Жиры: строение, функции, свойства, источники для организма. Строение, физические, химические свойства жиров Реакция щелочного омыления

Свойства жиров определяются качественным составом жирных кислот, их количественным соотношением, процентным содержанием свободных, не связанных с глицерином, жирных кислот, соотношением различных триглицеридов и т.п.

Насыщенные жирные кислоты образуют триглицериды, имеющие при обычной температуре твердую консистенцию. Среди них встречаются как животные (например, говяжий жир), так и растительные (например, масло какао) жиры. Ненасыщенные жирные кислоты образуют триглицериды, имеющие при тех же условиях жидкую консистенцию - животные жиры (например, рыбий жир) и подавляющее большинство растительных масел.

Жиры и масла жирны на ощупь, нанесенные на бумагу, оставляют характерное "жирное" пятно, не исчезающее при нагревании, а, наоборот, еще сильнее расплывающееся. При обыкновенной температуре масла не загораются, но нагретые или в виде паров горят ярким пламенем. Чистые триглицериды бесцветны, но природные жиры более или менее окрашены. Масла обычно желтоватые вследствие присутствия каротиноидов, некоторые из них могут быть окрашены хлорофиллом в зеленый цвет, или, что еще реже, в красно-оранжевый или иной цвет в зависимости от вида липохромов. Запах и вкус свежих жиров специфичны. Запах обусловлен присутствием следов эфирных масел (терпены, алифатические углеводороды и др.). В некоторых жирах содержатся обладающие запахом сложные эфиры низкомолекулярных кислот. Специфический запах рыбьих жиров обусловлен сильно ненасыщенными жирными кислотами или, вернее, продуктами их окисления.

Плотность подавляющего числа жиров находится в пределах 0,910-0,945. Лишь у немногих масел (например, касторового) плотность выше - до 0,970 (при 20°С, по ГФ X).

В воде жиры и масла нерастворимы, но их можно заэмульгировать в воде с помощью поверхностно-активных веществ. В этаноле растворяются трудно (или не растворяются), за исключением касторового масла. Легко растворимы в диэтиловом эфире, хлороформе, сероуглероде, бензине, петролейном эфире, вазелиновом масле. Жиры и масла смешиваются между собой в любых соотношениях. Они являются хорошими растворителями эфирных масел, камфоры, смол, серы, фосфора и ряда других веществ.

Температура плавления твердых жиров возрастает с числом углеродных атомов, входящих в их состав жирных кислот. Поскольку жиры представляют сложные смеси разных триглицеридов, точка плавления их обычно не бывает четко выраженной. Сказанное в равной степени относится и к температуре застывания.

Температура кипения жиров не может быть определена, поскольку при нагревании до 250°С они разрушаются с образованием из глицерина сильно раздражающего слизистые оболочки глаз альдегида акролеина.


Кипят они в высоком вакууме. Жирные масла, состоящие из простых триглицеридов, оптически неактивны, если они не содержат примеси оптически активных веществ. В случае смешанных триглицеридов некоторые жирные масла могут проявлять оптическую активность.

Показатель преломления тем выше, чем больше содержится в жире триглицеридов ненасыщенных кислот. Например, масло какао имеет показетель преломления 1,457, миндальное - 1,470, льняное - 1,482.

Химические свойства жиров проявляются в их способности к омылению, прогорканию, высыханию и гидрогенизации.

Омыление. Триглицериды жирных кислот способны к превращениям, характерным для сложных эфиров. Под влиянием едких щелочей происходит расщепление эфирных связей, в результате чего образуются свободный глицерин и щелочные соли жирных кислот (мыла).

Реакция омыления широко используется для приготовления бытовых и медицинских мыл, а также для выяснения состава жиров и их доброкачественности. С этой целью определяют число омыления , то есть количество миллиграммов едкого калия (KOH), необходимое для нейтрализации свободных и связанных в виде триглицеридов жирных кислот, содержащихся в 1 г жира.

Прогоркание. Этот сложный химический процесс происходит при хранении жира в неблагоприятных условиях (доступ воздуха и влаги, свет, тепло), в результате чего жиры приобретают горьковатый вкус и неприятный запах. Если жиры в этих условиях подвергаются действию фермента липазы, то происходит их разложение, аналогичное реакции омыления. Этот вид порчи жира легко контролируется по величине кислотного числа (КЧ). Под этой константой понимается количество милиграммов едкого калия (KOH), которое необходимо для нейтрализации свободных жирных кислот, содержащихся в 1 г жира. Доброкачественные жиры содержат небольшое количество свободных жирных кислот.

С помощью других констант можно определить природу содержащихся в масле свободных жирных кислот. Так, по числу Рейхерта-Мейсля можно судить о количестве летучих растворимых в воде кислот, а по числу Поленске - о количестве летучих кислот, нерастворимых в воде. Числом Рейхерта-Мейсля называется количество миллилитров 0,1 Мэ раствора едкого калия, необходимое для нейтрализации летучих, растворимых в воде жирных кислот, полученных при строго определенных условиях из 5 г жира. Число Поленске устанавливают вслед за определением летучих кислот в той же навеске жира. Выпавшие жирные кислоты переводят в спиртовой раствор и титруют 0,1 Мэ спиртовым раствором едкого калия.

Для более точного представления о количестве содержащихся в жирах глицеридов из числа омыления вычитают кислотное число и получают так называемое эфирное число (ЭЧ), которое характеризует только связанные жирные кислоты.

Иногда прогоркание жиров зависит от жизнедеятельности микроорганизмов, вызывающих окисление отщепленных жирных кислот в кетоны или альдегиды. Однако чаще всего прогоркание жиров обусловливается окислением ненасыщенных жирных кислот кислородом воздуха. Последний может присоединяться по месту двойных связей, образуя перекиси.

Кислород может присоединяться также и к углеродному атому, соседнему с двойной связью, образуя гидроперекиси.

