную систему, где эта информация обрабатывается. В ответ на полученную информацию от центральной нервной системы по центробежным нервным волокнам передаются сигналы к соответствующим рабочим органам, участвующим в поддержании гомеостаза.

Эндокринная система также осуществляет регуляцию деятельности тканей и внутренних органов. Эта регуляция называется гуморальной и осуществляется с помощью специальных веществ (гормонов), которые выделяются эндокринными железами в кровь или тканевую жидкость. Гормоны – это специальные регулирующие вещества, вырабатываемые в одних тканях организма, транспортируемые с током крови к различным органам и воздействующие на их работу. В то время как обеспечивающие нервную регуляцию сигналы (нервные импульсы) распространяются с большой скоростью и для осуществления ответа со стороны вегетативной нервной системы требуются доли секунды, гуморальная регуляция осуществляется гораздо медленнее, и под ее контролем находятся те процессы нашего организма, которые требуют для регуляции минуты и часы. Гормоны являются сильнодействующими веществами и вызывают свой эффект в очень малых количествах. Каждый гормон влияет на определенные органы и системы органов, которые называются органами-мишенями . Клетки органов мишеней имеют специ-фические белки-рецепторы, которые избирательно взаимодействуют со специфическими гормона-ми. Образование комплекса гормона с белком-рецептором включает целую цепь биохимических реакций, обуславливающих физиологическое действие данного гормона. Концентрация большинства гормонов может изменяться в больших пределах, что обеспечивает поддержание постоянства многих физиологических параметров при непрерывно изменяющихся потребностях организма человека. Нервная и гуморальная регуляция в организме тесно взаимосвязаны и согласованы, что обеспечивает его приспособленность в условиях постоянно меняющейся окружающей среды.

Ведущую роль в гуморальной функциональной регуляции человеческого организма играют гормоны гипофиза и гипоталамуса. Гипофиз (нижний мозговой придаток) – это отдел головного мозга, относящийся к промежуточному мозгу, он прикреплен специальной ножкой к другому отделу промежуточного мозга, гипоталамусу, и находится с ним в тесной функциональной связи. Гипофиз состоит из трех частей: передней, средней и задней (рис.6). Гипоталамус является основным регулирующим центром вегетативной нервной системы, кроме того, этот отдел мозга содержит специальные нейросекреторные клетки, совмещающие свойства нервной клетки (нейрона) и секреторной клетки, синтезирующей гормоны. Однако в самом гипоталамусе эти гормоны в кровь не выделяются, а поступают в гипофиз, в его заднюю долю (нейрогипофиз) , где и выводятся в кровь. Один из этих гормонов, антидиуретический гормон (АДГ или вазопрессин ), преимущественно воздействует на почку и стенки кровеносных сосудов. Увеличение синтеза этого гормона происходит при значительных кровопотерях и других случаях потери жидкости. Под действием этого гормона уменьшается потеря жидкости организмом, кроме того, как и другие гормоны, АДГ воздействует и на функции мозга. Он является природным стимулятором обучения и памяти. Недостаток синтеза этого гормона в организме приводит к заболеванию, называемому несахарным диабетом, при котором резко увеличивается объем выделяемой больными мочи (до 20 л в сутки). Другой гормон, выделяемый в кровь в задней доли гипофиза, называется окситоцином. Мишенью для этого гормона являются гладкие мышцы матки, мышечные клетки, окружающие протоки молочных желез и семенников. Повышение синтеза этого гормона наблюдается в конце беременности и абсолютно необходимо для протекания родов. Окситоцин ухудшает обучение и память. Передняя доля гипофиза (аденогипофиз ) является эндокринной железой и выделяет в кровь ряд гормонов, которые регулируют функции других эндокринных желез (щитовидной железы, надпочечников, половых желез) и называются тропными гормонами . Например, аденокортикотропный гормон (АКТГ) воздействует на кору надпочечников и под его воздействием в кровь выбрасывается целый ряд стероидных гормонов. Тиреотропный гормон стимулирует работы щитовидной железы. Соматотропный гормон (или гормон роста) воздействует на кости, мышцы, сухожилия, внутренние органы, стимулируя их рост. В нейросекреторных клетках гипоталамуса синтезируются особые факторы, влияющие на работу передней доли гипофиза. Часть этих факторов называются либеринами , они стимулируют секрецию гормонов клетками аденогипофиза. Другие факторы, статины, тормозят секрецию соответствующих гормонов. Активность нейросекреторных клеток гипоталамуса изменяется под действием нервных импульсов, приходящих от периферических рецепторов и других отделов мозга. Таким образом, связь между нервной и гуморальной системами в первую очередь осуществляется на уровне гипоталамуса.

Рис.6. Схема головного мозга (а), гипоталамуса и гипофиза (б):

1 – гипоталамус, 2 – гипофиз; 3 – продолговатый мозг; 4 и 5 – нейросекреторные клетки гипоталамуса; 6 – ножка гипофиза; 7 и 12 – отростки (аксоны) нейросекреторных клеток;
8 – задняя доля гипофиза (нейрогипофиз), 9 – промежуточная доля гипофиза, 10 – передняя доля гипофиха (аденогипофиз), 11 – срединное возвышение ножки гипофиза.

