Гравитационная постоянная теряет вес

(Gravitational constant – size not a constant)

Часть 1

Рис.1

В физике имеется только одна константа, связанная с гравитацией – это гравитационная постоянная (G). Эта постоянная получена экспериментально и не имеет связи с другими постоянными. В физике она считается фундаментальной.

Данной константе будет посвящено несколько статей, где я постараюсь показать несостоятельность ее постоянства и отсутствие фундамента под ней. Точнее сказать фундамент под ней есть, но несколько иной.

Каково значение постоянной гравитации и почему ее так тщательно измеряют? Чтобы разобраться, необходимо снова вернуться к закону всемирного тяготения. Почему физики приняли этот закон, мало того, они стали называть его «величайшим обобщением, достигнутым человеческим разумом» . Его формулировка проста: два тела действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их масс.

G – гравитационная постоянная

Из этой простой формулы следует множество весьма нетривиальных выводов, но нет ответа на основополагающие вопросы: каким образом и за счет чего действует сила тяготения?

Этот закон ничего не говорит о механизме возникновения силы притяжения, тем не менее, им пользуются до сих пор и будут, очевидно, пользоваться еще не одно столетие.

Одни ученые его охаивают, другие боготворят. И те и другие без него не обходятся, т.к. лучше ничего не придумали и не открыли. Практики, при освоении Космоса, зная несовершенство данного закона, используют поправочные таблицы, которые пополняются новыми данными после каждого запуска космических аппаратов.

Теоретики пытаются исправить данный закон путем ввода поправок, дополнительных коэффициентов, ищут доказательство факта существования ошибки в размерности гравитационной константы G, но ничего не приживается, а формула Ньютона остается в первоначальном виде.

Учитывая то многообразие неоднозначностей, неточностей при расчетах по данной формуле, ее все же нужно исправлять.

Широко известно выражение Ньютона: «Gravity is Universal», т. е. тяготение всемирно. Данный закон описывает гравитационное взаимодействие между двумя телами, где бы они не находились во Вселенной; в этом считается суть его универсализма. Гравитационная постоянная G, входящая в уравнение, рассматривается как универсальная константа природы.

Константа G позволяет проводить удовлетворительные расчеты в земных условиях, по логике, она и должна отвечать за энергетическое взаимодействие, но что взять с константы.

Интересно мнение ученого (Костюшко В.Е), который ставил реальные опыты для понимания и раскрытия законов природы, фраза: «У природы нет ни физических законов, ни физических констант с придуманными человеком размерностями». «В случае с гравитационной константой в науке утвердилось мнение, что эта величина найдена и численно оценена. Однако до сих пор не установлен ее конкретный физический смысл и это, прежде всего, потому, что на самом деле, в результате некорректных действий, а точнее грубейших ошибок, была получена ничего не значащая и совершенно бессмысленная величина с абсурдной размерностью» .

Я бы не хотел ставить себя в позу такой категоричности, но нужно, наконец, понять смысл этой постоянной.

В настоящее время значение гравитационной постоянной утверждено комитетом по фундаментальным физическим константам: G=6,67408·10 -11 м³/(кг·с²) [КОДАТА 2014] . Несмотря на то, что данную константу тщательно измеряют, она не удовлетворяет требованиям науки. Все дело в том, что нет точной стыковки результатов между аналогичными измерениями, проводимыми в разных лабораториях мира.

Как отмечают Мельников и Пронин: «Исторически гравитация стала первой предметом научных исследований. Хотя прошло уже более 300 лет с момента появления закона тяготения, которым мы обязаны Ньютону, константа гравитационного взаимодействия остается наименее точно измеренной, по сравнению с остальными» .

Кроме того, остается открытым главный вопрос о самой природе гравитации и ее сущности. Как известно, сам закон всемирного тяготения Ньютона, проверен гораздо с большей точностью, чем точность константы G. Основное ограничение на точное определение гравитационных сил накладывает гравитационная константа, отсюда к ней такое пристальное внимание.

