Фокусное расстояние и оптическая сила. Измеряем сами. Линзы. Фокусное расстояние линз. Оптическая сила линз. Формула тонкой линзы

Фокусное расстояние является важнейшей колляцией всякий линзы . Впрочем, на самом увеличительном стекле данный параметр традиционно не указан. В большинстве случаев на них обозначают только кратность увеличения, а на линзах без оправы частенько и совсем отсутствует какая-нибудь маркировка.

Вам понадобится

  • Источник света
  • Экран
  • Линейка
  • Карандаш

Инструкция

1. Примитивный метод определения фокусного расстояния линзы – экспериментальный. Расположите источник света на некотором удалении от экрана, заведомо превышающем двойное фокусное расстояние линзы . Параллельно воображаемому отрезку, соединяющему источник света с экраном, приложите линейку. Прислоните линзу к источнику света. Медлительно перемещая ее в направлении экрана, добейтесь возникновения на нем отчетливого изображения источника света. Подметьте на линейке карандашом место, где при этом находится линза.

2. Продолжайте перемещать линзу по направлению к экрану. В определенный момент на экране вновь появится отчетливое изображение источника света. Также подметьте на линейке это расположение линзы .

3. Измерьте расстояние между источником света и экраном. Возведите его в квадрат.

4. Измерьте расстояние между первым и вторым расположениями линзы и также возведите в квадрат.

5. Вычтите из первого итога возведения в квадрат 2-й.

6. Получившееся в итоге вычитания число поделите на учетверенное расстояние между источником света и экраном, и получится фокусное расстояние линзы . Оно будет выражено в тех же единицах, в которых производились измерения. Если это вас не устраивает, переведите его в комфортные для вас единицы.

7. Определить фокусное расстояние рассеивающей линзы напрямую немыслимо. Для этого потребуется добавочная линза – собирающая, причем, ее фокусное расстояние может быть и неведомо.

8. Расположите источник света, экран и линейку так же, как в предыдущем навыке. Потихоньку отодвигая собирающую линзу от источника света, добейтесь отчетливого изображения источника света на экране. Зафиксируйте линзу в этом расположении.

9. Между экраном и собирающей линзой разместите рассеивающую, фокусное расстояние которой вы хотите измерить. Изображение станет расплывчатым, но пока на это не нужно обращать внимание. Измерьте, на каком расстоянии от экрана расположена эта линза.

10. Отодвигайте экран от линзы , пока изображение вновь не станет сосредоточенным. Измерьте новое расстояние от экрана до рассеивающей линзы .

11. Умножьте первое расстояние на второе.

12. Вычтите второе расстояние из первого.

13. Итог умножения поделите на итог вычитания, и получится фокусное расстояние рассеивающей линзы .

Существует два вида линз – собирающие (выпуклые) и рассеивающие (вогнутые). Фокусное расстояние линзы расстояние от линзы до точки, являющейся изображением безмерно удаленного объекта. Проще говоря, это точка, в которой пересекаются параллельные лучи света позже прохождения через линзу.

Вам понадобится

  • Приготовьте линзу, лист бумаги, сантиметровую линейку (25-50 см), источник света (зажженная свеча, фонарь, маленькая настольная лампа).

Инструкция

1. 1-й метод – самый примитивный. Выйдите на освещенное солнцем место. С поддержкой линзы сосредоточьте ясные лучи на лист бумаги. Изменяя расстояние между линзой и бумагой, добейтесь наименьшего размера полученного пятна. Как водится, при этом бумага начинает обугливаться. Расстояние между линзой и листом бумаги в данный момент будет соответствовать фокусному расстоянию линзы .

2. 2-й метод – типичный. Установите источник света на край стола. На иной край, на расстоянии 50-80 см, поставьте импровизированный экран. Сделайте его из стопки книг либо маленький коробки и закрепленного вертикально листа бумаги. Передвигая линзу, добейтесь отчетливого (опрокинутого) изображения источника света на экране. Измерьте расстояния от линзы до экрана и от линзы до источника света. Сейчас расчет. Перемножьте полученные расстояния и поделите на расстояние от экрана до источника света. Полученное число и будет фокусным расстояние м линзы .

3. Для рассеивающей линзы все немножко труднее. Используйте то же оборудование, что и для второго метода с собирающей линзой. Рассеивающую линзу расположите между экраном и собирающей линзой. Перемещайте линзы для приобретения резкого изображения источника света. Собирающую линзу закрепите в этом расположении статично. Измерьте расстояние от экрана до рассеивающей линзы . Подметьте мелом либо карандашом местоположение рассевающей линзы и уберите ее. Приближайте экран к собирающей линзе до тех пор, пока не получите на экране крутое изображение источника света. Измерьте расстояние от экрана до того места, где находилась рассеивающая линза. Перемножьте полученные расстояния и поделите на их разность (из большего вычесть меньшее). Итог готов.

Обратите внимание!
Будьте внимательны при применении источников света. Соблюдайте правила электро- и пожарной безопасности.

Полезный совет
Если все измерения проводятся в миллиметрах, то и полученное фокусное расстояние будет в миллиметрах.