Образовавшиеся перекиси и гидроперекиси подвергаются разложению с образованием альдегидов и кетонов. Для характеристики окислительного прогоркания жира используется константа, известная под названием перекисное число , которое выражается количеством иода, пошедшего на разрушение перекисей.

Высыхание. Намазанные тонким слоем жидкие жиры ведут себя на воздухе по-разному: одни остаются без изменения жидкими, другие, окисляясь, постепенно превращаются в прозрачную смолоподобную эластичную пленку - линоксин, нерастворимую в органических растворителях. Масла, не образующие пленку, называются невысыхающими. Главной составной частью в таких маслах являются глицериды олеиновой кислоты (с одной двойной связью). Масла, образующие плотную пленку, называются высыхающими. Главной составной частью в таких маслах являются глицериды линоленовой кислоты (с тремя двойными связями). Масла, образующие мягкие пленки, называются полувысыхающими. Главной составной частью в таких маслах являются глицериды линолевой кислоты (с двумя двойными связями). Способность некоторых масел к высыханию широко используется в народном хозяйстве (лакокрасочная промышленность). Для медицины, наоборот, представляют интерес масла невысыхающие, поскольку они используются для парентерального введения лекарственных средств.

Олеиновая кислота обладает способностью под влиянием азотистой кислоты переходить в свои стереоизомер - элаидиновую кислоту, которая при комнатной температуре имеет твердую консистенцию. Этой реакцией, известной под названием элаидиновая проба, широко пользуются для определения типа масла: если проба положительная, то, следовательно, исследуемое масло невысыхающее (содержит триглицериды олеиновой кислоты).

Надежным способом выявления высыхаемости масел служит определение йодного числа. Известно, что все непредельные кислоты, в том числе и жирные, способны присоединять по месту двойной связи галогены. Чем больше в жирных кислотах будет двойных связей, тем больше присоединится галогенов. Для аналитических целей обычно используют йод; под йодным числом понимается количество граммов иода, которое поглощается 100 г жира. Таким образом, по величине йодного числа можно легко установить, к какой группе по степени высыхаемости относится то или иное масло.

ОПРЕДЕЛЕНИЕ

Жиры – сложные эфиры высших карбоновых кислот и глицерина.

Жиры и масла (жидкие жиры) – важные природные соединения. Все жиры и масла растительного происхождения почти целиком состоят из сложных эфиров глицерина (триглицеридов). В этих соединениях глицерин этерифицирован высшими карбоновыми кислотами.

Жиры имеют общую формулу:

Здесь R, R’, R’’ – углеводородные радикалы.

Три гидроксогруппы глицерина могут быть этерифицированы либо только одной кислотой, например пальмитиновой или олеиновой, либо двумя или тремя различными кислотами:


Основные предельные кислоты, образующие жиры – пальмитиновая С 15 Н 31 СООН и стеариновая С 17 Н 35 СООН; основные непредельные кислоты – олеиновая С 17 Н 33 СООН и линолевая С 17 Н 31 СООН.

Физические свойства жиров

Жиры, образованные предельными кислотами, — твердые вещества, а непредельными – жидкие. Все жиры очень плохо растворимы в воде.

Получение жиров

Жиры получают по реакции этерификации, протекающей между трехатомным спиртом глицерином и высшими карбоновыми кислотами:


Химические свойства жиров

Среди реакций жиров особое место занимает гидролиз, который можно осуществить действием как кислот, так и оснований:

а) кислотный гидролиз


б) щелочной гидролиз


Для масел (жидких жиров) характерны реакции присоединения:

— гидрирование (реакция гидрирования (гидрогенизации) лежит в основе получения маргарина)


— бромирование


Мерой ненасыщенности остатков кислот, которые входят в состав жиров, служит йодное число, выражаемое массой йода (в граммах), который может присоединиться по двойным связям к 100г жира. Йодное число важно при оценке высыхающих масел.

Масла (жидкие жиры) также подвергаются реакциям окисления и полимеризации.

Применение жиров

Жиры нашли широкое применение в пищевой промышленности, фармацевтике, в производстве масел и различных косметических средств, в производстве смазочных материалов.

Примеры решения задач

ПРИМЕР 1

Задание Растительное масло массой 17,56 г нагрели с 3,36 г гидроксида калия до полного исчезновения масляного слоя. При действии избытка бромной воды на полученный после гидролиза раствор образуется только одно тетрабромпроизводное. Установите возможную формулу жира.
Решение Запишем в общем виде уравнение гидролиза жира:


На 1 моль жира при гидролизе приходится 3 моль гидроксида калия. Найдем количество вещества гидроксида калия и жира, причем, количество жира втрое меньше:

Зная количество и массу жира, можно найти его молярную массу:

На три углеводородных радикала R кислот приходится 705 г/моль:

Зная, что тетрабромпроизводное получено только одно, можно сделать вывод, что все кислотные остатки одинаковы и содержат по 2 двойные связи. Тогда получаем, что в каждом радикале содержится 17 атомов углерода, это радикал линолевой кислоты:

Возможная формула жира:

Ответ Искомый жир — тилинолен

ПРИМЕР 2

Задание Напишите две возможные формулы жира, имеющего в молекуле 57 атомов углерода и вступающего в реакцию с иодом в соотношении 1:2. В составе жира имеются остатки кислот с четным числом углеродных атомов.
Ответ

где R, R’, R» — углеводородные радикалы, содержащие нечетное число атомов углерода (еще один атом из кислотного остатка входит в состав группы -СО-). На долю трех углеводородных радикалов приходится 57- 6 = 51 атом углерода. Можно предположить, что каждый из радикалов содержит по 17 атомов углерода.

«Химия везде, химия во всем:

Во всем, чем мы дышим,

Во всем, что мы пьем,

Во всем, что едим».

Во всем, что мы носим,






Люди давно научились выделять жир из натуральных объектов и использовать его в повседневной жизни. Жир сгорал в примитивных светильниках, освещая пещеры первобытных людей, жиром смазывали полозья, по которым спускали на воду суда. Жиры – основной источник нашего питания. Но неправильное питание, малоподвижный образ жизни приводит к избыточному весу. Животные пустынь запасают жир как источник энергии и воды. Толстый жировой слой тюленей и китов помогает им плавать в холодных водах Северного Ледовитого океана.