Одно дело уделять внимание, и совсем другое – точность совпадения результатов при измерении G. В двух самых точных измерениях ошибка может достигать порядка 1/10000. Но когда измерения проводились в разных точках планеты, то значения могли превышать экспериментальную ошибку на порядок и более!

Что же это за постоянная, когда такой огромный разброс показаний при ее измерениях? А может это совсем не постоянная, а измерение каких-то отвлеченных параметров. Или на измерения накладываются помехи, неизвестные исследователям? Вот здесь появляется новая почва для различных гипотез. Одни ученые ссылаются на магнитное поле Земли: «Взаимовлияние гравитационного и магнитного полей Земли приводит к тому, что земное тяготение будет сильнее в тех местах, где сильнее магнитное поле» . Последователи Дирака утверждают, что гравитационная постоянная изменяется с течением времени и т.д.

Одни вопросы снимают из-за недоказанности, а другие появляются и это закономерный процесс. Но такое безобразие не может продолжаться бесконечно, надеюсь, мое исследование поможет установить направление к истине.

Первым, кому приписывают первенство эксперимента в измерении постоянной гравитации, был английский химик Генри Кавендиш, который в 1798 году задался целью определить плотность Земли. Для такого тонкого эксперимента им были использованы крутильные весы, изобретенные Дж. Мичеллом (сейчас являются экспонатом в национальном музее Великобритании). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы в поле тяготения Земли.

Экспериментальные данные, как оказалось впоследствии, пригодились для определения G. Полученный Кавендишем результат – феноменальный, отличался всего на 1% от принятого сегодня. Надо отметить какое это было великое достижение в его эпоху. За два с лишним века наука эксперимента продвинулась всего на 1%? Это невероятно, но факт. Притом, если учесть флуктуации и невозможность их преодолеть, значение G присваивается искусственно, то получается, что мы вообще не продвинулись в точности измерений со времен Кавендиша!

Да! Никуда мы не продвинулись, наука находится в прострации – не понимая гравитации!

Почему наука за три с лишним столетия практически не продвинулось в точности измерения данной константы? Может все дело в инструменте, использованном Кавендишем. Крутильные весы – изобретение 16 века, остались на вооружении ученых и по сей день. Конечно это уже не те крутильные весы, посмотрите на фотографию, рис. 1. Несмотря на навороты современной механики и электроники, плюс вакуум, стабилизация температуры, результат практически не сдвинулся с места. Очевидно, что-то здесь не так.

Наши предки и современники предпринимали различные попытки измерений G в разных географических широтах и в самых невероятных местах: глубоких шахтах, ледяных пещерах, скважинах, на телебашнях. Были усовершенствованы конструкции крутильных весов. Новые измерения, с целью уточнения гравитационной постоянной, повторялись и поверялись. Ключевой эксперимент был поставлен в Лос-Аламосе в 1982-м году Г. Лютером (G. Luther) и У. Таулером (W. Towler). Их установка напоминала крутильные весы Кавендиша, с шарами из вольфрама. Результат этих измерений 6,6726(50)?10 -11 m 3 kg -1 s -2 (т.е. 6,6726±0,0005), был положен в основу, рекомендованных комитетом данных для науки и техники (CODATA) значений в 1986-м году .

Всё было спокойно до 1995 года, когда группа физиков в немецкой лаборатории PTB в Брауншвейге, используя модифицированную установку (весы плавали на поверхности ртути, с шарами большой массы), получили значение G на (0.6±0,008)% больше общепринятых . В результате в 1998 году погрешность измерения G была увеличена почти на порядок.

В настоящее время активно обсуждаются эксперименты по проверке закона всемирного тяготения, основанные на атомной интерферометрии, для измерения микроскопических пробных масс и очередного тестирования ньютоновского закона тяготения в микромире.

Предпринимались попытки применения других способов измерения G, но корреляция между измерениями практически не меняется. Этот феномен сегодня называют нарушением закона обратных квадратов либо «пятой силой». К пятой силе сейчас относят и некие частицы (поля) Хиггса – частицы Бога.