Кроме гипоталамо-гипофизарной системы, к эндокринным железам относятся щитовидная и паращитовидные железы, кора и мозговой слой надпочечников, островковые клетки поджелу-дочной железы, секреторные клетки кишечника, половые железы, некоторые клетки сердца.

Щитовидная железа – это единственный орган человека, который способен активно поглощать йод и включать его в биологически активные молекулы, тиреоидные гормоны . Эти гормоны влияют практически на все клетки организма человека, основные их эффекты связаны с регуляцией процессов роста и развития, а также обменных процессов в организме. Гормоны щитовидной железы стимулируют рост и развитие всех систем организма, а особенно нервной системы. При недостаточном функционировании щитовидной железы у взрослых развивается заболевание, которое называется микседема. Ее симптомами являются снижение обмена веществ и нарушение функций нервной системы: замедляется реакция на раздражители, повышается утомляемость, падает температура тела, развиваются отеки, страдает желудочно-кишечный тракт и др. Снижение уровня тиреоидов у новорожденных сопровождается более тяжелыми последствиями и приводит к кретинизму , задержке умственного развития вплоть до полной идиотии. Раньше микседема и кретинизм часто встречались в горных районах, где в ледниковой воде мало йода. Сейчас эту проблему легко решают добавлением натриевой соли йода в поваренную соль. Усиление функционирования щитовидной железы приводит к нарушению, которое называется базедовой болезнью . У таких больных повышается основной обмен, нарушается сон, повышается температура, учащается дыхание и сердцебиение. У многих больных возникает пучеглазие, иногда образуется зоб.

Надпочечники – парные железы, расположенные на полюсах почек. В каждом надпочечнике выделяют два слоя: корковый и мозговой. Эти слои совершенно различны по своему происхож-дению. Наружный корковый слой развивается из среднего зародышевого листка (мезодермы), мозговой слой является видоизмененным узлом вегетативной нервной системы. В коре надпочеч-ников вырабатываются кортикостероидные гормоны (кортикоиды ). Эти гормоны обладают широким спектром действия: влияют на водно-солевой обмен, жировой и углеводный обмены, на иммунные свойства организма, подавляют воспалительные реакции. Один из основных кортикоидов, кортизол , необходим для создания реакции на сильные раздражители, приводящие к развитию стресса.Стресс можно определить как угрожающую ситуацию, развивающуюся под воздействием боли, кровопотери, страха. Кортизол препятствует кровопотере, сужает мелкие артериальные сосуды, усиливает сократительную способность сердечной мышцы. При разрушении клеток коры надпочечников развивается Аддисонова болезнь . У больных наблюдается бронзовый оттенок кожи на некоторых участках тела, развивается мышечная слабость, снижение массы тела, страдает память и умственные способности. Раньше наиболее распространенной причиной возникновения Аддисоновой болезни был туберкулез, в настоящее время это аутоиммунные реакции (ошибочная выработка антител к своим собственным молекулам).

В мозговом веществе надпочечников синтезируются гормоны: адреналин и норадреналин . Мишенями этих гормонов являются все ткани организма. Адреналин и норадреналин призваны мобилизовать все силы человека в случае ситуации, требующей большого физического или умственного напряжения, при травме, инфекции, испуге. Под их влиянием увеличивается частота и сила сердечных сокращений, повышается кровяное давление, учащается дыхание и расширяются бронхи, повышается возбудимость структур головного мозга.

Поджелудочная железа является железой смешанного типа, она выполняет как пищевари-тельные (выработка панкриотического сока), так и эндокринные функции. Она вырабатывает гормоны, регулирующие углеводный обмен в организме. Гормон инсулин стимулирует поступле-ние глюкозы и аминокислот из крови в клетки различных тканей, а также образование в печени из глюкозы основного запасного полисахарида нашего организма, гликогена . Другой гормон подже-лудочной железы, глюкогон , по своим биологическим эффектам является антагонистом инсулина, повышая содержание глюкозы в крови. Глюкогон стимулирует распад гликогена в печени. При недостатке инсулина развивается сахарный диабет, поступившая с пищей глюкоза не поглоща-ется тканями, накапливается в крови и выводится из организма с мочой, в то время как тканям катастрофически не хватает глюкозы. Особенно сильно страдает нервная ткань: нарушается чувствительность периферических нервов, возникает ощущение тяжести в конечностях, возможны судороги. В тяжелых случаях может возникать диабетическая кома и смерть.

Нервная и гуморальная системы, работая совместно, возбуждают или затормаживают различ-ные физиологические функции, что сводит к минимуму отклонения отдельных параметров внут-ренней среды. Относительное постоянство внутренней среды обеспечивается у человека путем регуляции деятельности сердечно-сосудистой, дыхательной, пищеварительной, выделительной систем, потовых желез. Регуляторные механизмы обеспечивают постоянство химического состава, осмотического давления, числа форменных элементов крови и т.д. Весьма совершенные механизмы обеспечивают поддержание постоянной температуры тела человека (терморегуляцию).

Возрастная анатомия и физиология Антонова Ольга Александровна

Тема 4. РАЗВИТИЕ РЕГУЛЯТОРНЫХ СИСТЕМ ОРГАНИЗМА

4.1. Значение и функциональная деятельность элементов нервной системы

Координация физиологических и биохимических процессов в организме происходит посредством регуляторных систем: нервной и гуморальной. Гуморальная регуляция осуществляется через жидкие среды организма – кровь, лимфу, тканевую жидкость, нервная регуляция – посредством нервных импульсов.