Фокусное расстояние – это расстояние от оптического центра до фокальной плоскости, на которой собираются лучи и формируется изображение. Оно измеряется в миллиметрах. Приобретая камеру, неукоснительно необходимо узнать фокусное расстояние объектива, потому что чем оно огромнее, тем мощней объектив увеличивает изображение предмета съемки.

Вам понадобится

  • Калькулятор.

Инструкция

1. 1-й метод. Фокусное расстояние дозволено обнаружить с поддержкой формулы тонкой линзы: 1/расстояние от линзы до предмета+1/расстояние от линзы до изображения=1/главное фокусное расстояние линзы. Из данной формулы выразите основное фокусное расстояние линзы. У вас должна получиться дальнейшая формула: основное фокусное расстояние линзы=расстояние от линзы до изображения*расстояние от линзы до предмета/(расстояние от линзы до изображения+расстояние от линзы до предмета). Сейчас сосчитайте неведомую вам величину с поддержкой калькулятора.

2. Если перед вами не тонкая, а толстая линза, то формула остается без метаморфозы, но расстояния отсчитываются не от центра линзы, а от основных плоскостей. Для действительного изображения от действительного предмета в собирающей линзе фокусное расстояние принимайте, как величину правильную. Если же линза рассеивающая – фокусное расстояние негативно.

3. 2-й метод. Фокусное расстояние дозволено обнаружить с поддержкой формулы масштаба изображения: масштаб=фокусное расстояние линзы/(расстояние от линзы до изображения-фокусное расстояние линзы) либо масштаб=(расстояние от линзы до изображения-фокусное расстояние линзы)/фокусное расстояние линзы. Выразив из данной формулы фокусное расстояние, вы легко его сосчитаете.

4. 3-й метод. Фокусное расстояние дозволено обнаружить с поддержкой формулы оптической силы линзы: оптическая сила линзы=1/фокусное расстояние. Выразим из данной формулы фокусное расстояние: фокусное расстояние=1/оптическую силу. Сосчитайте.

5. Четвертый метод. Если вам дана толщина линзы и увеличение, то, чтоб обнаружить фокусное расстояние, перемножьте их.

6. Сейчас вы знаете, как обнаружить фокусное расстояние. Выбирайте тот либо другой вышеперечисленный метод в зависимости от того, что вам дано, и тогда вы без труда решите поставленную перед вами задачу. Непременно определяйте какая перед вами линза, потому что именно от этого зависит позитивное либо негативное значение имеет фокусное расстояние. И тогда вы решите все без цельной ошибочки.

ОПРЕДЕЛЕНИЕ ФОКУСНОГО РАССТОЯНИЯ

СОБИРАТЕЛЬНОЙ И РАССЕИВАЮЩЕЙ ЛИНЗ

Элементарная теория тонких линз приводит к простым соотношениям между фокусным расстоянием тонкой линзы, с одной стороны, и расстоянием от линзы до предмета и до его изображения – с другой.

Простой оказывается связь между размерами объекта, его изображения, даваемого линзой, и их расстояниями до линзы. Определяя на опыте названные величины, нетрудно по упомянутым соотношениям вычислить фокусное расстояние тонкой линзы с точностью, вполне достаточной для большинства случаев.

Упражнение 1

Определение фокусного расстояния собирательной линзы

На расположенной горизонтально оптической скамье могут перемещаться на ползушках следующие приборы: матовый экран со шкалой, линза , предмет (вырез в виде буквы F), осветитель . Все эти приборы устанавливаются так, чтобы центры их лежали на одной высоте, плоскости экранов были перпендикулярны к длине оптической скамьи, а ось линзы ей параллельна. Расстояния между приборами отсчитываются по левому краю ползушки на шкале линейки, расположенной вдоль скамьи.

Определение фокусного расстояния собирательной линзы производится следующими способами.

Способ 1. Определение фокусного расстояния по расстоянию предмета

и его изображения от линзы.

Если обозначить буквами а и b расстояния предмета и его изображения от линзы, то фокусное расстояние последней выразится формулой

или ; (1)

(эта формула справедлива только в том случае, когда толщина линзы мала по сравнению с a и b ).

Измерения . Поместив экран на достаточно большом расстоянии от предмета, ставят линзу между ними и передвигают ее до тех пор, пока не получат на экране отчетливое изображение предмета (буква F ). Отсчитав по линейке, расположенной вдоль скамьи, положение линзы, экрана и предмета, передвигают ползушку с экраном в другое положение и вновь отсчитывают соответствующее положение линзы и всех приборов на скамье.

Ввиду неточности визуальной оценки резкости изображения, измерения рекомендуется повторить не менее пяти раз. Кроме того, в данном способе полезно проделать часть измерений при увеличенном, а часть при уменьшенном изображении предмета. Из каждого отдельного измерения по формуле (1) вычислить фокусное расстояние и из полученных результатов найти его среднее арифметическое значение.

Способ 2. Определение фокусного расстояния по величине предмета и

его изображения, и по расстоянию последнего от линзы.

Обозначим величину предмета через l. Величину его изображения через L и расстояние их от линзы (соответственно) через a и b . Эти величины связаны между собой известным соотношением

.