Кажется, божественную частицу удалось зафиксировать, а точнее сказать, вычислить, так сенсационно преподнесли Миру весть физики, участвовавшие в эксперименте на Большом адронном коллайдере (БАК) (LHC) .

На бозон Хиггса надейся, но сам не плошай!

Так что же это за таинственная постоянная, которая гуляет сама по себе, а без нее никуда?

Читаем продолжение статьи

Эксперименты по измерению гравитационной постоянной G, проведенные в последние годы несколькими группами, демонстрируют поразительное несовпадение друг с другом. Опубликованное на днях новое измерение, выполненное в Международном бюро мер и весов, отличается от всех них и только усугубляет проблему. Гравитационная постоянная остается на редкость неподатливой для точного измерения величиной.

Измерения гравитационной постоянной

Гравитационная постоянная G, она же постоянная Ньютона, - одна из самых важных фундаментальных констант природы. Это та константа, которая входит в закон всемирного тяготения Ньютона; она не зависит ни от свойств притягивающихся тел, ни от окружающих условий, а характеризует интенсивность самой силы гравитации. Естественно, что такая фундаментальная характеристика нашего мира важна для физики, и она должна быть аккуратно измерена.

Однако ситуация с измерением G до сих пор остается очень необычной. В отличие от многих других фундаментальных констант, гравитационная постоянная с большим трудом поддается измерению. Дело в том, что аккуратный результат можно получить только в лабораторных экспериментах, через измерение силы притяжения двух тел известной массы. Например, в классическом опыте Генри Кавендиша (рис. 2) на тонкой нити подвешивается гантелька из двух тяжелых шаров, и когда сбоку к этим шарам пододвигают другое массивное тело, то сила гравитации стремится повернуть эту гантельку на некоторый угол, пока вращательный момент сил слегка закрученной нити не скомпенсирует гравитацию. Измеряя угол поворота гантельки и зная упругие свойства нити, можно вычислить силу гравитации, а значит, и гравитационную постоянную.

Это устройство (оно называется «крутильные весы») в разных модификациях используется и в современных экспериментах. Такое измерение очень просто по сути, но трудно по исполнению, поскольку оно требует точного знания не только всех масс и всех расстояний, но и упругих свойств нити, а также обязывает минимизировать все побочные воздействия, как механические, так и температурные. Недавно, правда, появились и первые измерения гравитационной постоянной другими, атомно-интерферометрическими методами , которые используют квантовую природу вещества. Однако точность этих измерений пока сильно уступает механическим установкам, хотя, возможно, за ними будущее (см. подробности в новости Гравитационная постоянная измерена новыми методами , «Элементы», 22.01.2007).

Так или иначе, но, несмотря на более чем двухсотлетнюю историю, точность измерений остается очень скромной. Нынешнее «официальное» значение, рекомендованное американским Национальным институтом стандартизации (NIST), составляет (6,67384 ± 0,00080)·10 –11 м 3 ·кг –1 ·с –2 . Относительная погрешность тут составляет 0,012%, или 1,2·10 –4 , или, в еще более привычных для физиков обозначениях, 120 ppm (миллионных долей), и это на несколько порядков хуже, чем точность измерения других столь же важных величин. Более того, вот уже несколько десятилетий измерение гравитационной постоянной не перестает быть источником головной боли для физиков-экспериментаторов. Несмотря на десятки проведенных экспериментов и усовершенствование самой измерительной техники, точность измерения так и осталась невысокой. Относительная погрешность на уровне 10 –4 была достигнута еще 30 лет назад, и никакого улучшения с тех пор нет.