Жиры широко распространены в природе. Наряду с углеводами и белками они входят в состав всех животных и растительных организмов и составляют одну из основных частей нашей пищи. Источниками жиров являются живые организмы. Среди животных это коровы, свиньи, овцы, куры, тюлени, киты, гуси, рыбы (акулы, тресковые, сельди). Из печени трески и акулы получают рыбий жир – лекарственное средство, из сельди – жиры, используемые для подкормки сельскохозяйственных животных. Растительные жиры чаще всего бывают жидкими, их называют маслами. Применяются жиры таких растений, как хлопок, лен, соя, арахис, кунжут, рапс, подсолнечник, горчица, кукуруза, мак, конопля, кокос, облепиха, шиповник, масличная пальма и многих других.

Жиры выполняют различные функции: строительную, энергетическую (1 г жира дает 9 ккал энергии), защитную, запасающую. Жиры обеспечивают 50% энергии, требуемой человеку, поэтому человеку необходимо потреблять 70–80 г жиров в день. Жиры составляют 10–20% от массы тела здорового человека. Жиры являются незаменимым источником жирных кислот. Некоторые жиры содержат витамины А, D, Е, К, гормоны.

Многие животные и человек используют жир в качестве теплоизолирующей оболочки, например, у некоторых морских животных толщина жирового слоя достигает метра. Кроме того, в организме жиры являются растворителями вкусовых веществ и красителей. Многие витамины, например витамин А, растворяются только в жирах.

Некоторые животные (чаще водоплавающие птицы) используют жиры для смазки своих собственных мышечных волокон.

Жиры повышают эффект насыщения пищевыми продуктами, т. к. они перевариваются очень медленно и задерживают наступление чувства голода .

История открытия жиров

Еще в 17 в. немецкий ученый, один из первых химиков-аналитиков Отто Тахений (1652–1699) впервые высказал предположение, что жиры содержат «скрытую кислоту».

В 1741 французский химик Клод Жозеф Жоффруа (1685–1752) обнаружил, что при разложении кислотой мыла (которое готовили варкой жира со щелочью) образуется жирная на ощупь масса.

То, что в состав жиров и масел входит глицерин, впервые выяснил в 1779 знаменитый шведский химик Карл Вильгельм Шееле.

Впервые химический состав жиров определил в начале прошлого века французский химик Мишель Эжен Шеврёль , основоположник химии жиров, автор многочисленных исследований их природы, обобщенных в шеститомной монографии " Химические исследования тел животного происхождения" .

1813 г Э. Шеврёль установил строение жиров, благодаря реакции гидролиза жиров в щелочной среде. Он показал, что жиры состоят из глицерина и жирных кислот, причем это не просто их смесь, а соединение, которое, присоединяя воду, распадается на глицерин и кислоты.


Общая формула жиров (триглицеридов)



Жиры
– сложные эфиры глицерина и высших карбоновых кислот. Общее название таких соединений – триглицериды.


Классификация жиров


Животные жиры содержат главным образом глицериды предельных кислот и являются твердыми веществами. Растительные жиры, часто называемые маслами, содержат глицериды непредельных карбоновых кислот. Это, например, жидкие подсолнечное, конопляное и льняное масла.

Природные жиры содержат следующие жирные кислоты

Насыщенные:

стеариновая (C 17 H 35 COOH)

пальмитиновая (C 15 H 31 COOH)

Масляная (C 3 H 7 COOH)

В СОСТАВЕ

ЖИВОТНЫХ

ЖИРОВ

Ненасыщенные :

олеиновая (C 17 H 33 COOH, 1 двойная связь)

линолевая (C 17 H 31 COOH, 2 двойные связи)

линоленовая (C 17 H 29 COOH, 3 двойные связи)

арахидоновая (C 19 H 31 COOH, 4 двойные связи, реже встречается)

В СОСТАВЕ

РАСТИТЕЛЬНЫХ

ЖИРОВ

Жиры содержатся во всех растениях и животных. Они представляют собой смеси полных сложных эфиров глицерина и не имеют чётко выраженной температуры плавления.

  • Животные жиры (бараний, свиной, говяжий и т.п.), как правило, являются твердыми веществами с невысокой температурой плавления (исключение – рыбий жир). В твёрдых жирах преобладают остатки насыщенных кислот.
  • Растительные жиры – масла (подсолнечное, соевое, хлопковое и др.) – жидкости (исключение – кокосовое масло, масло какао-бобов). Масла содержат в основном остатки ненасыщенных (непредельных) кислот.

Химические свойства жиров

1. Гидролиз, или омыление , жиров происходит под действием воды, с участием ферментов или кислотных катализаторов (обратимо) , при этом образуются спирт - глицерин и смесь карбоновых кислот:

или щелочей (необратимо) . При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами. Мыла получаются при гидролизе жиров в присутствии щелочей:

Мыла - это калиевые и натриевые соли высших карбоновых кислот.

2. Гидрирование жиров – превращение жидких растительных масел в твердые жиры – имеет большое значение для пищевых целей. Продукт гидрогенизации масел – твердый жир (искусственное сало, саломас ). Маргарин – пищевой жир, состоит из смеси гидрогенизированных масел (подсолнечного, кукурузного, хлопкого и др.), животных жиров, молока и вкусовых добавок (соли, сахара, витаминов и др.).

Так в промышленности получают маргарин:

В условиях процесса гидрогенизации масел (высокая температура, металлический катализатор) происходит изомеризация части кислотных остатков, содержащих цис-связи С=С, в более устойчивые транс-изомеры. Повышенное содержание в маргарине (особенно, в дешевых сортах) остатков транс-ненасыщенных кислот увеличивает опасность атеросклероза, сердечно-сосудистых и других заболеваний.