Главное назначение нервной системы заключается в обеспечении функционирования организма как единого целого через взаимосвязь между отдельными органами и их системами. Нервная система осуществляет восприятие и анализ разнообразных сигналов из окружающей среды и от внутренних органов.

Нервный механизм регуляции функций организма более совершенен, нежели гуморальный. Это, во-первых, объясняется быстротой распространения возбуждения по нервной системе (до 100–120 м/с), а во-вторых, тем, что нервные импульсы приходят непосредственно к определенным органам. Однако следует иметь в виду, что вся полнота и тонкость приспособления организма к окружающей среде осуществляются при взаимодействии и нервных, и гуморальных механизмов регуляции.

Общий план строения нервной системы. В нервной системе по функциональному и структурному принципу выделяют периферическую и центральную нервную систему.

Центральная нервная система состоит из головного и спинного мозга. Головной мозг расположен внутри мозгового отдела черепа, а спинной мозг – в позвоночном канале. На разрезе головного и спинного мозга различают участки темного цвета (серое вещество), образованные телами нервных клеток (нейронов), и белого цвета (белое вещество), состоящие из скоплений нервных волокон, покрытых миелиновой оболочкой.

Периферическая часть нервной системы состоит из нервов, например пучков нервных волокон, которые выходят за пределы головного и спинного мозга и направляются к различным органам тела. К ней также относят любые скопления нервных клеток вне спинного и головного мозга, такие как нервные узлы, или ганглии.

Нейрон (от греч. neuron – нерв) – основная структурная и функциональная единица нервной системы. Нейрон – это сложно устроенная высокодифференцированная клетка нервной системы, функцией которой является восприятие раздражения, переработка раздражения и передача его к различным органам тела. Нейрон состоит из тела клетки, одного длинного маловетвящегося отростка – аксона и нескольких коротких ветвящихся отростков – дендритов.

Аксоны бывают различной длины: от нескольких сантиметров до 1–1,5 м. Конец аксона сильно ветвится, образуя контакты со многими клетками.

Дендриты – короткие сильноветвящиеся отростки. От одной клетки может отходить от 1 до 1000 дендритов.

В различных отделах нервной системы тело нейрона может иметь различную величину (диаметром от 4 до 130 мк) и форму (звездчатую, округлую, многоугольную). Тело нейрона покрыто мембраной и содержит, как и все клетки, цитоплазму, ядро с одним или несколькими ядрышками, митохондрии, рибосомы, аппарат Гольджи, эндоплазматическую сеть.

Возбуждение по дендритам передается от рецепторов или других нейронов к телу клетки, а по аксону сигналы поступают к другим нейронам или рабочим органам. Установлено, что от 30 до 50 % нервных волокон передают информацию в центральную нервную систему от рецепторов. На дендритах имеются микроскопических размеров выросты, которые значительно увеличивают поверхность соприкосновения с другими нейронами.

Нервное волокно. За проведение нервных импульсов в организме отвечают нервные волокна. Нервные волокна бывают:

а) миелинизированные (мякотные); чувствительные и двигательные волокна этого типа входят в состав нервов, снабжающих органы чувств и скелетную мускулатуру, а также участвуют в деятельности вегетативной нервной системы;

б) немиелинизированные (безмякотные), принадлежат в основном симпатической нервной системе.

Миелин выполняет изолирующую функцию и имеет слегка желтоватый цвет, поэтому мякотные волокна выглядят светлыми. Миелиновая оболочка в мякотных нервах через промежутки равной длины прерывается, оставляя открытыми участки осевого цилиндра – так называемые перехваты Ранвье.

Безмякотные нервные волокна не имеют миелиновой оболочки, они изолированы друг от друга только шванновскими клетками (миелоцитами).

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Исследование систем внутренних органов ¦ СЕРДЕЧНОСОСУДИСТАЯ СИСТЕМАИсследование сердечнососудистой системы осуществляется путем выслушивания тонов сердца и пульса артерий и вен. Сердечная недостаточность, сопровождаемая внутрисердечными шумами, бывает обусловлена

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

Глава 6 ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ

Из книги Племенное разведение собак автора Сотская Мария Николаевна

Развитие систем органов плода собаки Обмен веществ между плодом и матерью происходит в плаценте. Питание плода осуществляется за счет поступления в его кровь питательных веществ из крови матери и за счет секрета эпителия слизистой оболочки. Некоторое количество

Из книги Возрастная анатомия и физиология автора Антонова Ольга Александровна

Тема 1. ЗАКОНОМЕРНОСТИ РОСТА И РАЗВИТИЯ ДЕТСКОГО

Из книги Кризис аграрной цивилизации и генетически модифицированные организмы автора Глазко Валерий Иванович

Тема 2. ВЛИЯНИЕ НАСЛЕДСТВЕННОСТИ И СРЕДЫ НА РАЗВИТИЕ ДЕТСКОГО ОРГАНИЗМА 2.1. Наследственность и ее роль в процессах роста и развития Наследственностью называется передача родительских признаков детям. Некоторые наследственные качества (форма носа, цвет волос, глаз,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Активизация защитных систем организма и устойчивость к абиотическим факторам Наряду с селекцией на устойчивость к болезням и вредителям, в странах Западной Европы и США ведется работа по повышению потенциальной урожайности видов растений, обладающих генетически