Определяя отсюда b (расстояние предмета до линзы) и подставляя его в формулу (1), легко получить выражение для f через эти три величины:

. (2)

Измерения. Ставят линзу между экраном и предметом так, чтобы на экране со шкалой получилось сильно увеличенное и отчетливое изображение предмета, отсчитывают положение линзы и экрана. Измеряют при помощи линейки величину изображения на экране. Размеры предмета «l » в мм даны на рис.1.

Измерив расстояние от изображения до линзы, находят фокусное расстояние до линзы по формуле (2).

Изменяя расстояние от предмета до экрана, повторяют опыт несколько раз.

Способ 3. Определение фокусного расстояния по величине перемещения линзы

Если расстояние от предмета до изображения, которое обозначим через А , более 4 f , то всегда найдутся два таких положения линзы, при которых на экране получается отчетливое изображение предмета: в одном случае уменьшенное, в другом – увеличенное (рис.2).

Нетрудно видеть, что при этом оба положения линзы будут симметричны относительно середины расстояния между предметом и изображением. Действительно, воспользовавшись уравнением (1), можно написать для первого положения линзы (рис.2).

;

для второго положения

.

Приравняв правые части этих уравнений, найдем

.

Подставив это выражение для x в ( A - e - x ) , легко найдем, что

;

то есть, что действительно оба положения линзы находятся на равных расстояниях от предмета и изображения и, следовательно, симметричны относительно середины расстояния между предметом и изображением.

Чтобы получить выражение для фокусного расстояния, рассмотрим одно из положений линзы, например, первое. Для него расстояние от предмета до линзы

.

А расстояние от линзы до изображения

.

Подставляя эти величины в формулу (1), найдем

. (3)

Этот способ является принципиально наиболее общим и пригодным как для толстых, так и для тонких линз. Действительно, когда в предыдущих случаях пользовались для расчетов величинами а и b , то подразумевали отрезки, измеренные до центра линзы. На самом же деле следовало эти величины измерять от соответствующих главных плоскостей линзы. В описываемом же способе эта ошибка исключается благодаря тому, что в нем измеряется не расстояние от линзы, а лишь величина ее перемещения.

Измерения. Установив экран на расстоянии большем 4 f от предмета (ориентировочно значение f берут из предыдущих опытов), помещают линзу между ними и, передвигая ее, добиваются получения на экране отчетливого изображения предмета, например, увеличенного. Отсчитав по шкале соответствующее положение линзы, сдвигают ее в сторону и вновь устанавливают. Эти измерения производят пять раз.

Передвигая линзу, добиваются второго отчетливого изображения предмета – уменьшенного и вновь отсчитывают положение линзы по шкале. Измерения повторяют пять раз.

Измерив расстояние А между экраном и предметом, а также среднее значение перемещений е , вычисляют фокусное расстояние линзы по формуле (3).

Упражнение 2

Определение фокусного расстояния рассеивающей линзы

Укрепленная на ползушках рассеивающая и собирательная линзы, матовый экран и освещенный предмет размещают вдоль оптической скамьи и устанавливают согласно тем же правилам, как и в упражнении 1.


Измерение фокусного расстояния рассеивающей линзы производится следующим способом. Если на пути лучей, выходящих из точки А и сходящихся в точке D после преломления в собирательной линзе В (рис.3), поставить рассеивающую линзу так, чтобы расстояние С D было меньше ее фокусного расстояния, то изображение точки А удалится от линзы В. Пусть, например, оно переместится в точку Е . В силу оптического принципа взаимности мы можем теперь мысленно рассмотреть лучи света, распространяющиеся из точки Е в обратную сторону. Тогда точка будет мнимым изображением точки Е после прохождения лучей через рассеивающую линзу С.

Обозначая расстояние ЕС буквой а , D С – через b и замечая, что f и b имеют отрицательные знаки, получим согласно формуле (1)

, т.е. . (4)

Измерения. На оптической скамье размещают освещенный предмет (F), собирающую линзу, рассеивающую линзу, рассеивающую линзу, матовый экран (в соответствии с рис.3). Положения матового экрана и рассеивающей линзы могут быть выбраны произвольно, но удобнее расположить их в точках, координаты которых кратны 10.

Таким образом, расстояние а определяется как разность координат точек Е и С (координату точки С записать). Затем, не трогая экран и рассеивающую линзу, перемещают собирающую линзу до тех пор, пока на экране не получится четкое изображение предмета (точность результата эксперимента очень зависит от степени четкости изображения).

После этого рассеивающую линзу убирают, а экран перемещают к собирающей линзе и вновь получают четкое изображение предмета. Новое положение экрана определит координату точки D .

Очевидно, разность координат точек С и D определит расстояние b , что позволит по формуле (4) вычислить фокусное расстояние рассеивающей линзы.

Таких измерений проделывают не менее пяти раз, выбирая каждый раз новое положение экрана и рассеивающей линзы.

Примечание. Анализируя расчетную формулу

легко приходим к выводу, что точность определения фокусного расстояния очень зависит от того, насколько сильно отличаются отрезки b и а . Очевидно, что при а близком к b малейшие погрешности в их измерении могут сильно исказить результат.