Ситуация по состоянию на 2010 год

В последние несколько лет ситуация стала еще более драматичной. В 2008–2010 годах три группы обнародовали новые результаты измерения G. Над каждым из них команда экспериментаторов работала годами, причем не только непосредственно измеряла величину G, но и тщательно искала и перепроверяла всевозможные источники погрешностей. Каждое из этих трех измерений обладало высокой точностью: погрешности составляли 20–30 ppm. По идее, эти три измерения должны были существенно улучшить наше знание численной величины G. Беда лишь в том, что все они отличались друг от друга аж на 200–400 ppm, то есть на целый десяток заявленных погрешностей! Эта ситуация по состоянию на 2010 год показана на рис. 3 и кратко описана в заметке Неловкая ситуация с гравитационной постоянной .

Совершенно ясно, что сама гравитационная постоянная тут не виновата; она действительно обязана быть одной и той же всегда и везде. Например, есть спутниковые данные, которые хоть и не позволяют хорошо измерить численное значение константы G, зато позволяют убедиться в ее неизменности - если бы G изменилась за год хоть на одну триллионную долю (то есть на 10 –12), это уже было бы заметно. Поэтому единственный вытекающий отсюда вывод таков: в каком-то (или в каких-то) из этих трех экспериментов есть неучтенные источники погрешностей. Но вот в каком?

Единственный способ попытаться разобраться, это повторять измерения на других установках, и желательно разными методами. К сожалению, особенного разнообразия методик здесь пока достичь не удается, поскольку во всех экспериментах используется то или иное механическое устройство. Но всё же разные реализации могут обладать разными инструментальными погрешностями, и сравнение их результатов позволит разобраться в ситуации.

Новое измерение

На днях в журнале Physical Review Letters было опубликовано одно такое измерение. Небольшая группа исследователей, работающих в Международном бюро мер и весов в Париже, с нуля построила аппарат, который позволил измерить гравитационную постоянную двумя разными способами. Он представляет из себя те же крутильные весы, только не с двумя, а с четырьмя одинаковыми цилиндрами, установленными на диске, подвешенном на металлической нити (внутренняя часть установки на рис. 1). Эти четыре груза гравитационно взаимодействуют с четырьмя другими, более крупными цилиндрами, насаженными на карусель, которую можно повернуть на произвольный угол. Схема с четырьмя телами вместо двух позволяет минимизировать гравитационное взаимодействие с несимметрично расположенными предметами (например, стенками лабораторной комнаты) и сфокусироваться именно на гравитационных силах внутри установки. Сама нить имеет не круглое, а прямоугольное сечение; это, скорее, не нить, а тонкая и узкая металлическая полоска. Такой выбор позволяет ровнее передавать нагрузку по ней и минимизировать зависимость от упругих свойств вещества. Весь аппарат находится в вакууме и при определенном температурном режиме, который выдерживается с точностью до сотой доли градуса.

Это устройство позволяет выполнять три типа измерения гравитационной постоянной (см. подробности в самой статье и на страничке исследовательской группы). Во-первых, это буквальное воспроизведение опыта Кавендиша: поднесли груз, весы повернулись на некоторый угол, и этот угол измеряется оптической системой. Во-вторых, его можно запустить в режиме крутильного маятника, когда внутренняя установка периодически вращается туда-сюда, а наличие дополнительных массивных тел изменяет период колебаний (этот способ, впрочем, исследователи не использовали). Наконец, их установка позволяет выполнять измерение гравитационной силы без поворота грузиков. Это достигается с помощью электростатического сервоконтроля: к взаимодействующим телам подводятся электрические заряды так, чтобы электростатическое отталкивание полностью компенсировало гравитационное притяжение. Такой подход позволяет избавиться от инструментальных погрешностей, связанных именно с механикой поворота. Измерения показали, что два метода, классический и электростатический, дают согласующиеся результаты.

Результат нового измерения показан красной точкой на рис. 4. Видно, что это измерение не только не разрешило наболевший вопрос, но и еще сильнее усугубило проблему: оно сильно отличается от всех остальных недавних измерений. Итак, к настоящему моменту у нас имеется уже четыре (или пять, если считать неопубликованные данные калифорнийской группы) разных и при том довольно точных измерения, и все они кардинально расходятся друг с другом! Разница между двумя самыми крайними (и хронологически - самыми последними) значениями уже превышает 20(!) заявленных погрешностей .