Реакция получения жиров (этерификация)


Применение жиров


    1. Пищевая промышленность
    1. Фармацевтика
    1. Производство мыла и косметических изделий
    1. Производство смазочных материалов

Жиры - продукт питания. Биологическая роль жиров.


Животные жиры и растительные масла, наряду с белками и углеводами – одна из главных составляющих нормального питания человека. Они являются основным источником энергии: 1 г жира при полном окислении (оно идет в клетках с участием кислорода) дает 9,5 ккал (около 40 кДж) энергии, что почти вдвое больше, чем можно получить из белков или углеводов. Кроме того, жировые запасы в организме практически не содержат воду, тогда как молекулы белков и углеводов всегда окружены молекулами воды. В результате один грамм жира дает почти в 6 раз больше энергии, чем один грамм животного крахмала – гликогена. Таким образом, жир по праву следует считать высококалорийным «топливом». В основном оно расходуется для поддержания нормальной температуры человеческого тела, а также на работу различных мышц, поэтому даже когда человек ничего не делает (например, спит), ему каждый час требуется на покрытие энергетических расходов около 350 кДж энергии, примерно такую мощность имеет электрическая 100-ваттная лампочка .

Для обеспечения организма энергией в неблагоприятных условиях в нем создаются жировые запасы, которые откладываются в подкожной клетчатке, в жировой складке брюшины – так называемом сальнике. Подкожный жир предохраняет организм от переохлаждения (особенно эта функция жиров важна для морских животных). В течение тысячелетий люди выполняли тяжелую физическую работу, которая требовала больших затрат энергии и соответственно усиленного питания. Для покрытия минимальной суточной потребности человека в энергии достаточно всего 50 г жира. Однако при умеренной физической нагрузке взрослый человек должен получать с продуктами питания несколько больше жиров, но их количество не должно превышать 100 г (это дает треть калорийности при диете, составляющей около 3000 ккал). Следует отметить, что половина из этих 100 г содержится в продуктах питания в виде так называемого скрытого жира. Жиры содержатся почти во всех пищевых продуктах: в небольшом количестве они есть даже в картофеле (там их 0,4%), в хлебе (1–2%), в овсяной крупе (6%). В молоке обычно содержится 2–3% жира (но есть и специальные сорта обезжиренного молока). Довольно много скрытого жира в постном мясе – от 2 до 33%. Скрытый жир присутствует в продукте в виде отдельных мельчайших частиц. Жиры почти в чистом виде – это сало и растительное масло; в сливочном масле около 80% жира, в топленом – 98%. Конечно, все приведенные рекомендации по потреблению жиров – усредненные, они зависят от пола и возраста, физической нагрузки и климатических условий. При неумеренном потреблении жиров человек быстро набирает вес, однако не следует забывать, что жиры в организме могут синтезироваться и из других продуктов. «Отрабатывать» лишние калории путем физической нагрузки не так-то просто. Например, пробежав трусцой 7 км, человек тратит примерно столько же энергии, сколько он получает, съев всего лишь одну стограммовую плитку шоколада (35% жира, 55% углеводов) .Физиологи установили, что при физической нагрузке, которая в 10 раз превышала привычную, человек, получавший жировую диету, полностью выдыхался через 1,5 часа. При углеводной же диете человек выдерживал такую же нагрузку в течение 4 часов. Объясняется этот на первый взгляд парадоксальный результат особенностями биохимических процессов. Несмотря на высокую «энергоемкость» жиров, получение из них энергии в организме – процесс медленный. Это связано с малой реакционной способностью жиров, особенно их углеводородных цепей. Углеводы, хотя и дают меньше энергии, чем жиры, «выделяют» ее намного быстрее. Поэтому перед физической нагрузкой предпочтительнее съесть сладкое, а не жирное.Избыток в пище жиров, особенно животных, увеличивает и риск развития таких заболеваний как атеросклероз, сердечная недостаточность и др. В животных жирах много холестерина (но не следует забывать, что две трети холестерина синтезируется в организме из нежировых продуктов – углеводов и белков).

Известно, что значительную долю потребляемого жира должны составлять растительные масла, которые содержат очень важные для организма соединения – полиненасыщенные жирные кислоты с несколькими двойными связями. Эти кислоты получили название «незаменимых». Как и витамины, они должны поступать в организм в готовом виде. Из них наибольшей активностью обладает арахидоновая кислота (она синтезируется в организме из линолевой), наименьшей – линоленовая (в 10 раз ниже линолевой). По разным оценкам суточная потребность человека в линолевой кислоте составляет от 4 до 10 г. Больше всего линолевой кислоты (до 84%) в сафлоровом масле, выжимаемом из семян сафлора – однолетнего растения с ярко-оранжевыми цветками. Много этой кислоты также в подсолнечном и ореховом масле.

По мнению диетологов, в сбалансированном рационе должно быть 10% полиненасыщенных кислот, 60% мононенасыщенных (в основном это олеиновая кислота) и 30% насыщенных. Именно такое соотношение обеспечивается, если треть жиров человек получает в виде жидких растительных масел – в количестве 30–35 г в сутки. Эти масла входят также в состав маргарина, который содержит от 15 до 22% насыщенных жирных кислот, от 27 до 49% ненасыщенных и от 30 до 54% полиненасыщенных. Для сравнения: в сливочном масле содержится 45–50% насыщенных жирных кислот, 22–27% ненасыщенных и менее 1% полиненасыщенных. В этом отношении высококачественный маргарин полезнее сливочного масла.

