Оценка качества антимикробной химиотерапии. Принципы противомикробной фармакотерапии Группы антибиотиков по механизму их действия

Принципы антибактериальной терапии

Основными препаратами в терапии больных бактериальными инфекциями являются антибиотики, которые позволяют проводить этиотропную терапию путем воздействия на причину заболевания. Сегодня термин “антибиотики” объединяет все лекарственные препараты, подавляющие жизнедеятельность возбудителей инфекционных заболеваний, таких как бактерии, грибки и простейшие. Данный класс препаратов включает вещества: а) природные – продуцируемые микроорганизмами; б) полусинтетические – получаемые в результате модификации структуры природных; в) синтетические (сульфаниламиды, хинолоны и др.). В настоящее время создано очень большое число новых противобактериальных средств, что связано с постоянно меняющимися свойствами давно известных микрорганизмов, появлением новых возбудителей и их лекарственной устойчивостью к антибиотикам.

В прошлом у врача часто была ограничена возможность выбора препарата. Сегодня в связи с открытием новых препаратов и модификацией уже известных компонентов лекарственных соединений значительно расширились возможности, но в то же время осложнился выбор этиотропного препарата.

Лечение инфекционных больных всегда должно быть комплексным и направлено в первую очередь на возбудителя болезни. Назначение препаратов обосновывается этиологией заболевания, а также патогенезом с учетом физиологических особенностей организма, тяжестью и периодом болезни.

При проведении этиотропной терапии прогнозирование ее эффективности обычно основывается на данных бактериологического или вирусологического исследований (идентификация вида микроорганизма – возбудителя инфекционного процесса, определение его чувствительности). В то же время, предсказать клинический эффект этиотропного препарата у конкретного больного бывает достаточно сложно, так как имеется много факторов, которые в конечном итоге влияют на возможные исходы терапии.

В отношении антибактериальной терапии факторы влияющие на ее эффективность можно распределить по четырем группам.

  1. Чувствительность микроорганизма, вызвавшего заболевание, к назначенному антибактериальному препарату.
  2. Факторы макроорганизма – иммунная система человека и ее взаимодействие с возбудителем и антибиотиком.
  3. Фармакодинамические факторы взаимодействия антибиотиков и микроорганизмов в условиях макроорганизма – бактерицидное действие, активность субингибирующих концентраций, постантибиотический эффект.
  4. Фармакокинетические факторы.

Сегодня число естественных, полусинтетических и синтетических антибактериальных препаратов измеряется тысячами. Однако на практике могут быть использованы лишь десятки антибиотиков, которые мало токсичны и имеют достаточный антибактериальный эффект.

Устойчивость бактериальных агентов инфекционных заболеваний к антибиотикам является основной причиной, ограничивающей эффективность антибактериальной терапии. Необходимо указать, что устойчивость возбудителей к антибиотикам может варьировать в широких пределах в различных регионах. Некоторые возбудители инфекционных заболеваний со времени открытия антибиотиков практически мало изменили характер первоначальной чувствительности к этим препаратам (стрептококки группы А, менингококки, бруцеллы, некоторые сальмонеллы). Наибольшее значение проблема устойчивости микроорганизмов приобрела по отношению к стафилококкам, шигеллам, эшерихиям, протею, среди которых антибиотикоустойчивые штаммы выделяются с наибольшей частотой.

У других, реже встречающихся микроорганизмов, таких как Citrobacter, Providenciae, Moraxella и Acinetobacter, также развивается резистентность к широкому ряду антибиотиков.

В настоящее время антибиотикоустойчивость является проблемой не только при госпитальных, но и при внебольничных инфекциях. Принципиально важным для практики моментом является то, что при амбулаторных инфекциях уровень антибиотикорезистентности в пределах обширного географического региона может быть предсказан на основании данных периодических скрининговых исследований. Для стационаров имеет значение только мониторинг микробиологической ситуации в конкретном учреждении. При госпитальных инфекциях существует ряд патогенов, в отношении которых антибиотики практически неэффективны. Такими сегодня являются метициллинорезистентные стафилококки, множественно резистентные энтерококки, псевдомонады и некоторые энтеробактерии.