Что касается нового эксперимента, тут надо добавить вот что. Эта группа исследователей уже выполняла аналогичный эксперимент в 2001 году. И тогда у них тоже получалось значение, близкое к нынешнему, но только чуть менее точное (см. рис. 4). Их можно было бы заподозрить в простом повторении измерений на одном и том же железе, если бы не одно «но» - тогда это была другая установка. От той старой установки они сейчас взяли только 11-килограммовые внешние цилиндры, но весь центральный прибор был сейчас построен заново. Если бы у них действительно был какой-то неучтенный эффект, связанный именно с материалами или изготовлением аппарата, то он вполне мог измениться и «утащить за собой» новый результат. Но результат остался примерно на том же месте, что и в 2001 году. Авторы работы видят в этом лишнее доказательство чистоты и достоверности их измерения.

Ситуация, когда сразу четыре или пять результатов, полученных разными группами, все различаются на десяток-другой заявленных погрешностей, по-видимому, для физики беспрецедентна. Какой бы высокой ни была точность каждого измерения и как бы авторы ею ни гордились, для установления истины она сейчас не имеет никакого значения. И пока что пытаться на их основании узнать истинное значение гравитационной постоянной можно только одним способом: поставить значение где-то посередине и приписать погрешность, которая будет охватывать весь этот интервал (то есть раза в полтора-два ухудшить нынешнюю рекомендованную погрешность). Можно лишь надеяться, что следующие измерения будут попадать в этот интервал и постепенно будут давать предпочтение какому-то одному значению.

Так или иначе, но гравитационная постоянная продолжает оставаться головоломкой измерительной физики. Через сколько лет (или десятилетий) эта ситуация действительно начнет улучшаться, сейчас предсказать трудно.

Гравитационная константа Ньютона измерена методами атомной интерферометрии. Новая методика свободна от недостатков чисто механических экспериментов и, возможно, позволит скоро изучать эффекты общей теории относительности в лаборатории.

Фундаментальные физические постоянные, такие как скорость света c , гравитационная постоянная G , постоянная тонкой структуры α, масса электрона и другие, играют чрезвычайно важную роль в современной физике. Заметная часть экспериментальной физики посвящена как можно более точному измерению их значений и проверке того, не изменяются ли они во времени и пространстве. Даже малейшие подозрения в непостоянности этих констант могут породить целый поток новых теоретических исследований и пересмотр общепринятых положений теоретической физики. (См. популярную статью Дж. Бэрроу и Дж. Веба Непостоянные постоянные // «В мире науки», сентябрь 2005 г., а также подборку научных статей , посвященных возможной непостоянности констант взаимодействия.)

Большинство фундаментальных констант известны сегодня с чрезвычайно высокой точностью. Так, масса электрона измерена с точностью 10 -7 (то есть стотысячная доля процента), а постоянная тонкой структуры α, характеризующая силу электромагнитного взаимодействия, — с точностью 7 × 10 -10 (см. заметку Уточнена постоянная тонкой структуры). В свете этого может показаться удивительным, что значение гравитационной постоянной, которая входит в закон всемирного тяготения , известно с точностью хуже, чем 10 -4 , то есть одна сотая доля процента.

Такое положение вещей отражает объективные трудности гравитационных экспериментов. Если пытаться определить G из движения планет и спутников, то необходимо с высокой точностью знать массы планет, а они-то как раз известны плохо. Если же поставить механический эксперимент в лаборатории, например измерить силу притяжения двух тел с точно известной массой, то такое измерение будет иметь большие погрешности из-за чрезвычайной слабости гравитационного взаимодействия.

ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - коэффициент пропорциональности G в ф-ле, описывающей всемирного тяготения закон .