Необходимо помнить

Насыщенные жирные кислоты отрицательно влияют на жировой обмен, работу печени и способствуют развитию атеросклероза. Ненасыщенные (особенно линолевая и арахидоновая кислоты) регулируют жировой обмен и участвуют в выведении холестерина из организма. Чем выше содержание ненасыщенных жирных кислот, тем ниже температура плавления жира. Калорийность твердых животных и жидких растительных жиров примерно одинакова, однако физиологическая ценность растительных жиров намного выше. Более ценными качествами обладает жир молока. Он содержит одну треть ненасыщенных жирных кислот и, сохраняясь в виде эмульсии, легко усваивается организмом. Несмотря на эти положительные качества, нельзя употреблять только молочный жир, так как никакой жир не содержит идеального состава жирных кислот. Лучше всего употреблять жиры как животного, так и растительного происхождения. Соотношение их должно быть 1:2,3 (70% животного и 30% растительного) для молодых людей и лиц среднего возраста. В рационе питания пожилых людей должны преобладать растительные жиры.

Жиры не только участвуют в обменных процессах, но и откладываются про запас (преимущественно в брюшной стенке и вокруг почек). Запасы жира обеспечивают обменные процессы, сохраняя для жизни белки. Этот жир обеспечивает энергию при физической нагрузке, если с пищей жира поступило мало, а также при тяжелых заболеваниях, когда из-за пониженного аппетита его недостаточно поступает с пищей.

Обильное потребление с пищей жира вредно для здоровья: он в большом количестве откладывается про запас, что увеличивает массу тела, приводя порой к обезображиванию фигуры. Увеличивается его концентрация в крови, что, как фактор риска, способствует развитию атеросклероза, ишемической болезни сердца, гипертонической болезни и др.

Физико-химические свойства животных жиров определяют режим и условия их производства и, в известной мере, сами зависят от режима и условий переработки сала-сырца.

Физические свойства жиров


1. Удельный вес.

Удельный вес животных жиров колеблется в пределах 0,915—0,964 (при 15°).

Удельный вес жира тем выше, чем выше в нем содержание глицеридов низших кислот, оксикислот и ненасыщенных кислот и чем сильнее степень их ненасыщенности.

При изменении температуры жидкого жира его удельный вес меняется в зависимости от изменения его объема. коэффициент объемного расширения жира в среднем равен 0,0007.

При окислении удельный вес жира повышается; при гидролизе понижается.

Удельные веса нейтральных жиров выше, чем удельные веса соответствующих смесей жирных кислот, причем разница между обеими величинами пропорциональна числу омыления.


2. Температура плавления жиров, температура застывания и титр.

Способность жира к эмульгированию, а следовательно, и к усвоению его организмом, зависит от его температуры плавления: чем ниже температура плавления жира, тем легче он эмульгируется с водой и тем выше его усвояемость.

Пищевые жиры в зависимости от усвояемости делятся на три группы:
к первой группе относятся жиры, температура плавления которых ниже или равна температуре человеческого тела (37°).
Такие жиры усваиваются организмом на 97—98% (например, костный, свиной жир, олео-маргарин).

Ко второй группе относятся жиры, температура плавления которых выше 37° (говяжий, бараний и др.).

Эти жиры усваиваются на 89—93%.

К третьей группе относятся жиры, температура плавления которых значительно выше, чем 37°. Такие жиры или совсем не усваиваются, или усваиваются незначительно.

Так, усвояемость тристеарина, температура плавления которого 711,5°, составляет всего лишь 14%.

Усвояемость жиров мясных животных составляет (в %):

Говяжьего

Бараньего

Температура плавления жиров зависит от природы жира, упитанности скота, породы, возраста животного и ряда других причин.

Чем больше в жире насыщенных глицеридов, тем жир более тугоплавок.

Самцы обладают более твердым жиром, чем самки.

Сало, снятое с внутренних органов, богаче твердыми глицеридами, чем подкожное сало.

Жир одного и того же животного тем беднее глицеридами ненасыщенных кислот, чем ближе соответствующие части, с которых снят жир, лежат к желудочно-кишечному тракту.

Животные теплого климата обладают более твердым жиром, чем животные умеренных или холодных стран.

Твердость жира зависит и от корма животного: у животных, получающих в корм жмыхи масличных семян, менее твердый жир, чем у животных, которым скармливают сено. Жиры упитанных животных более богаты ненасыщенными глицеридами.

Температура плавления жира зависит не столько от наличия двойных связей в триглицеридах, сколько от их местоположения.

Простые (однокислотные) глицериды плавятся при несколько более высокой температуре, чем соответствующие им кислоты.

Так, например, тристеарин плавится при 71,6°, а стеариновая кислота— при 69,6°.

Наличие гидроксильных групп повышает температуру плавления, Смешанные (разнокислотные) глицериды плавятся при более низкой температуре, чем однокислотные глицериды, и температура плавления многих смешаннокислотных глицеридов лежит ниже температуры плавления самой низкоплавкой кислоты из числа входящих в состав глицерида.

Так, тристеарин плавится при 71,6°, трипальмитин — при 63°, а стеародипальмитин — при 55°.

Для глицеридов и их смесей характерным является наличие двойных точек плавления: расплавленный жир при дальнейшем нагревании на несколько градусов вновь затвердевает и затем окончательно плавится.

При повторном плавлении вскоре после затвердевания жиры плавятся при более высокой температуре.

Нормальная температура плавления появляется только после длительного или глубокого охлаждения.

Эти двойные точки плавления глицеридов объясняются полиморфизмом, который состоит в том, что вещество одного и того же химического состава может существовать в твердом состоянии в нескольких формах, или модификациях.

Последние обладают различными физическими свойствами, в частности различными температурами плавления.

При быстром охлаждении глицеридов и жирных кислот выпадает, обычно, лишь неустойчивая, или лабильная модификация, которая обладает самой низкой температурой плавления. При длительном хранении такого глицерида в закристаллизованном состоянии лабильная модификация начинает переходить в стабильную, при этом длительность перехода зависит не только от температуры, но и от молекулярного веса глицеридов.

По данным проф. Г. Б. Равича и его сотрудников, температуры плавления тристеарина и трипальмитина характеризуются следующими данными:

Тристеарин

Трипальмитин

.
где: α, β. γ — модификации глицеридов, причем эти модификации тем устойчивее, чем выше температура плавления, т. е. наиболее стабильной является α=модификация и наименее стабильной γ-модификация.