Более важным показателем, определяющим развитие устойчивости к антибиотикам, является не столько объем используемых антибиотиков, сколько их тип (или типы). Применение некоторых антибиотиков, даже в небольших количествах, приводит к возникновению проблем резистентности. Лечебные учреждения, в которых существуют проблемы резистентности, должны не только проводить анализ общего количества используемых антибиотиков, но и обратить внимание на важнейший фактор – какие именно антибиотики применяются для лечения больных. Своевременная и правильная политика по замене применяемых антибиотиков на другие имеет принципиальное значение не только в эффективности антибактериальной терапии, но и в борьбе с резистентностью микроорганизмов к этим лекарственным препаратам.

Неудачи антибиотикотерапии связаны, прежде всего, с тем, что проводится лечение без учета чувствительности возбудителей инфекционного заболевания к назначаемому препарату, не соблюдается индивидуальная тактика антибиотикотерапии.

Бактериологические лаборатории играют важную роль в борьбе с инфекцией, осуществляя надзор за использованием антибиотиков и проводя оценку эффективности работы в больницах по борьбе с инфекциями. Следует, однако, иметь в виду, что лаборатории, пользующиеся ускоренными полуавтоматизированными или автоматизированными экспресс-методами определения чувствительности микробов, нередко получают заниженные показатели уровней резистентности, что затрудняет распознавание проблемы и оценку мероприятий по борьбе с устойчивостью. Тщательное осуществление мер по борьбе с инфекциями является важнейшим фактором, ограничивающим распространение резистентных микроорганизмов в лечебном учреждении.

Для определения чувствительности микробов к антибиотикам существует ряд методов: метод последовательных разведений в жидкой питательной среде или питательном агаре, метод диффузии в агар (метод дисков, насыщенных антибиотиками) и ускоренные методы. Метод дисков прост, широко используется, но дает лишь качественный ответ.

Микробиологическое исследование играет важную роль в диагностике, профилактике и лечении инфекционных заболеваний. Оно представляет собой многоступенчатый процесс (забор проб клинического материала и транспортировку его в лабораторию, проведение первичного посева и получение чистой культуры, дифференциацию и идентификацию выделенных культур, определение чувствительности их к антибактериальным препаратам). При заборе проб необходимо в каждом конкретном случае учитывать особенности предполагаемого инфекционного процесса. Исследуемый материал собирается в стерильную посуду, соблюдая правила асептики.

В инфекционной практике наиболее часто производится забор для микробиологического исследования ликвора, мочи, кала, крови, материала из зева.

Ликвор целесообразно забирать шприцом при спиномозговой пункции после тщательной дезинфекции кожи и немедленно доставлять в теплом виде в лабораторию или сохранять до посева при температуре 35-37°С.

Для микробиологического исследования мочи необходимо использовать среднюю порцию утренней мочи при естественном мочеиспускании после тщательного туалета наружных половых органов. При этом мочу собирают в стерильные флаконы с широким горлом или баночки с крышками.

Кровь для исследования берут на высоте температуры и озноба шприцом из вены после тщательной дезинфекции кожи. Посев крови необходимо делать у постели больного над спиртовкой.

Из зева забор материала производят тампоном с миндалин, дужек, язычка, задней стенки глотки. В случаях проведения исследований на менингококк забор материала производят изогнутым тампоном из носоглотки. Материал со слизистой носа забирают одним ватным тампоном из обеих ноздрей. Мокроту собирают утром после туалета полости рта в стерильную банку.

В качестве транспортных сред лучше использовать среды Стюарта и Амиеса, которые позволяют увеличить срок доставки сред в бактериологическую лабораторию до 48 часов.