Фокусное расстояние линзы зависит от степени кривизны её поверхности. Линза с более выпуклыми поверхностями преломляет лучи сильнее, чем линза с менее выпуклыми поверхностями, и поэтому обладает меньшим фокусным расстоянием.

Для определения фокусного расстояния собирающей линзы необходимо направить на неё солнечные лучи и, получив на экране за линзой резкое изображение Солнца, измерить расстояние от линзы до этого изображения. Поскольку лучи ввиду чрезвычайной удаленности Солнца будут падать на линзу практически параллельным пучком, то это изображение будет располагаться почти в фокусе линзы.

Физическая величина, обратная фокусному расстоянию линзы, называется оптической силой линзы (D):

D=1

Чем меньше фокусное расстояние линзы, тем больше её оптическая сила, т.е. тем сильнее она преломляет лучи. Ед. изм. (м -1) . Иначе эта единица называется диоптрией (дптр).

1 дптр – это оптическая сила линзы с фокусным расстоянием 1 м.

У собирающих и рассеивающих линз оптические силы отличаются знаком.

Собирающие линзы обладают действительным фокусом, поэтому их фокусное расстояние и оптическая сила считаются положительными (F>0, D>0).

Рассеивающие линзы обладают мнимым фокусом, поэтому их фокусное расстояние и оптическая сила считаются отрицательными (F<0, D<0).

Многие оптические приборы состоят из нескольких линз. Оптическая сила системы нескольких близкорасположенных линз равна сумме оптических сил всех линз этой системы. Если имеются две линзы с оптическими силами D 1 и D 2 , тоих общая оптическая сила будет равна: D= D 1 + D 2

Складываются лишь оптические силы, фокусное расстояние нескольких линз не совпадает с суммой фокусных расстояний отдельных линз.

При помощи линз можно не только собирать и рассеивать лучи света, но и получать разнообразные изображения предметов. Для построения изображения в линзах достаточно построения хода двух лучей: один проходит через оптический центр линзы без преломления, второй - луч, параллельный главной оптической оси.

1. Предмет находится между линзой и фокусом:

Изображение – увеличенное, мнимое, прямое. Такие изображения получают при пользовании лупой

2. Предмет находиться между фокусом и двойным фокусом

Изображение - действительное, увеличенное, перевернутое. Такие изображения получают в проекционных аппаратах.

3. Предмет за двойным фокусом

Линза дает уменьшенное, перевернутое, действительное изображение. Такое изображение используется в фотоаппарате.

Рассеивающая линза при любом расположении предмета дает уменьшенное, мнимое, прямое изображение. Она образует расходящийся пучок света


Глаз человека имеет почти шарообразную форму.

Его окружает плотная оболочка, которая называется склерой. Передняя часть склеры прозрачна и называется роговой оболочкой. За роговой оболочкой находится радужная оболочка, которая может быть окрашена у разных людей по-разному. Между роговой и радужной оболочками находится водянистая жидкость.

В радужной оболочке есть отверстие – зрачок, диаметр которого может изменяться в зависимости от освещения. За зрачком расположено прозрачное тело – хрусталик, который похож на двояко-выпуклую линзу. Хрусталик прикреплен мышцами к склере.

За хрусталиком расположено стекловидное тело. Оно прозрачно и заполняет всю остальную часть глаза. Задняя часть склеры – глазное дно, покрыто сетчаткой.

Сетчатка состоит из тончайший волокон, которые устилают глазное дно. Они представляют собой разветвленные окончания зрительного нерва.

Свет, падающий на глаз, преломляется на передней поверхности глаза, в роговице, хрусталике и стекловидном теле, благодаря чему на сетчатке образуется действительное, уменьшенное, перевернутое изображение рассматриваемого предмета.

Свет, падая на окончания зрительного нерва, из которых состоит сетчатка, раздражает эти окончания. Раздражения по нервным волокнам передаются в мозг, и человек получает зрительное восприятие окружающего мира. Процесс зрения корректируется мозгом, поэтому предмет мы воспринимаем прямым.

Кривизна хрусталика может изменяться. Когда мы смотрим на дальние предметы, то кривизна хрусталика не велика, потому что мышцы, окружающие его, расслаблены. При переводе взгляда на близлежащие предметы мышцы сжимают хрусталик, его кривизна увеличивается.

Расстояние наилучшего видения для нормального глаза равно 25 см. Зрение двумя глазами увеличивает поле зрения, а также позволяет различить, какой предмет находиться ближе, а какой – дальше от нас. Дело в том, что на сетчатках левого и правого глаза получаются отличные друг от друга изображения. Чем ближе предмет, тем заметнее это отличие, оно и создает впечатление разницы в расстояниях. Благодаря зрению двумя глазами мы видим предмет объемным.

У человека с хорошим, нормальным зрением глаз в ненапряженном состоянии собирает параллельные лучи в точке, лежащей на сетчатке глаза. Иначе обстоит дело у людей, страдающих близорукостью и дальнозоркостью.