Так как жиры являются смесью различных глицеридов с различными температурами плавления, то переход из твердого состояния в жидкое совершается не сразу, и уловить конец перехода трудно.

Поэтому температура плавления жиров не является точной константой.

Жиры застывают также не сразу, а постепенно: сначала в твердое состояние переходит наиболее тугоплавкие составные части, что выражается в помутнении массы, которое делается все сильнее, пока не затвердеет вся масса.

Конечную точку этого беспрерывного застывания определить очень трудно.

Более характерной является та температура, которая в течение некоторого времени после застывания жира остается неизменной, или та максимальная температура, которая достигается при застывании жира вследствие выделения скрытой теплоты плавления.

Эти температуры и называют температурой застывания жиров.

Температуры плавления и застывания быстро охлажденных жиров более или менее разнятся между собой.

Чем медленнее изменение температуры, тем больше эти точки сближаются.

В практике зачастую определяют не температуру застывания жира, а температуру застывания выделенных из него жирных кислот, так называемый титр жира.

Смесь жирных кислот имеет более резко выраженную температуру застывания, так как состоит из меньшего числа компонентов.

Кроме того, наличие в жире свободных жирных кислот влияет на температуру застывания жира, и одни и те же жиры, в зависимости от кислотности, обладают различными температурами застывания.

3. Вязкость.
В практике принято вязкость жира измерять в градусах, которые дают отношение времени истечения определенного объема жира при точно определенных условиях ко времени истечения такого же объема воды при тех же условиях.

Обычно вязкость жира измеряют в градусах Энглера.

Вязкость жиров имеет большое значение в технологии выработки жиров, так как она влияет на теплопередачу, скорость отстаивания, скорость фильтрации и сепарирования и т. п.

Вязкость большей части жиров колеблется в относительно узких пределах.

Какого-либо закономерного отношения между вязкостью и составом жира не установлено.

Известно только, что вязкость, в общем, увеличивается с повышением молекулярного веса, а с увеличением йодного числа уменьшается.

Сильно влияют на увеличение вязкости оксикислоты в жирах.

При повышении температуры жира вязкость уменьшается. Так, по данным А. А. Соколова, при повышении температуры от 50 до 90°, т. е. менее чем в два раза, вязкость животных жиров падает почти в 2,8 раза.

4. Коэффициент рефракции,
или коэффициент преломления, является отношением скорости света в воздухе к скорости света в некотором веществе. Преломляющая способность выражается отношением синуса угла падения к синусу угла преломления. Коэффициент преломления глицеридов выше, чем соответствующих жирных кислот. Жиры с большим содержанием летучих жирных кислот, например коровье масло, обладают наиболее низкими коэффициентами преломления. При окислении жира коэффициент преломления увеличивается.

Химические свойства жиров

Химические свойства жиров определяют то влияние, которое оказывают условия производства и хранения на качество пищевых жиров, или на ход производственного процесса.

С этой точки зрения наибольший интерес представляют те свойства, от которых зависит порча жиров и их расщепление.

Различают следующие виды порчи жиров:
1) гидролитическое расщепление жиров;
2) окисление жиров:
а) прогоркание — альдегидное и кетонное,
б) осаливание.

Гидролиз жиров

Гидролитическое расщепление жиров вызывается действием воды. Гидролиз жира протекает по следующей схеме:

С3H5(ОСОR)3 + 3H2О = С3H5(ОН)3 + 3RCOOH


Реакция гидролиза обратима.
Состояние равновесия зависит от количественного соотношения реагирующих веществ, в частности, от воды.

Реакция гидролиза жира без наличия побуждающих факторов идет с очень небольшой скоростью.

Увеличивают скорость реакции следующие факторы:

а) Ферменты.
В числе многих ферментов, находящихся в животных клетках, имеется жирорасщепляющий фермент липаза.
При выработке жиров часть липазы переходит в жир, не утрачивая своей активности.
Если в жире содержится хотя бы небольшое количество воды, то при липазе гидролиз жира протекает с большой скоростью и особенно интенсивно в различных видах животной жировой ткани.
Жир, вытопленный и в достаточной степени очищенный, на протяжении длительного периода времени расщепляется незначительно.

Так, по данным проф. А. А. Зиновьева, кислотное число шпига при его хранении в комнатных условиях, с доступом света в течение 25 суток, увеличилось с 1,19 до 6,67. Кислотное число свиного жира, вытопленного из жировой ткани и очищенного, при тех же условиях хранения в течение 60 суток увеличилось лишь с 0,85 до 0,94.

Активность липазы находится в зависимости от ее происхождения, величины рН, свойств субстрата, наличия примесей и от температуры.

Так, липаза поджелудочной железы наиболее активна в щелочной среде (рН 8—9); липаза желудка — в кислой (рН 4,7— 5). Если же липазу желудка подвергнуть очистке, то оптимальное для ее действия рН увеличивается. Оптимальный температурный режим для деятельности липазы лежит в пределах 35—40°. Повышение температуры сверх 50° и снижение ниже 15° значительно ослабляет активность фермента. Однако деятельность липазы не прекращается даже при минусовой температуре (—17°).

б) Влияние температуры.

При повышении температуры. реакция расщепления жиров протекает с большей скоростью.

При воздействии насыщенного водяного пара на говяжий жир в автоклаве при давлении 7 и 15 ати кислотные числа жира изменяются следующим образом:

Давление

Кислотные числа жира при продолжительности процесса


По данным проф. А. А. Зиновьева, кислотные числа свиного жира, хранившегося в течение 60 суток, повышаются: после хранения в холодильнике при минус 110° — от 0,85 до 0,87, после хранения в комнатных условиях — до 0,94 и в термостате (37°) — до 1,53.

В) Влияние оснований.
Присутствие оснований в реакционной среде, даже в небольших количествах, значительно усиливает гидролиз жиров.
Этим свойством оснований широко пользуются в жировой технике для расщепления жиров при выработке глицерина.
Такой метод расщепления жиров осуществляется в автоклавах, под давлением 7—8 ати в течение 8—11 часов в присутствии 2—3% окиси кальция (извести).
При этом достигают расщепления жиров на 90%.