Полученный исследуемый материал, как правило, микроскопируют в нативном состоянии и засевают на плотные питательные среды общего назначения (кровяной, шоколадный и сывороточный агар), а также селективноингибирующие среды: агар Эндо – для грамотрицательных бактерий, кровяной агар с налидиксовой кислотой или с колистином – для грамположительных бактерий, желточно-солевой или маннит-солевой агар – для стафилококков, среда Калины – для энтерококков, ТМ (Thayer-Martin) – для патогенных нейссерий, неселективные и селективные среды для выращивания анаэробов. Важным условием является получение изолированных колоний, используемых для получения чистых культур, их дифференциации и дальнейшего определения чувствительности к антибиотикам. В случаях, когда в биоматериале содержится небольшое количество микроорганизмов важным моментом является параллельный засев испытуемого материала в жидкие и полужидкие среды обогащения (сахарный бульон, сывороточный бульон, тиогликолевая среда). Наиболее трудоемким и ответственным этапом микробиологического исследования является дифференциация и идентификация возбудителей (определение родовой, видовой и типовой принадлежности микроорганизмов). Данный этап осуществляется при изучении целого комплекса свойств микроорганизмов: морфологических, тинкториальных, культуральных, ферментативных, антигенных. При идентификации микроорганизмов нужно работать только с чистой культурой, поскольку присутствие посторонних микроорганизмов может исказить результаты исследования и послужить поводом для ошибочного заключения.

В результате внедрения в клиническую практику большого количества антибактериальных препаратов существенно повысилась эффективность лечения инфекционных больных, однако у микроорганизмов появились новые механизмы резистентности. В свою очередь это повлекло ужесточения требований к стандартизации существующих методов оценки антибиотикорезистентности и разработки новых подходов к интерпретации результатов. Наиболее принципиальными изменениями в методологии оценки антибиотикорезистентности и интерпретации результатов являются следующие:

  1. Концепция групповых препаратов, позволяющая максимально эффективно выявлять случаи приобретенной резистентности микроорганизма.
  2. Концепция интерпритационного учета результатов оценки антибиотикочувствительности, основанная на моделировании генотипа исследуемого микроорганизма с последующей корректировкой данных, получаемых in vitro, и выдачей клинических рекомендаций по лечению.
  3. Система контроля качества оценки антибиотикочувствительности.
  4. Существенная корректировка критериев чувствительности микроорганизмов к известным антибактериальным препаратам и критериев чувствительности к новым.
  5. Корректировка требований по составу питательных сред и содержания препаратов в дисках при постановке диско-диффузионного метода.
  6. Эпсилометрический метод оценки антибиотикочувствительности.

Сегодня без учета перечисленных фактов невозможно получение достоверных результатов оценки антибиотикочувствительности, а соответственно и квалифицированное применение антибактериальных препаратов. Необходимо подчеркнуть, что основной целью исследований на антибиотикорезистентность является выявление приобретенной устойчивости к антибактериальным препаратам у возбудителей инфекционных болезней. Подтверждение наличия у микроорганизма природной чувствительности или устойчивости к антибиотикам не может являться целью практических исследований. При проведении исследований на антибиотикорезистентность, как правило, решаются две основные задачи. Обосновывается назначение оптимальной индивидуальной антибиотикотерапии у конкретного больного. Проводится обоснование эмпирической антибиотикотерапии, основываясь на данных эпидемиологического мониторинга за уровнем антибиотикорезистентности микроорганизмов, циркулирующих в конкретных регионах или учреждениях. Прежде, чем приступать к проведению исследования антибиотикорезистентности необходимо оценить целесообразность данного исследования, выбрать антибактериальные препараты, подлежащие включению в исследование, а также выбрать метод проведения исследований и контроль качества.

Исследования антибиотикорезистентности целесообразно проводить, если уровень устойчивости выделенного от больного этиологического агента к антибактериальным препаратам не может быть предсказан исходя из его идентификации или вероятной таксономической принадлежности. Необходимо помнить, что проведение исследований для практических целей по определению антибиотикорезистентности микроорганизмов при отсутствии стандартизованных методик для конкретного антибактериального препарата или возбудителя заболевания не рекомендуется из-за отсутствия обоснованных критериев оценки результатов и высокой вероятности получения недостоверных результатов. В таких случаях результаты исследований не могут служить основанием для назначения антимикробного препарата. Очень осторожно необходимо оценивать факты выявления резистентности у микроорганизмов, для которых этот феномен не был ранее описан в научной литературе.