Близорукость – это недостаток зрения, при котором параллельные лучи после преломления в глазу собираются не на сетчатке, а ближе к хрусталику. Изображения удаленных предметов поэтому оказываются на сетчатке нечеткими, расплывчатыми. Чтобы на сетчатке получилось резкое изображение, рассматриваемый предмет необходимо приблизить к глазу.

Дальнозоркость – это недостаток зрения, при котором параллельные лучи после преломления в глазу сходятся под таким углом, что фокус оказывается расположенным не на сетчатке, а за ней. Изображения удаленных предметов на сетчатке при этом снова оказываются нечеткими, расплывчатыми. Поскольку дальнозоркий глаз не способен сфокусировать на сетчатке даже параллельные лучи, то еще хуже он собирает расходящиеся лучи, идущие от близкорасположенных предметов. Поэтому дальнозоркие люди плохо видят т вдали, и вблизи.

Дальневосточный федеральный университет

Кафедра общей физики

ЛАБОРАТОРНАЯ РАБОТА № 1.1

Определение фокусных расстояний собирающей и рассеивающей линз по методу Бесселя

Владивосток

Цель работы: изучение свойств собирающих и рассеивающих линз и их систем, ознакомление с методом Бесселя, определение фокусного расстояния линзы.

Краткая теория

Линзой называется прозрачное для света тело, ограниченное двумя сферическими поверхностями. Основные виды линз представлены на рис.1.

Собирающие (в воздухе):

1 – двояковыпуклая линза,

2 – плоско-выпуклая линза,

3 – вогнуто-выпуклая линза.

Рассеивающие (в воздухе):

4 – двояковогнутая линза,

5 – плоско-вогнутая линза,

6 – выпукло-вогнутая линза.

Тонкой называется линза, толщина которой намного меньше любого из ее радиусов кривизны.

Оптическая система называется центрированной, если центры кривизны всех ее преломляющих поверхностей лежат на одной прямой, называемой главной оптической осью системы. Точка пересечения плоскости линзы с оптической осью называется оптическим центром тонкой линзы. Любая прямая, проходящая через оптический центр линзы и не совпадающая с главной оптической осью, называется побочной оптической осью.

Если на собирающую линзу падают лучи, параллельные главной оптической оси, то они, после преломления в линзе, пересекаются в одной точке, лежащей на главной оптической оси и называемой главным фокусом линзы F(рис. 2). У линзы имеется два главных фокуса по обе стороны от нее. Расстояниеfот оптического центра до фокуса называется фокусным расстоянием. Если радиусы кривизны поверхностей линзы одинаковы и с обеих сторон от линзы среда одна и та же, то фокусные расстояния линзы одинаковы.

Рис. 2. Ход лучей в собирающей линзе.

Если на рассеивающую линзу падают лучи, параллельные главной оптической оси, то в одной точке, также называемой главным фокусом, пересекаются не сами преломленные лучи, а их продолжения (рис.3). Фокус в этом случае называется мнимым, а фокусное расстояние считается отрицательным. У рассеивающей линзы также два главных фокуса по обе стороны от нее.

Рис. 3. Ход лучей в рассеивающей линзе.

Плоскость, проходящая через главный фокус линзы перпендикулярно главной оптической оси, называется фокальной плоскостью, а точка пересечения какой-либо побочной оси с фокальной плоскостью называется побочным фокусом. Если на линзу падает пучок лучей, параллельных какой-то побочной оси, то после преломления либо сами лучи, либо их продолжения (в зависимости от вида линзы) пересекаются в соответствующем побочном фокусе. Лучи, идущие через оптический центр тонкой линзы, своего направления практически не меняют.

Построение изображения в линзах. Для построения изображения светящейся точки из этой точки надо взять не менее двух лучей, падающих на линзу, и построить ход этих лучей. Как правило, выбираются лучи, параллельные главной оптической оси, проходящие через главный фокус линзы, или идущие через оптический центр линзы. Пересечение этих лучей, либо их продолжений, дает действительное или мнимое изображение точки. Для получения изображения отрезка строят изображения его крайних точек. Если светящийся предмет – небольшой отрезок, перпендикулярный главной оптической оси, то его изображение тоже будет представляться отрезком, перпендикулярным главной оптической оси. Проще всего построить изображение отрезка, одна из двух крайних точек которого лежит на главной оптической оси: в этом случае строится изображение другой его крайней точки и опускается перпендикуляр на главную оптическую ось (рис. 4). Для построения изображений также могут быть использованы побочные оптические оси и побочные фокусы. В зависимости от вида линзы и положения предмета относительно линзы изображение может быть увеличенным или уменьшенным.

При построении изображений используют условные изображения тонкой линзы:

↕ - двояковыпуклая линза, ‍‍‍‍↕ - двояковогнутая линза

Рис. 4а. Построение действительного изображения в тонкой собирающей линзе (предмет находится за фокусом).

Рис. 4б. Построение мнимого изображения в тонкой собирающей линзе (предмет находится между фокусом и линзой).

Рис. 4в. Построение мнимого изображения в тонкой рассеивающей линзе (предмет находится за фокусом).