Числовое значение и размерность Г. п. зависят от выбора системы единиц измерения массы, длины и времени. Г. п. G, имеющую размерность L 3 M -1 T -2 , где длина L , масса M и время T выражены в единицах СИ, принято называть кавендишевой Г. п. Она определяется в лабораторном эксперименте. Все эксперименты можно условно разделить на две группы.

В первой группе экспериментов сила гравитац. взаимодействия сравнивается с упругой силой нити горизонтальных крутильных весов. Они представляют собой лёгкое коромысло, на концах к-рого укреплены равные пробные массы. На тонкой упругой нити коромысло подвешено в гравитац. поле эталонных масс. Величина гравитац. взаимодействия пробных и эталонных масс (а следовательно, и величина Г. п.) определяется либо по углу закручивания нити (статич. метод), либо по изменению частоты крутильных весов при перемещении эталонных масс (динамич. метод). Впервые Г. п. с помощью крутильных весов определил в 1798 Г. Кавендиш (H. Cavendish).

Во второй группе экспериментов сила гравитац. взаимодействия сравнивается с , для чего используются рычажные весы. Этим способом Г. п. была впервые определена Ф. Йолли (Ph. Jolly) в 1878.

Значение кавендишевой Г. п., включённое Междунар. астр. союзом в Систему астр. постоянных (САП) 1976, к-рым пользуются до настоящего времени, получено в 1942 П. Хейлом (P. Heyl) и П. Хржановским (P. Chrzanowski) в Национальном бюро мер и стандартов США. В СССР Г. п. впервые была определена в Государственном астр. ин-те им. П. К. Штернберга (ГАИШ) при МГУ.

Во всех совр. определениях кавендишевой Г. п. (табл.) были использованы крутильные весы. Помимо названных выше, применялись и др. режимы работы крутильных весов. Если эталонные массы вращаются вокруг оси крутильной нити с частотой, равной частоте собственных колебаний весов, то по резонансному изменению амплитуды крутильных колебаний можно судить о величине Г. п. (резонансный метод). Модификацией динамич. метода является ротационный метод, в к-ром платформа вместе с установленными на ней крутильными весами и эталонными массами вращается с пост. угл. скоростью.

Величина гравитационной постоянной 10 -11 м 3 /кг*с 2

Хейл, Хржановский (США), 1942

динамический

Роуз, Паркер, Бимс и др. (США), 1969

ротационный

Реннер (ВНР), 1970

ротационный

Фаси, Понтикис, Лукас (Франция), 1972

резонанс-

6,6714b0,0006

Сагитов, Милюков, Монахов и др. (СССР), 1978

динамический

6,6745b0,0008

Лютер, Таулер(США), 1982

динамический

6,6726b0,0005

Приведённые в табл. среднеквадратич. ошибки указывают на внутр. сходимость каждого результата. Нек-рое расхождение значений Г. п., полученных в разных экспериментах, связано с тем, что определение Г. п. требует абсолютных измерений и поэтому возможны систематич. ошибки в отд. результатах. Очевидно, достоверное значение Г. п. может быть получено только при учёте разл. определений.

Как в теории тяготения Ньютона, так и в общей теории относительности (ОТО) Эйнштейна Г. п. рассматривается как универсальная константа природы, не меняющаяся в пространстве и времени и независящая от физ. и хим. свойств среды и гравитирующих масс. Существуют варианты теории гравитации, предсказывающие переменность Г. п. (напр., теория Дирака, скалярно-тензорные теории гравитации). Нек-рые модели расширенной супергравитации (квантового обобщения ОТО) также предсказывают зависимость Г. п. от расстояния между взаимодействующими массами. Однако имеющиеся в настоящее время наблюдательные данные, а также специально поставленные лабораторные эксперименты пока не позволяют обнаружить изменения Г. п.

Лит.: Сагитов M. У., Постоянная тяготения и , M., 1969; Сагитов M. У. и др., Новое определение кавендишевой гравитационной постоянной, "ДАН СССР", 1979, т. 245, с. 567; Милюков В. К., Изменяется ли гравитационная постоянная ?, "Природа", 1986, № 6, с. 96.