Ускоряющее действие оснований вызывается тем, что при взаимодействии жира с окислами металлов образуются соответствующие соли жирных кислот (мыла). Образующиеся мыла способствуют эмульгированию жира и тем самым увеличению поверхности раздела фаз в этой гетерогенной системе.

г) Влияние серной кислоты.

Присутствие небольших количеств концентрированной серной кислоты при взаимодействии жира с водой вызывает расщепление жира.
Влияние серной кислоты сказывается в том, что образующиеся водородные ионы действуют каталитически на реакцию гидролиза, а получаемые продукты сульфирования (сульфожирные кислоты) обладают значительной эмульгирующей способностью. Образование сульфожирных кислот происходит в результате взаимодействия серной кислоты с ненасыщенными жирными кислотами.
Так, при действии серной кислоты на олеиновую получается сульфостеариновая кислота:

Сульфостеариновая кислота снижает поверхностное натяжение на границе жира и воды и тем способствует образованию эмульсии и увеличению поверхности раздела фаз.

Ранее этим свойством серной кислоты пользовались в технике для получения жирных кислот и глицерина.

В настоящее время в технике для расщепления жиров применяют более усовершенствованный, так называемый реактивный метод расщепления, сущность которого состоит в кипячении жира с водой и реактивом, эмульгирующим жир с водой.

В качестве эмульгатора применяют так называемый контакт проф. Г. С. Петрова, который является одним из наиболее зарекомендовавших себя в мировой технике. Контакт представляет собой смесь сульфонафтеновых кислот, получаемую из отходов при очистке соляровых или веретенных дистиллятов дымящейся серной кислотой.

При работе с контактом, добавляемым к жиру в количестве около 1% (плюс, примерно, 0,5% купоросного масла), степень расщепления достигает 92% и выше, с получением при этом светлых жирных кислот и хорошего качества глицериновой воды.

Окисление жиров

Окислительные процессы ведут к появлению резкого неприятного вкуса и запаха так называемого прогорклого жира.

Однако большей частью при порче жиров наблюдается наличие специфического запаха и неприятного, но не горького вкуса.

Процессы прогоркания и расщепления жиров идут независимо друг от друга, но так как ряд факторов, вызывающих активизацию этих процессов, является идентичным, то зачастую при прогоркании жира увеличивается и кислотность жира. Кроме того, глубокое окисление жира сопровождается образованием низкомолекулярных кислот.

Прогоркание жира является сложным окислительным процессом, при котором жиры приобретают специфический вкус и неприятный запах, вызываемые летучими веществами — альдегидами или кетонами.

Эти вещества получаются под воздействием кислорода воздуха на жиры.

Атмосферный кислород обладает слабой активностью, и реакция окисления без поступления энергии извне идет с небольшой измеримой скоростью. Способность жиров к окислению возрастает с повышением температуры, под влиянием облучения и т. п.

Различают альдегидное и кетонное прогоркание.

а) Альдегидное прогоркание.

Кислород воздуха, насыщая двойные связи, сначала приводит к образованию перекиси:

При действии воды на пероксид получается атомный кислород и образуются перекись водорода и озон:

Молекула озона присоединяется к непредельным жирным кислотам, и в результате образуется озонид, который под влиянием влаги расщепляется на молекулы с меньшим числом углеродных атомов, образуя альдегиды:

При дальнейшем окислении получаются низкомолекулярные кислоты — пеларгоновая и азелаиновая:

б) Кетонное прогоркание.

До недавнего времени считали, что кетонное прогоркание жиров происходит под влиянием микроорганизмов, например, плесеней Penicillium, Aspergillus; теперь установлено, что кетонное прогоркание происходит и в стерильной среде, т. е. чисто химическим путем.

Кетонное прогоркание, протекающее под влиянием микроорганизмов, происходит по следующей схеме: микроорганизмы вырабатывают ферменты, которые способствуют гидролизу триглицеридов.
Получаемые при этом жирные кислоты превращаются в аммонийные соли, реагируя с аммиаком, который образуется в результате распада белков, находящихся в жире.
Затем аммонийные соли подвергаются β-окислению.

Необходимые для этого процесса ферменты доставляются микроорганизмами, которые могут развиваться в жире, если он содержит воду и питательные вещества. Поэтому такой типичный бактериальный процесс наблюдается преимущественно на сливочном масле, неочищенном кокосовом масле, маргарине. Высокомолекулярные жирные кислоты (насыщенные — пальмитиновая, стеариновая) не способны подвергаться β-окислению.

В настоящее время доказано, что кетонное прогоркание может происходить без воздействия микроорганизмов, чисто химическим путем, и что получаемые при этом кетоны могут образоваться как из высокомолекулярных насыщенных жирных кислот, так и из ненасыщенных.

Тема «Физико-химические изменения липидов (жиров и масел) при кулинарной

Обработке продуктов»

1. Липиды (жиры и масла): физиологическое значение, химическое строение и состав.

2. Физические и химические свойства жиров.

3. Физико-химические изменения жиров при варке продуктов: плавление, эмульгирование, гидролиз.

Липиды: физиологическое значение, химическое строение и состав.

Липидами (от греч. lipos – жир) называют сложную смесь органических соединений с близкими физико-химическим свойствами, которая содержится в растениях, животных, микроорганизмах. Липиды делят на две основные группы: простые и сложные липиды. К простым липидам (не содержащим атомов азота, фосфора и серы) относятся производные высших жирных кислот и спиртов. Молекулы сложных липидов содержат в своем составе фосфорную и серную кислоты. Наиболее важная и распространенная группа простых нейтральных липидов – ацилглицерины – сложные эфиры глицерина и высших карбоновых кислот. И, по-существу, именно их называют жирами или маслами, так как они составляют 95% липидов.