Формула линзы. Если обозначить расстояние от предмета до линзы –s, а расстояние от линзы до изображения -s′, то формулу тонкой линзы можно записать в виде:

где R 1 иR 2 – радиусы кривизны сферических поверхностей линзы,n 1 – показатель преломления вещества, из которого сделана линза,n 2 – показатель преломления среды, в которой находится линза.

Величина D, обратная фокусному расстоянию линзы, называется оптической силой линзы и измеряется в диоптриях. У собирающей линзы оптическая сила положительна, у рассеивающей – отрицательна.

Другой важный параметр линзы – линейное увеличение Г. Оно показывает, чему равно отношение линейного размера изображения h′ к соответствующему размеру предметаh. Можно показать, что Г=h′/h=s′/s.

Недостатки изображения в линзе.

Сферическая аберрация приводит к тому, что изображение точки получается неточечным, а в виде небольшого кружка. Этот недостаток связан с тем, что лучи, прошедшие через центральную область линзы и лучи, прошедшие через ее края, собираются не в одной точке.

Хроматическая аберрация наблюдается при прохождении через линзу сложного света, содержащего волны разной длины. Показатель преломления зависит от длины волны. Это приводит к тому, что края изображения имеют радужную окраску.

Астигматизм – это дефект изображения, связанный с зависимостью фокусного расстояния от угла падения света на линзу. Это приводит к тому, что изображение точки может иметь вид кружка, эллипса, отрезка.

Дисторсия – это недостаток изображения, который имеет место, если поперечное увеличение предмета линзой в пределах поля зрения неодинаково. Если увеличение убывает от центра к периферии, имеет место бочкообразная дисторсия, а если наоборот – то подушкообразная дисторсия.

Недостатки изображения стремятся устранить или уменьшить путем подбора системы линз.

Теория метода.

Удобным методом определения фокусного расстояния линзы является метод Бесселя. Он заключается в том, что при достаточно большом расстоянии Lмежду предметом и экраном можно найти два положения линзы, при которых получается четкое изображение предмета – в одном случае увеличенное, в другом – уменьшенное.

Эти положения можно найти, решая систему из двух уравнений:

1/ s′ + 1/ s= 1/f.

Выразив s′ из первого уравнения, и подставив полученное выражение во второе, получим квадратное уравнение, решение которого можно записать:

. (1)

Так как дискриминант этого уравнения должен быть больше нуля: L 2 – 4Lf≥0, тоL≥4f– только при таком условии можно получить два четких изображения предмета.

Из формулы (1) следует, что существует два положения линзы, дающих четкое изображение предмета, симметрично расположенных относительно центра отрезка между предметом и экраном. Расстояние rмежду этими положениями можно найти из формулы:

. (2)

Если из данной формулы выразить фокусное расстояние линзы, то получим:

. (3)

Фокусное расстояние рассеивающей линзы так определить нельзя, т.к. она не дает действительных изображений предмета. Но если рассеивающую линзу сложить с более сильной собирающей линзой, то получится собирающая система линз. Фокусные расстояния системы и собирающей линзы можно найти по методу Бесселя, а фокусное расстояние рассеивающей линзы определить затем из соотношения:

1/f Σ =1/f + + 1/f - , откуда следует:

. (4)

Лабораторная установка

Лабораторная установка включает в себя оптическую скамью стержневого типа. Линзы в оправах размещаются между стержнями и могут перемещаться вдоль них. Для отсчета расстояния служит рулетка. Для имитации светящегося предмета используется двумерная дифракционная решетка (центральная зона объекта МОЛ-1), освещаемая лазером. Изображении е на экране представляет собой крестообразную фигуру, состоящую из ярких пятен. Внешний вид установки представлен на рис. 5.

1 – лазер,

2 – дифракционная решетка,

3 – линза,

4 – экран,

5 – оптическая скамья.

Рис.5. Установка для определения фокусного расстояния линзы.

Порядок выполнения работы

    Установить лазер, решетку и экран. Включить лазер. При правильной установке светлое пятно должно находиться в центре экрана и иметь округлую форму. Измерить расстояние Lмежду решеткой и экраном.

    Установить в тракт собирающую линзу. Перемещая ее, найти координаты х 1 и х 2 двух ее положений, дающих четкие увеличенное и уменьшенное изображения. Повторить измерения 5 раз. Результаты занести в таблицу.

    Установить в тракт рассеивающую линзу. Повторить измерения по п.2 для системы из двух линз. Результаты занести в таблицу.

    Вынуть линзы из обоймы и установить экран так, чтобы были четко видны световые пятна, образующие крест. Поставить примерно на середине расстояния между решеткой и экраном сначала одну линзу, затем другую, затем обе и зарисовать структуру распределения световых пятен в каждом случае.

    Определить средние значения координат х 1 и х 2 для одной линзы и для системы линз, найти расстояниеrв каждом случае по формуле (2).

    Определить фокусные расстояния для собирающей линзы и для системы из двух линз по формуле (3). Посчитать погрешности измерений.

    Определить фокусное расстояние рассеивающей линзы по формуле

    На основании сделанных зарисовок (п.4) сделать вывод о характере дисторсии каждой линзы и системы из двух линз.

Собирающая линза

Система из двух линз

Контрольные вопросы

    Какая линза называется тонкой?