Когда Ньютон открыл закон всемирного тяготения, он не знал ни одного числового значения масс небесных тел, в том числе и Земли. Неизвестно ему было и значение постоянной G.

Между тем гравитационная постоянная G имеет для всех тел Вселенной одно и то же значение и является одной из фундаментальных физических констант. Каким же образом можно найти ее значение?

Из закона всемирного тяготения следует, что G = Fr 2 /(m 1 m 2). Значит, для того чтобы найти G, нужно измерить силу притяжения F между телами известных масс m 1 и m 2 и расстояние r между ними.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. замечательным ученым Генри Кавендишем - богатым английским лордом, прослывшим чудаковатым и нелюдимым человеком. С помощью так называемых крутильных весов (рис. 101) Кавендиш по углу закручивания нити А сумел измерить ничтожно малую силу притяжения между маленькими и большими металлическими шарами. Для этого ему пришлось использовать столь чувствительную аппаратуру, что даже слабые воздушные потоки могли исказить измерения. Поэтому, чтобы исключить посторонние влияния, Кавендиш разместил свою аппаратуру в ящике, который оставил в комнате, а сам проводил наблюдения за аппаратурой с помощью телескопа из другого помещения.

Опыты показали, что

G ≈ 6,67 · 10 –11 Н · м 2 /кг 2 .

Физический смысл гравитационной постоянной заключается в том, что она численно равна силе, с которой притягиваются две частицы с массой по 1 кг каждая, находящиеся на расстоянии 1 м друг от друга. Эта сила, таким образом, оказывается чрезвычайно малой - всего лишь 6,67 · 10 –11 Н. Хорошо это или плохо? Расчеты показывают, что если бы гравитационная постоянная в нашей Вселенной имела значение, скажем, в 100 раз большее, чем приведенное выше, то это привело бы к тому, что время существования звезд, в том числе Солнца, резко уменьшилось бы и разумная жизнь на Земле появиться бы не успела. Другими словами, нас бы с вами сейчас не было!

Малое значение G приводит к тому, что гравитационное взаимодействие между обычными телами, не говоря уже об атомах и молекулах, является очень слабым. Два человека массой по 60 кг на расстоянии 1 м друг от друга притягиваются с силой, равной всего лишь 0,24 мкН.

Однако по мере увеличения масс тел роль гравитационного взаимодействия возрастает. Так, например, сила взаимного притяжения Земли и Луны достигает 10 20 Н, а притяжение Земли Солнцем еще в 150 раз сильнее. Поэтому движение планет и звезд уже полностью определяется гравитационными силами.

В ходе своих опытов Кавендиш также впервые доказал, что не только планеты, но и обычные, окружающие нас в повседневной жизни тела притягиваются по тому же закону тяготения, который был открыт Ньютоном в результате анализа астрономических данных. Этот закон действительно является законом всемирного тяготения.

«Закон тяготения универсален. Он простирается на огромные расстояния. И Ньютон, которого интересовала Солнечная система, вполне мог бы предсказать, что получится из опыта Кавендиша, ибо весы Кавендиша, два притягивающихся шара, - это маленькая модель Солнечной системы. Если увеличить ее в десять миллионов миллионов раз, то мы получим Солнечную систему. Увеличим еще в десять миллионов миллионов раз - и вот вам галактики, которые притягиваются друг к другу по тому же самому закону. Вышивая свой узор, Природа пользуется лишь самыми длинными нитями, и всякий, даже самый маленький, образчик его может открыть нам глаза на строение целого» (Р. Фейнман).

1. В чем заключается физический смысл гравитационной постоянной? 2. Кем впервые были проделаны точные измерения этой постоянной? 3. К чему приводит малость значения гравитационной постоянной? 4. Почему, сидя рядом с товарищем за партой, вы не ощущаете притяжение к нему?



Понравилась статья? Поделитесь ей
Наверх