Из книги Основы психофизиологии автора Александров Юрий

Из книги Мозг, разум и поведение автора Блум Флойд Э

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

7. ВЗАИМОДЕЙСТВИЕ СЕНСОРНЫХ СИСТЕМ Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровне. Особенно широка интеграция сигналов в ретикулярной формации. В коре мозга происходит интеграция сигналов высшего порядка. В

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

1. ОБЩИЕ СВОЙСТВА СЕНСОРНЫХ СИСТЕМ Сенсорной системой называют часть нервной системы, воспринимающую внешнюю для мозга информацию, передающую её в мозг и анализирующую её. Сенсорная система состоит из воспринимающих элементов – рецепторов, нервных путей, передающих

Из книги автора

1.1. Методы исследования сенсорных систем Функции сенсорных систем исследуют в электрофизиологических, нейрохимических и поведенческих опытах на животных, проводят психофизиологический анализ восприятия у здорового и больного человека, а также с помощью ряда

Из книги автора

2. ТЕОРИЯ ФУНКЦИОНАЛЬНЫХ СИСТЕМ 2.1. Что такое система? Термин «система» обычно применяется для того, чтобы указать на собранность, организованность группы элементов и отграниченность её от других групп и элементов. Давалось множество определений системы, которые

Из книги автора

7.1. Историческая детерминация уровневой организации систем Представления о закономерностях развития многими авторами разрабатываются в связи с идеями уровневой организации (см. в [Анохин, 1975, 1980; Роговин, 1977; Александров, 1989, 1995, 1997]). Процесс развития рассматривается как

Из книги автора

Общая модель сенсорной и двигательной систем На протяжении веков люди пользовались различными приспособлениями для связи друг с другом - от очень простых сигналов (сверкание отраженного солнечного света, передаваемого от одного наблюдательного поста к другому) до

Из книги автора

Глава 6 Особенности продуцирования биологических систем 6.1. Общие понятия, термины, определения В экологии принято количество живого вещества всех групп растительных и животных организмов называть биомассой. Она является результирующей величиной всех процессов

Из книги автора

8.5. Единство регуляторных систем организма Сигнальные молекулы традиционно делили на три группы, согласно «дальности» действия сигнала. Гормоны переносятся кровью по всему организму, медиаторы – в пределах синапса, гистогормоны – в пределах соседних клеток. Однако

ГОУ ВПО УГМА РОСЗДРАВА

Кафедра биологической химии

«Утверждаю»

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2008 г

Экзаменационные вопросы по биохимии

По специальности «фармация» 060108, 2008 г.

Белки, ферменты.

1. Аминокислоты: классификация по химической природе, химическим свойствам,

биологической роли.

2. Строение и физико-химические свойства природных аминокислот.

3. Стереоизомерия и амфотерность аминокислот.

4. Физико-химические свойства белка. Обратимое и необратимое осаждение белка.

5. Механизм образования пептидной связи, ее свойства и особенности. Первичная

структура белка, биологическая роль.

6. Пространственные конфигурации белков: вторичная, третичная, четвертичная

структуры белка, связи их стабилизирующие, роль.

7 Стабилизирующие, дестабилизирующие, нарушающие аминокислоты и их роль в

структурной организации белков, понятие о доменной, сверх вторичной и

над четвертичной структурах.

8. Четвертичная структура белков, кооперативность функционирования протомеров.

8. Водородные связи, их роль в строении и функции белков.

9. Характеристика простых и сложных белков, классификация, основные представители,

их биологические функции.

10. Гемопротеиды: основные представители, функции. Строение гема.

11. Структура, номенклатура, биологическая роль нуклеотидтрифосфатов.

12. Ферменты: понятие, свойства – сходство и отличие с катализаторами небелковой

13. Активный центр ферментов, его структурно-функциональная неоднородность.

Единицы активности ферментов.

14. Механизм действия ферментов. Значение образования фермент-субстратного

комплекса, стадии катализа.

15. Изображение графической зависимости скорости катализа от концентраций субстрата

и фермента. Понятие о Км, её физиологическом смысле и клинико-диагностическом

значении.

16. Зависимость скорости реакции от концентрации субстрата и фермента, температуры,

рН среды, времени реакции.

17. Ингибиторы и виды ингибирования, их механизм действия.

18. Основные пути и механизмы регуляции активности ферментов на уровне клетки и

целого организма. Полиферментные комплексы.

19. Аллостерические ферменты, их структура, физико-химические свойства, роль.

20. Аллостерические эффекторы (модуляторы), их характеристика, механизм действия.

21. Механизмы ковалентной регуляции ферментов (обратимой и необратимой), их роль в

обмене веществ.

22. Неспецифическая и специфическая регуляция активности ферментов – понятия,

23. Механизмы специфической регуляции активности ферментов: индукция – репрессия.

24. Роль гормонов стероидной природы в механизмах регуляции активности ферментов.

25. Роль гормонов пептидной природы в механизмах регуляции активности ферментов.

26. Изоферменты - множественные молекулярные формы ферментов: особенности

структуры, физико-химических свойств, регуляторных функций, клинико –

диагностическое значение.