Липиды играют очень важную роль в питании человека, являются поставщиком энергии, жирорастворимых витаминов, полиненасыщенных жирных кислот (витамины F), выполняют пластическую функцию. Теория сбалансированного питания рекомендует, чтобы общее количество жиров в суточном рационе составило 80-120 г, из них 20-30% – жиры животного происхождения, остальное – растительного происхождения.

Жиры по химической природе являются сложными эфирами трехатомного спирта глицерина и жирных кислот. Глицерин является постоянным элементом любого жира. Жирные кислоты могут быть насыщенными (двойная связь между атомами углерода отсутствует – масляная кислота, пальмитиновая, стеариновая и др.) и ненасыщенными (с одной или несколькими двойными связями – олеиновая, линолевая, линоленовая, имеющие большое физиологическое значение). От соотношения в жире насыщенных и ненасыщенных жирных кислот зависит консистенция жира: жидкие жиры богаты ненасыщенными жирными кислотами, если в жирах преобладают насыщенные кислоты, то такой жир при комнатной температуре остается твердым.



В природных жирах в большинстве содержатся триглицериды – эфиры трехатомного спирта глицерина, когда в молекуле глицерина этерифицированы все три ОН-группы. Очень редко триглицериды содержат остатки какой-либо одной кислоты. Как правило, они состоят из смешанных или разнокислотных триглицеридов.

Биологическая ценность жиров определяется соотношением в них насыщенных и ненасыщенных жирных кислот: растительные жиры обладают большей биологической ценностью. Потребность организма в полиненасыщенных жирных кислотах составляет 1% от суточной калорийности, она обеспечивается 20-30 г растительного масла в день.

В технологических процессах жиры являются составной частью многих кулинарных изделий, а также выполняют роль теплопередающей среды при жарке изделий.

Физические и химические свойства жиров

Жиры нерастворимы в воде (гидрофобны), хорошо растворимы в органических растворителях.

Важным физическим показателем жира является его температура плавления и застывания. Чем больше в жире низкомолекулярных непредельных кислот, тем ниже температура его плавления. Наличие ОН-групп в молекуле жира повышает температуру его плавления. Температура застывания жира на несколько градусов ниже, чем плавления, что имеет очень важное физиологическое значение. Например, температура плавления говяжьего жира 51ºС, бараньего – 55ºС, свиного – 48ºС и попадая в организм с пищей, они остаются там в расплавленном состоянии, так как температура их застывания ниже 36ºС,что способствует лучшему их перевариванию. Важнейшим физическим показателем жира является его вязкость, которая увеличивается в жирах по мере развития процессов окисления и полимеризации.

Химические свойства жиров:

1. Гидролиз жиров протекает с выделением глицерина и жирных кислот.

Реакция гидролиза называется реакцией омыления, используется в промышленности для производства мыла. Гидролитический распад жиров, зерна муки, крупы и др. является одной из причин ухудшения их качества и, в конечном счете, – порчи. Скорость и глубину гидролиза жира характеризует кислотное число – количество миллиграммов едкого калия, необходимое для нейтрализации свободных жирных кислот, содержащихся в 1 г масла или жира. Кислотное число для ряда жиросодержащих пищевых продуктов нормируется стандартами, характеризует их качество.

2. Гидрогенизация жиров – присоединение водорода. Задача гидрогенизации – целенаправленное изменение жирно-кислотного состава исходного жира в результате частичного или полного присоединения кислорода к ненасыщенным остаткам жирных кислот. Реакция проводится при температуре 180-240ºC в присутствии никелевых или медно-никелевых катализаторов при давлении, близком к атмосферному.

3. Окисление жиров – реакция взаимодействия с кислородом воздуха. Жиры, особенно содержащие радикалы ненасыщенных кислот, окисляются кислородом воздуха. В основе механизма окисления лежит теория Баха-Энглера и Н.Н.Семенова. Согласно которой существенную роль на начальных стадиях цепных реакций играют свободные радикалы, образующиеся в жирах под влиянием света. При этом молекула жира поглощает квант света (hν), и переходит в возбужденное состояние. Образующиеся радикалы очень активны, опять образуют перекисные радикалы, которые, вступая в реакцию, образуют цепные гидроперекиси (первичные продукты окисления) и новые радикалы.

Образовавшиеся гидроперикиси неустойчивы и в результате сложных превращений образуются вторичные продукты окисления – окси-эпоксисоединения, спирты, альдегиды, кетоны, кислоты.

Направление и глубина окисления масел и жиров зависит от их жирнокислотного состава: с увеличением степени непредельности жирных кислот, скорость их окисления возрастает. Триглицериды, в состав которых входят насыщенные жирные кислоты кислородом воздуха при обычных условиях практически не окисляются. На скорость окисления, кроме того, влияет присутствие влаги, металлов переменной валентности. Большое влияние на скорость окисления оказывают антиокислители (ингибиторы) – вещества, добавление которых приводит к обрыву цепей окисления. Среди антиоксидантов большое значение имеют вещества фенольной природы, из природных антиокислителей большое значение принадлежит токоферолам.

К основным физико-химическим показателям жиров относятся:

– йодное число, характеризующее степень ненасыщенности жиров, выражается в гр J 2 , присоединяющегося к 100 г жира;

– кислотное число – характеризует количество свободных жирных кислот в жире;

– число омыления – характеризует общее содержание жирных кислот в жире, выражается в г КОН, необходимого для нейтрализации всех жирных кислот, выделившихся при гидролизе 1 г жира;

– ацетильное число – характеризует количество свободных гидроксильных групп в жире, выражается в мг КОН, необходимых для нейтрализации уксусной кислоты, выделившейся при омылении 1г предварительного ацетилированного жира;

– перикисное число – характеризует содержание в жире перекисей, выражается в г йода, присоединяющегося к 100 г продукта;

– коэффициент преломлении и вязкость могут также характеризовать степень окисления жира, так как между этими показателями установлена математическая зависимость.



Понравилась статья? Поделитесь ей
Наверх