    Что такое главная оптическая ось линзы, главный фокус линзы (собирающей и рассеивающей)?

    Что такое побочная оптическая ось, побочный фокус?

    Запишите и поясните формулу тонкой линзы. Что называется оптической силой и увеличением линзы?

    Каковы основные недостатки изображений в линзе, в чем их суть?

    Постройте изображение предмета в линзе (вид линзы и положение предмета задается преподавателем).

    В чем сущность метода Бесселя?

Линзами называют прозрачные тела, ограниченные с двух сторон сферическими поверхностями.

Линзы бывают двух типов выпуклыми (собирающими) или вогнутыми (рассеивающими). У выпуклой линзы середина толще чем края, у вогнутой наоборот середина тоньше чем края.
Ось проходящая через центр линзы, перпендикулярная линзе, называется главной оптической осью.


Лучи идущие параллельно главной оптической оси преломляются проходя через линзу и собираются в одной точке, называемой точкой фокуса линзы или просто фокус линзы (для собирающей линзы). В случае рассеивающей линзы, лучи идущие параллельно главной оптической оси рассеиваются и расходятся в сторону от оси, но продолжения этих лучей пересекаются в одной точке, называемой точкой мнимого фокуса.


OF - фокусное расстояние линзы (OF=F просто обозначают буквой F).
Оптическая сила линзы - это величина, обратная ее фокусному расстоянию. , измеряется в диоптриях [дптр].
Например если фокусное расстояние линзы равно 20 см (F=20см=0,2м) то ее оптическая сила D=1/F=1/0,2=5 дптр
Для построения изображения с помощью линзы используют следующие правила:
- луч прошедший через центр линзы не преломляется;
- луч идущий параллельно главной оптической оси преломившись пройдет через точку фокуса;
- луч прошедший через точку фокуса после преломления пойдет параллельно главной оптической оси;

Рассмотрим классические случаи: а) предмет АВ находится за двойным фокусом d>2F.


изображение: действительное, уменьшенное, перевернутое.


изображение: мнимое, уменьшенное, прямое.

Б) предмет АВ находится между фокусом и двойным фокусом F

изображение: действительное, увеличеное, перевернутое.


В) предмет АВ находится между линзой и фокусом d

изображение: мнимое, увеличеное, прямое.


изображение: мнимое, уменьшеное, прямое.

Г) предмет АВ находится на двойном фокусе d=F


изображение: действительное, равное, перевернутое.



где F - фокусное расстояние линзы, d - расстояние от предмета до линзы, f - расстояние от линзы до изображения.


Г - увеличение линзы, h - высота предмета, H - высота изображения.

Задание огэ по физике: С помощью собирающей линзы получено мнимое изображение предмета. Предмет по отношению к линзе расположен на расстоянии
1)меньшем фокусного расстояния
2)равном фокусному расстоянию
3)большем двойного фокусного расстояния
4)большем фокусного и меньшем двойного фокусного расстояния
Решение: Мнимое изображение предмета с помощью собирающей линзы можно получить только в случае когда предмет по отношению к линзе расположен на расстоянии меньшем фокусного расстояния. (см рисунок выше)
Ответ: 1
Задание огэ по физике фипи: На рисунке изображён ход луча, падающего на тонкую линзу с фокусным расстоянием F. Ходу прошедшего через линзу луча соответствует пунктирная линия


Решение: Луч 1 проходит через фокус, значит до этого он шел параллельно главной оптической оси, луч 3 параллелен главной оптической оси, значит до этого он прошел через фокус линзы (слева от линзы), луч 2 находится между ними.
Ответ: 2
Задание огэ по физике фипи: Предмет находится от собирающей линзы на расстоянии, равном F. Каким будет изображение предмета?
1) прямым, действительным
2) прямым, мнимым
3) перевернутым, действительным
4) изображения не будет
Решение: луч прошедший через точку фокуса попав в линзу идет параллельно главной оптической оси, получить изображения предмета находящегося в точке фокуса невозможно.
Ответ: 4
Задание огэ по физике фипи: Школьник проводит опыты с двумя линзами, направляя на них параллельный пучок света. Ход лучей в этих опытах показан на рисунках. Согласно результатам этих опытов, фокусное расстояние линзы Л 2

1) больше фокусного расстояния линзы Л 1
2) меньше фокусного расстояния линзы Л 1
3) равно фокусному расстоянию линзы Л 1
4) не может быть соотнесено с фокусным расстоянием линзы Л 1
Решение: после прохождения через линзу Л 2 лучи идут параллельно, следовательно фокусы двух линз совпали, из рисунка видно, что фокусное расстояние линзы Л2 меньше фокусного расстояния линзы Л 1
Ответ: 2
Задание огэ по физике фипи: На рисунке изображены предмет S и его изображение S′, полученное с помощью