27. Применение ферментов в медицине и фармации (энзимодиагностика, энзимопатология,

энзимотерапия).

28. Простетические группы, коферменты, кофакторы, косубстраты, субстраты,

метаболиты, продукты реакций: понятия, примеры. Коферменты и кофакторы:

химическая природа, примеры, роль в катализе.

29. Энзимопатии: понятие, классификация, причины и механизмы развития, примеры.

30. Энзимодиагностика: понятие, принципы и направления, примеры.

31. Энзимотерапия: виды, методы, используемые ферменты, примеры.

32. Системная энзимотерапия: понятие, области применения, используемые ферменты,

пути введения, механизмы действия.

33. Локализация ферментов: ферменты общего назначения, органо- и органелло-

специфические ферменты, их функции и клинико-диагностическое значение.

30. Принципы номенклатуры и классификации ферментов, краткая характеристика.

30. Современная теория биологического окисления. Строение, функции, механизм

восстановления: НАД + , ФМН, ФАД, КоQ, цитохромов. Различие в их функциях.

30. Хемиосмотическая теория сопряжения окисления и фосфорилирования.

30. Электрохимический потенциал, понятие его роль в сопряжении окисления и

фосфорилирования.

30. Химическая и конформационнея гипотезы сопряжения окисления и фосфорилирования.

30. Фотосинтез.Реакции световой и темновой фаз фотосинтеза, биологическая роль.

Структура хлоропластов хлорофилл его строение, роль.

30. Световые реакции фотосинтеза. Фотосистемы Р-700 и Р-680” их роль. Механизм

фотосинтетического фосфорилирования.

Энергетический обмен.

1. Митохондрии: строение, химический состав, маркерные ферменты, функции, причины

и последствия повреждений.

2. Общая схема энергетического обмена и образования субстратов биологического

окисления; типы окислительных ферментов и реакций, примеры.

3. Пути использования О 2 в клетках (перечислить), значение. Диоксигеназный путь,

значение, примеры.

4 Сходство и отличие монооксигеназного пути использования О 2 в митохондриях и

эндоплазматической сети.

5. Монооксигеназный путь использования О 2 в клетке: ферменты, коферменты,

косубстраты, субстраты, значение.

6. Цитохром Р-450: структура, функция, регуляция активности.

7. Сравнительная характеристика цитохромов В 5 и С: особенности структуры, функции,

значение.

8. Микросомальная редокс-цепь переноса электронов: ферменты, коферменты, субстраты,

косубстраты, биологическая роль.

9. АТФ: строение, биологическая роль, механизмы образования из АДФ и Фн.

10.Окислительное фосфорилирование: механизмы сопряжения и разобщения,

физиологическое значение.

11.Окислительное фосфорилирование: механизмы, субстраты, дыхательный контроль,

возможные причины нарушений и последствия.

12.Редокс-цепь окислительного фосфорилирования: локализация, ферментные комплексы,

окисляемые субстраты, ОВП, коэффициент Р/О, биологическое значение.

13.Сравнительная характеристика окислительного и субстратного фосфорилирования:

локализация, ферменты, механизмы, значение.

14.Сравнительная характеристика митохондриальной и микросомальной редокс-цепей:

ферменты, субстраты, косубстраты, биологическая роль.

15.Сравнительная характеристика цитохромов клетки: виды, строение локализация,

16.Цикл Кребса: схема, регуляция активности, энергетический баланс окисления АцКоА

до Н 2 О и СО 2 .

17.Цикл Кребса: окислительные реакции, номенклатура ферментов, значение.

18.Регуляторные реакции цикла Кребса, номенклатура ферментов, механизмы регуляции.

19.a-Кетоглутаратдегидрогеназный комплекс: состав, катализируемая реакция, регуляция.

20.Цикл Кребса: реакции превращения a-кетоглутарата в сукцинат, ферменты, значение.

21.Цикл Кребса: реакции превращения сукцината в оксалоацетат, ферменты, значение.

22.Антиоксидантная защита клеток (АОЗ): классификация, механизмы, значение.

23.Механизмы образования активных форм кислорода (АФК), физиолоическое и

клиническое значение.

24. Механизм образования и токсического действия . О - 2 , роль СОД в обезвреживании.

25. Механизмы образования и токсического действия пероксидного кислорода, механизмы

его обезвреживания.

26. Механизмы образования и токсического действия пероксидов липидов, механизмы их

обезвреживания.

27. Механизмы образования и токсического действия гидроксильных радикалов,

механизмы их обезвреживания.

28. СОД и каталаза: коферменты, реакции, значение в физиологии и патологии клетки.

29. Оксид азота (NO): реакция образования, регуляция, механизмы физиологических и

токсических эффектов.

30. Оксида азота: метаболизм, регуляция, механизмы физиологических и токсических

эффектов.

31. Перекисное окисление липидов (ПОЛ): понятие, механизмы и стадии развития,

значение.

32. Антиоксидантная защита клетки (АОЗ): классификация; механизм действия системы

глутатиона.

33. Антиоксидантная защита клетки (АОЗ): классификация, механизм действия системы

ферментативной защиты.

34. Антиоксидантная защита клетки (АОЗ): классификация, механизмы действия системы

неферментативной защиты.

35. Антиоксиданты и антигипоксанты: понятия, примеры представителей и механизмы их

действия.