Исследованию на антибиотикорезистентность подлежат все микроорганизмы, выделенные из первично стерильных жидкостей органов и тканей человека. Особое внимание целесообразно уделять изучению антибиотикорезистентности микроорганизмов, относящихся к таксономическим группам, у которых характерна высокая частота распространения приобретенной устойчивости.

Нет необходимости исследовать антибиотикорезистентность представителей нормальной микрофлоры человека при их выделении из естественных мест обитания.

При выборе антибиотиков, подлежащих к включению в исследование главными ориентирами являются сведения о природной устойчивости или чувствительности отдельных микроорганизмов или их групп и клиническая эффективность антибактериальных препаратов. Естественно, в исследование включаются антибактериальные препараты, обладающие природной активностью в отношении выделенных микроорганизмов с хорошей клинической эффективностью при соответствующих заболеваниях. Антибиотики, как правило, разделяются на две группы: подлежащие изучению в обязательном порядке и дополнительные. Причем, в каждой из указанных групп, препараты можно разбивать на подгруппы в соответствии с механизмом действия и микробиологическими свойствами. Такое деление позволяет в каждой подгруппе характеризовать препараты общими микробиологическими свойствами и наличием перекрестной резистентности. Кроме того, при подобном делении полученные сведения по антибиотикорезистентности к каждому из препаратов подгруппы могут быть с высокой степенью вероятности перенесены на всю подгруппу.

Таким образом, проблема резистентности бактерий к антибиотикам с каждым годом становится все более актуальной. В решении этой проблемы могут существенно помочь хорошие знания врачей антибиотикотерапии, правильная стратегия лечебного учреждения в выборе антибиотиков в соответствии с существующей ситуацией.

Несомненно, спектр микробиологической активности препарата является определяющим в выборе, однако, всегда необходимо учитывать фармакокинетические, фармакодинамические и экономические параметры.

В настоящее время существует понятие “химиотерапевтическая резистентность макроорганизма”, т.е. отсутствие результатов лечения не связано с антибиотиком, а определяется состоянием организма больного, снижением его реактивности. Не вызывает сомнений, что одним из важнейших факторов, определяющих исход инфекции, наряду с этиотропностью антибактериальной терапии, является иммунная система человека. Известно, что у больных с приобретенным или врожденным иммунодефицитом инфекции могут развиваться молниеносно, характеризоваться быстропрогрессирующим течением, при этом существенно снижена эффективность антибактериальных препаратов. При ряде иммунодефицитных состояний характерно развитие определенных инфекций: например, пневмония, вызванная Pneumocystis jiroveci (ранее обозначались как Pneumocystis carinii), у больных СПИДом, пневмококковый сепсис после спленэктомии и др. Несмотря на то, что в последние годы активно разрабатываются и внедряются в клиническую практику методы стимуляции и коррекции нарушенного иммунитета, следует отметить, что наши знания об иммунной системе человека и возможности ее стимуляции недостаточны для проведения дифференциальной иммунокорригирующей терапии.

Крайне недостаточны наши знания о взаимодействии антибактериальных средств и иммунной системы человека, а между тем, воздействие антибиотиков на специфические и неспецифические защитные реакции макроорганизма является важным компонентом противоинфекционной резистентности. В настоящее время выраженные иммуностимулирующие свойства установлены только у одного цефалоспоринового антибиотика третьего поколения – цефодизима и у ряда представителей группы макролидов. Они заключаются в прямом стимулирующем воздействии цефодизима на функциональное состояние нейтрофилов.