1) тонкой собирающей линзы, которая находится между предметом и его изображением
2) тонкой рассеивающей линзы, которая находится левее изображения
3) тонкой собирающей линзы, которая находится правее предмета
4) тонкой рассеивающей линзы, которая находится между предметом и его изображением
Решение: соеденив предмет S и его изображение S′ найдем где находится центр линзы, так как изображение S′ выше чем предмет S, значит изображение увеличенное. Собирающая линза дает увеличенное изображение S′. (см выше в теории)
Ответ: 3
Задание огэ по физике фипи: Предмет находится от собирающей линзы на расстоянии, меньшем 2F и большем F. Какими по сравнению с размерами предмета будут размеры изображения?
1) меньшими
2) такими же
3) большими
4) изображения не будет
Решение: Смотрите выше пункт б) предмет АВ находится между фокусом и двойным фокусом.
Ответ: 3
Задание огэ по физике фипи: После прохождения оптического прибора, закрытого на рисунке ширмой, ход лучей 1 и 2 изменился соответственно на 1" и 2". За ширмой находится

1) собирающая линза
2) рассеивающая линза
3) плоское зеркало
4) плоскопараллельная стеклянная пластина
Решение: лучи, после прохождения оптического прибора, расходятся, а это возможно только после прохождения лучей через рассеивающую линзу.
Ответ: 2
Задание огэ по физике фипи: На рисунке изображены оптическая ось ОО 1 тонкой линзы, предмет А и его изображение А 1 , а также ход двух лучей, участвующих в образовании изображения.

Согласно рисунку фокус линзы находится в точке
1) 1, причём линза является собирающей
2) 2, причём линза является собирающей
3) 1, причём линза является рассеивающей
4) 2, причём линза является рассеивающей
Решение: луч, идущий параллельно главной оптической оси, после прохождения сквозь линзу, преломляется и проходит через точку фокуса. На рисунке видно, что это точка 2 и линза собирающая.
Ответ: 2
Задание огэ по физике фипи: Ученик исследовал характер изображения предмета в двух стеклянных линзах: оптическая сила одной линзы D 1 = –5 дптр, другой D 2 = 8 дптр – и сделал определённые выводы. Из приведённых ниже выводов выберите два правильных и запишите их номера.
1) Обе линзы собирающие.
2) Радиус кривизны сферической поверхности первой линзы равен радиусу кривизны сферической поверхности второй линзы.
3) Фокусное расстояние первой линзы по модулю больше, чем второй.
4) Изображение предмета, созданное и той, и другой линзой, всегда прямое.
5) Изображение предмета, созданное первой линзой, всегда мнимое, изображение, а созданное второй линзой мнимое только в том случае, когда предмет находится между линзой и фокусом.
Решение: Знак минус показывает что первая линза рассеивающая, а вторая собирающая, следовательно изображение предмета, созданное первой линзой, всегда мнимое, изображение, а созданное второй линзой мнимое только в том случае, когда предмет находится между линзой и фокусом. Фокусное расстояние первой линзы по модулю больше, чем фокусное расстояние второй линзы. Из формулы для оптической силы линзы F=1/D, тогда F 1 =0,2 м. F 2 =0,125 м.
Ответ: 35
Задание огэ по физике фипи: В какой из точек будет находиться изображение точечного источника S, создаваемое собирающей линзой с фокусным расстоянием F?

1) 1
2) 2
3) 3
4) 4
Решение:

Ответ: 1
Задание огэ по физике фипи: Может ли двояковыпуклая линза рассеивать пучок параллельных лучей? Ответ поясните.
Решение: Может, если показатель преломления окружающей среды будет больше показателя преломления линзы.
Задание огэ по физике фипи: На рисунке изображены тонкая рассеивающая линза и три предмета: А, Б и В, расположенные на оптической оси линзы. Изображение какого(-их) предмета(-ов) в линзе, фокусное расстояние которой F, будет уменьшенным, прямым и мнимым?

1) только А
2) только Б
3) только В
4) всех трёх предметов
Решение: Тонкая рассеивающая линза, всегда дает уменьшенное, прямое и мнимое изображение, при любом расположении предмета.
Ответ: 4
Задание огэ по физике (фипи): Предмет, находящийся между фокусным и двойным фокусным расстоянием линзы, переместили ближе к двойному фокусу линзы. Установите соответствие между физическими величинами и их возможными изменениями при приближении предмета к двойному фокусу линзы.
Для каждой величины определите соответствующий характер изменения:
1) увеличивается
2) уменьшается
3) не изменяется
Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
Решение: Если предмет находится между фокусом и двойным фокусом то его изображение увеличиное и находится за двойным фокусом, при приближении к двойному фокусу размеры будут уменьшаться и изображение станет ближе к линзе, так как, если тело находится на двойном фокусном расстоянии то изображение равно самому себе и находится на двойном фокусе.
Ответ: 22
Задание демонстрационного варианта ОГЭ 2019: На рисунке изображены три предмета: А, Б и В. Изображение какого(-их) предмета(-ов) в тонкой собирающей линзе, фокусное расстояние которой F, будет уменьшенным, перевёрнутым и действительным?

1) только А
2) только Б
3) только В
4) всех трёх предметов
Решение: Изображение будет уменьшенным, перевёрнутым и действительным если предмет находится за двойным фокусом d>2F (см. теорию выше). Предмет А находится за двойным фокусом.



Понравилась статья? Поделитесь ей
Наверх