36. NO-синтаза: тканевая локализация, функция, регуляция активности, физиологическое и

клиническое значение.

Обмен углеводов

1. Углеводы: определение класса, принципы нормирования суточной потребности,

структурная и метоболическая роль.

2. Гликоген и крахмал: структуры, механизмы переваривания и всасывания конечных

продуктов гидролиза.

3. Механизмы мембранного пищеварения углеводов и всасывания моносахаридов.

4. Мальабсорбция: понятие, биохимические причины, общие симптомы.

5. Синдром непереносимости молока: причины, биохимические нарушения, механизмы раз –

вития основных симптомов, последствия.

6. Углеводы: определение класса, строение и биологическое значение ГАГ.

7. Производные моносахаридов: уроновые и сиаловые кислоты, амино- и

дезоксисахариды строение и биологическая роль.

8. Пищевые волокна и клетчатка: особенности строения, физиологическая роль.

9. Гл6Ф: реакции образования и распада до глюкозы, номенклатура и характеристика

ферментов, значение.

10. Пути обмена Гл6Ф, значение путей, реакции образования из глюкозы, характеристика и

номенклатура ферментов.

11. Реакции расщепления гликогена до глюкозы и Гл6Ф – тканевые особенности, значение,

ферменты, регуляция.

12. Реакции биосинтеза гликогена из глюкозы – тканевые особенности, ферменты,

регуляция, значение.

13. Механизмы ковалентной и аллостерической регуляции обмена гликогена, значение.

14. Адреналин и глюкагон: сравнительная характеристика по химической природе,

механизму действия, метаболическим и физиологическим эффектам.

15. Механизмы гормональной регуляции обмена гликогена, значение.

16. Катаболизм глюкозы в анаэробных и аэробных условиях: схема, сравнить

энергетический баланс, указать причины различной эффективности.

17. Гликолиз - реакции субстратного фосфорилирования и фосфорилирования субстратов:

номенклатура ферментов, механизмы регуляции, биологическое значение.

18. Гликолиз: киназные реакции, номенклатура ферментов, регуляция, значение.

19. Регуляторные реакции гликолиза, ферменты, механизмы регуляции, биологическое

значение.

20. Реакции гликолитической оксидоредукции аэробного и анаэробного гликолиза:

написать, сравнить энергетическую эффективность, значение.

21. Гликолиз: реакции превращения триозофосфатов в пируват, сравнить энергетический

выход в аэробных и анаэробных условиях.

22. Эффект Пастера: понятие, механизм, физиологическое значение. Сравнить

энергетический баланс расщепления фруктозы в отсутствии и реализации эффекта П.

23. Пути обмена лактата: схема, значение путей, тканевые особенности.

24. Превращение пирувата в АцКоА и оксалоацетат: реакции, ферменты, регуляция,

значение.

25. Челночные механизмы транспорта водорода из цитозоля в митохондрии: схемы,

биологическое значение, тканевые особенности.

26. Пентозофосфатный шунт гликолиза: схема, биологическое значение, тканевые

особенности.

27. Пентозный цикл - реакции до пентозофосфатов: ферменты, регуляция, значение.

28. Окислительные реакции гликолиза и пентозофосфатного шунта, биологическое

значение.

29. Глюконеогенез: понятие, схема, субстраты, аллостерическая регуляция, тканевые

особенности, биологическое значение.

30. Глюконеогенез: ключевые реакции, ферменты, регуляция, значение.

31. Механизмы образования глюкозы в печени: схемы, значение, причины и последствия

возможных нарушений.

32. Гормональная регуляция механизмов поддержания уровня сахара в крови.

33. Уровни и механизмы регуляции обмена углеводов, примеры.

34. Глюкозо-лактатный и глюкозо-аланиновый циклы (цикл Кори): схема, значение.

35. Центральный уровень регуляции обмена углеводов – адреналин, глюкагон, нервная

36. Обмен фруктозы в печени – схема, значение. Непереносимость фруктозы: причины,

метаболические нарушения, биохимические и клинические проявления.

37. Обмен галактозы в печени – схема, значение. Галактоземия: причины, метаболические

нарушения, биохимические и клинические проявления.

38 Гипергликемия: определение понятия, классификация причин, биохимические

39. Гипогликемия: определение понятия, классификация причин, биохимические

нарушения, клинические проявления, механизмы компенсации.

40. Инсулин – человеческий и животный: сравнить по химическому составу, структуре,

физико химическим и иммунологическим свойствам.

41. Механизмы биосинтеза и секреции инсулина: этапы, ферменты, регуляция.

42. Механизмы регуляции образования и секреции инсулина концентрацией глюкозы,

аргинина, гормонами.

43. Рецепторы инсулина: тканевая, клеточная локализация, структурная организация,

метаболизм.

44. Белки – транспортеры глюкозы через клеточные мембраны: классификация,

локализация, состав и структура, механизмы регуляции их функции.

45. Общая схема механизма действия инсулина.

46. Механизм действия инсулина на транспорт глюкозы.

47. Метаболические и физиологические эффекты инсулина.

48. Сахарный диабет I и II типа: понятия, роль генетических факторов и диабетогенов в их

возникновении и развитии.

49. Стадии развития диабета типа I и II – краткая сравнительная характеристика

генетических, биохимических, морфологических признаков.