Некоторые макролиды (эритромицин, рокситромицин, спирамицин, азитромицин) в терапевтических дозах имеют основные функции нейтрофилов – адгезию и хемотаксис, благодаря чему они проникают в очаг воспаления. Кроме того, они могут усиливать антибактериальные действия нейтрофилов. Возможно, именно с этим свойством связан положительный эффект макролидов при инфекции, вызванной Pseudomonas aeruginosa, у больных муковисцидозом, а также воздействие на внутриклеточных бактериальных агентов.

В последние годы было установлено, что макролидные антибиотики (в частности, рокситромицин, в меньшей степени кларитромицин и азитромицин), а также фторхинолоны уменьшают продукцию макрофагами цитокинов (интерлейкина-1) и фактора некроза опухоли, что снижает нежелательные последствия высвобождения эндотоксина (эндотоксический шок) при взаимодействии антибиотика и бактериальной клетки.

Антибиотики часто не оказывают достаточного эффекта при инфекционных заболеваниях, протекающих на фоне применения кортикостероидов, цитостатиков, при сопутствующей лучевой болезни и др.

Реакция органов и тканей или организма в целом на введенный препарат зависит не только от химических особенностей действующего вещества, но и от его взаимодействия с теми или иными реагирующими органами – “мишенями”. Неудачи лечения нередко могут быть обусловлены неправильным выбором доз и методом введения препарата, поздним началом лечения, применением антибактериальных препаратов в заниженных дозах при комбинированной терапии, недостаточностью продолжительности курса.

Не всегда учитывается возможность инактивации препаратов ферментативными системами организма, связывания их белками крови и тканей. Даже при чувствительности возбудителя к антибиотику неудовлетворительные результаты лечения могут быть из-за плохого проникновения препарата в очаг инфекции, связанного с недостаточностью кровоснабжения, образованием биологического барьера (наличие фибринозных наложений, некроза тканей и т.п.) вокруг очага инфекции, с неблагоприятными условиями всасывания при гинерализованном капиляротоксикозе и др.

Всасывание, распределение, метаболизм и выделение лекарства или его продуктов обмена во времени составляют сущность фармакокинетики. Величина фармакологического ответа на введенное лекарственное вещество определяется как фармакодинамика. Среди фармакодинамических факторов при лечении бактериальной инфекции имеют важное значение следующие: постантибиотический эффект и проантибиотический эффект или эффект субингибирующих концентраций.

Постантибиотический эффект это продолжающееся подавление роста бактерий in vitro при удалении антибиотика из инкубационной среды. Применительно к клинике он может иметь значение в объяснении того факта, что некоторые антибиотики проявляют эффективность при более длительных интервалах дозирования по сравнению с рассчитанными на основании значений их периода полувыведения. Постантибиотический эффект установлен у различных антибактериальных средств, причем наиболее длителен он у аминогликозидов и макролидов, менее выражен у фторхинолонов и практически отсутствует у беталактамных антибиотиков. Необходимо отметить, что в период постантибиотического эффекта микроорганизмы in vitro более подвержены бактерицидному действию нейтрофилов. Данные эффекты показаны на примере действия спирамицина на стрептококки и стафилококки в фазу постантибиотического эффекта.

Проантибиотический эффект или эффект субингибирующих концентраций обусловлен тем, что в концентрациях, не достигающих значений минимальных подавляющих (МПК), антибиотики, не оказывая бактерицидного или бактериостатического действия, способны влиять на структуру и функциональную активность бактериальной клетки. В эксперименте было показано, что некоторые антибактериальные средства в субингибирующих концентрациях изменяют морфологию бактериальной клетки, снижают вирулентность бактерий и делают их более подверженными фагоцитозу макрофагами и нейтрофилами. Самым важным эффектом субингибирующих концентраций антибактериальных препаратов является нарушение внешней мембраны микробной клетки, а также снижение продукции факторов вирулентности (адгезинов, токсинов и др.).