50. Механизмы нарушений обмена углеводов при сахарном диабете, клинические

проявления, последствия.

51. Инсулинорезистентность и интолерантность к глюкозе: определение понятий,

причины возникновения, метаболические нарушения, клинические проявления,

последствия.

52. Метаболический синдром: его составляющие, причины возникновения, клиническое

значение.

53. Кетоацидотическая диабетическая кома: стадии и механизмы развития, клинические

проявления, биохимическая диагностика, профилактика.

54. Гиперосмолярная диабетическая кома: механизмы развития, биохимические

нарушения, клинические проявления, биохимическая диагностика.

55. Гипогликемия и гипогликемическая кома: причины и механизмы развития,

биохимические и клинические проявления, диагностика и профилактика.

56. Механизмы развития микроангиопатий: клинические проявления, последствия.

57. Механизмы развития макроангиопатий: клинические проявления, последствия.

58. Механизмы развития нейропатий: клинические проявления, последствия.

59. Моносахариды: Классификация, изомерия, примеры, биологическое значение.

60. Углеводы: Основные химические свойстсва и качественные реакции их обнаружения в

биологических средах.

61. Методические подходы и методы исследований обмена углеводов.

Обмен липидов.

1. Дать определение классу липидов, их классификация, строение, физ-хим. свойства и биологическое значение каждого класса.

2. Принципы нормирования суточной потребности пищевых липидов.

3. Строение, химический состав, функции липопротеидов.

4. Перечислить этапы обмена липидов в организме (Ж.К.Т., кровь, печень, жировая ткань, и др.).

5. Желчь: химический состав, функции, гуморальная регуляция секреции, причины и последствия нарушений секреции.

6. ПАВ желудочно - кишечного тракта и механизмы эмульгирования, значение.

7. Ферменты, расщепляющие ТГ, ФЛ, ЭХС, и др. липиды – их происхождение, регуляция секреции, функции.

8. Схемы реакций ферментативного гидролиза липидов до их конечных продуктов.

9. Химический состав и строение мицелл, механизмы всасывания липидов.

10. Значение гепато - энтерального рециклирования желчных кислот, ХС, ФЛ в физиологии и патологии организма.

11. Стеаторея: причины и механизмы развития, биохимические и клинические проявления, последствия.

12. Механизмы ресинтеза липидов в энтероцитах, значение.

13. Обмен хиломикронов, значение (роль апопротеинов, печеночной и сосудистой липопротеинлипаз).

14. Биохимические причины, метаболические нарушения, клинические проявления нарушений обмена хиломикронов.

  1. Жировая ткань – белая и бурая: локализация, функции, субклеточный и химический состав, возрастные особенности.
  2. Особенности метаболизма и функции бурой жировой ткани.
  3. Бурая жировая ткань: механизмы регуляции термогенеза, роль лептина и белков-разобщителей, значение.
  4. Лептин: химическая природа, регуляция биосинтеза и секреции, механизмы действия, физиологические и метаболические эффекты.
  5. Белая жировая ткань: особенности метаболизма, функции, роль в интеграции обмена веществ.
  6. Механизм липолиза в белой жировой ткани: реакции, регуляция, значение.
  7. Механизмы регуляции липолиза – схема: роль СНС и ПСНС, их b- и a- адренорецепторов, гормонов адреналина, норадреналина, глюкокортикоидов, СТГ, Т 3 ,Т 4 , инсулина и их внутриклеточных посредников, значение.
  8. b-Окисление жирных кислот: кратко - история вопроса, суть процесса, современные представления, значение, тканевые и возрастные особенности.
  9. Подготовительная стадия b-окисления жирных кислот: реакция активации и челночный механизм транспорта жирных кислот через мембрану митохондрий – схема, регуляция.
  10. b-Окисление жирных кислот: реакции одного оборота цикла, регуляция, энергетический баланс окисления стеариновой и олеиновой кислот (сравнить).
  11. Окисление глицерина до Н 2 О и СО 2: схема, энергетический баланс.
  12. Окисление ТГ до Н 2 О и СО 2: схема, энергетический баланс.
  13. ПОЛ: понятие, роль в физиологии и патологии клетки.
  14. СРО: стадии и факторы инициации, реакции образования активных форм кислорода.
  15. Реакции образования продуктов ПОЛ, используемых для клинической оценки состояния ПОЛ.
  16. АОЗ: ферментативная, неферментативная, механизмы.
  17. Схема обмена Ацет-КоА, значение путей.
  18. Биосинтез жирных кислот: этапы, тканевая и субклеточная локализация процесса, значение, источники углерода и водорода для биосинтеза.
  19. Механизм переноса Ацет-КоА из митохондрии в цитозоль, регуляция, значение.
  20. Реакция карбоксилирования Ацет-КоА, номенклатура фермента, регуляция, значение.
  21. Цитрат и Мал-КоА: реакции образования, роль в механизмах регуляции обмена жирных к-т.
  22. Пальмитилсинтетазный комплекс: структура, субклеточная локализация, функция, регуляция, последовательность реакций одного оборота процесса, энергетический баланс.
  23. Реакции удлинения – укорочения жирных кислот, субклеточная локализация ферментов.
  24. Десатурирующие системы жирных кислот: состав, локализация, функции, примеры (образование олеиновой кислоты из пальмитиновой).
  25. Взаимосвязь биосинтеза жирных кислот с обменом углеводов и энергетическим обменом.
  26. Гормональная регуляция биосинтеза жирных кислот и ТГ– механизмы, значение.
  27. Реакции биосинтеза ТГ, тканевые и возрастные особенности, регуляция, значение.
  28. Биосинтез ТГ и ФЛ: схема, регуляция и интеграция этих процессов (роль фосфотидной кислоты диглицерида, ЦТФ).
  29. Биосинтез холестерина: реакции до мевалоновой кислоты далее, схематично.
  30. Особенности регуляции в кишечной стенке и других тканях биосинтеза ХС; роль гормонов: инсулина, Т 3 ,Т 4 , витамина РР.
  31. Реакции образования и распада эфиров холестерина – роль АХАТ и гидролазы ЭХС, особенности тканевого распределения ХС и его эфиров, значение.
  32. Катаболизм ХС, тканевые особенности, пути удаления из организма. Лекарственные препараты и пищевые вещества, снижающие содержание ХС в крови.
  33. Реакции биосинтеза кетоновых тел, регуляция, значение.
  34. Реакции распада кетоновых тел до Ацет-КоА и, далее до СО 2 и Н 2 О, схема, энергетический баланс.
  35. Интеграция липидного и углеводного обменов – роль печени, жировой ткани, кишечной стенки и др.
  36. Уровни и механизмы регуляции обмена липидов (перечислить).
  37. Метаболический (клеточный) уровень регуляции обмена липидов, механизмы, примеры.
  38. Межорганный уровень регуляции обмена липидов – понятие. Цикл Рендла, механизмы реализации.
  39. Центральный уровень регуляции обмена липидов: роль СНС и ПСНС - a и b рецепторов, гормонов – КХ, ГК, Т 3 , Т 4 , ТТГ, СТГ, инсулина, лептина, и др.

54. Обмен ЛПОНП, регуляция, значение; роль ЛПЛ, апо В- 100, Е и С 2 , ВЕ-рецепторов, ЛПВП.

55. Обмен ЛПНП, регуляция, значение; роль апо В- 100 , В-клеточных рецепторов, АХАТ, БЛЭХ, ЛПВП.

56. Обмен ЛПВП, регуляция, значение; роль ЛХАТ, апо А и С, других классов ЛП.

57. Липиды крови: состав, нормальное содержание каждого компонента, транспорт по кровотоку физиологическое и диагностическое значение.

58. Гиперлипидемии: классификация по Фредриксону. Взаимосвязь каждого класса со специфическим патологическим процессом и его биохимическая диагностика.

59. Лабораторные методы установления типов липидемий.

60. Дислипопротеинемии: хиломикронемия, b-липопротеинемия, абеталипопротеинемия, болезнь Танжи - биохимические причины, метаболические нарушения, диагностика.

61. Атеросклероз: понятие, распространённость, осложнения, последствия.

62. Атеросклероз: причины, стадии и механизмы развития.

63. Экзогенные и эндогенные факторы риска развития атеросклероза, механизм их действия, профилактика.

64. Атеросклероз: особенности развития и течения при сахарном диабете.

65. Диабетические макроангиопатии: механизмы развития, роль в возникновении, течении и осложнении атеросклероза.

66. Ожирение: понятие, классификация, возрастные и половые особенности отложения жира, расчетные показатели степени ожирения, значение.

67. Липостат: понятие, основные звенья и механизмы его функционирования, значение.

68. Гуморальные факторы, регулирующие центр голода, перечислить.

69. Лептин: регуляция образования и поступления в кровоток, механизм участия в развитии первичного ожирения.

70. Абсолютная и относительная лептиновая недостаточность: причины, механизмы развития.

71. Вторичное ожирение: причины, последствия.

72. Биохимические нарушения в тканях и крови при ожирении, последствия, профилактика.

73. Ожирение: механизмы взаимосвязи с сахарным диабетом и атеросклерозом.

74. Инсулинорезистентность: понятие, биохимические причины и механизмы развития, метаболические нарушения, взаимосвязь с ожирением.

75. Роль кахексина (ФНО-a) в развитии инсулиновой резистентности и ожирения.

76. Метаболический синдром: понятие, его составляющие, клиническое значение.

Роль наследственных факторов и факторов окружающей среды в его

возникновении.

Регуляторные системы организма.

  1. Системы регуляции:определение понятий – гормоны, гормоноиды, гистогормоны, дисперсная эндокринная система, иммунная регуляторная система, их общие свойства.
  2. Классификация и номенклатура гормонов: по месту синтеза, химической природе, функциям.
  3. Уровни и принципы организации регуляторных систем: нервной, гормональной, иммунной.
  4. Этапы метаболизма гормонов: биосинтез, активация, секреция, транспорт по кровотоку, рецепция и механизм действия, инактивация и удаление из организма, клиническое значение.
  5. V2: Базы данных. Системы управления базами данных и базами знаний.
  6. V2: Назначение и основы использования систем искусственного интеллекта; базы знаний, экспертные системы, искусственный интеллект.
  7. а развитие экономики туризма оказывает заметное воздействие состояние кредитно-денежной системы.
  8. А.Смит и формирование системы категорий классической политической экономии



Понравилась статья? Поделитесь ей
Наверх