При концентрациях, превышающих МПК, некоторые бактериостатические антибактериальные препараты могут проявлять бактерицидное действие. Необходимо понимать, что характер действия антибиотика на микробные клетки (бактерицидный или бактериостатический) зависит от таких факторов, как вид микроорганизма, рН среды, концентрация антибиотика и др. Например, макролидные антибиотики характеризуются бактериостатическим действием, однако, в отношении некоторых микроорганизмов (стрептококки группы А, пневмококки) при концентрации, в 2-4 раза превышающей МПК, отмечается бактерицидный эффект. Наличие у антибиотика бактерицидной активности принципиально важно при лечении больных с иммунодефицитом или при локализации инфекций в месте, где ограничены возможности собственных защитных сил организма (например, инфекции центральной нервной системы). Зависимость бактерицидности действия антибиотика от его концентрации является важным фактором, которым определяется оптимальный режим дозирования.

Из фармакокинетических параметров антибактериального препарата наиболее важным, имеющим практическое значение, является биодоступность – доля препарата, попавшего в кровь, от введённой дозы. В ряде ситуаций фармакокинетические причины могут объяснять неудачи антибактериальной терапии. Вариабельность фармакокинетики антибиотиков обуславливает необходимость периодического контроля концентрации их в крови. Концентрация антибиотика, достигаемая в очаге поражения, должна превышать уровень чувствительности возбудителя к антибиотику и обеспечивать бактерицидный или бактериостатический эффекты. Фармакокинетика антибиотика может изменяться при печеночно-клеточной недостаточности, при нарушении выделительной функции почек и т.п. Речь идет о необходимости всестороннего учета свойств возбудителей инфекций.

Экспериментальные исследования in vitro и in vivo показали возможность установления количественной зависимости между концентрациями антибактериальных средств в крови/тканях и выраженностью клинического эффекта. На этом основано предсказание клинической эффективности конкретного препарата. При этом необходимо отметить, что эта зависимость имеет различные характеристики для разных классов антимикробных средств.

В частности, для беталактамных антибиотиков превышение определённых концентраций препарата в крови не сопровождается дальнейшим усилением его бактерицидного действия. Общее количество убитых микроорганизмов находится в прямой зависимости от времени, в течение которого концентрации антибиотиков в крови превышают значение МПК. Учитывая отсутствие у беталактамов значимого постантибиотического эффекта, наиболее важным для достижения клинического эффекта является поддержание сывороточных концентраций, превышающих МПК, между введениями антибиотика. Экспериментальными исследованиями in vivo было установлено, что при применении карбапенемов, пенициллинов, цефалоспоринов для достижения адекватного клинического эффекта концентрации, превышающие МПК, должны поддерживаться в течение не менее 1/2 интервала между дозами. Особенно важно соблюдение интервалов между введениями беталактамных антибиотиков при лечении больных тяжёлыми инфекциями.

Для определения оптимального режима дозирования антибиотика необходимо сопоставлять уровень концентраций препарата перед очередным введением (можно использовать данные справочной литературы) со значением МПК для выделенного возбудителя. При получении значений концентрации антибиотика превышающей или равной известному значению МПК, можно считать, что режим дозирования препарата выбран правильно. В случаях, если концентрация антибиотика меньше значения МПК, то интервалы между введением должны быть уменьшены.

В противоположность беталактамным антибиотикам, при применении аминогликозидов, выраженность бактерицидного действия прямо пропорциональна сывороточной концентрации. Наличие у аминогликозидов выраженного постантибиотического эффекта, позволяет получать хорошие клинические результаты путем увеличения разовой дозы, при этом интервалы между дозами не являются определяющими. Это позволяет рекомендовать однократное введение суточной дозы аминогликозидов. Однако при такой форме введения целесообразно использовать не усредненные суточные дозы, а проводить расчет с учетом веса пациента.

При применении фторхинолонов их клиническая эффективность определяется как величиной С макс, так и временем, в течение которого концентрация антибиотиков в крови превышает МПК. Экспериментальными и клиническими исследованиями было доказано, что одним из параметров, наиболее точно прогнозирующим эффективность фторхинолонов, является отношение величины площади под кривой «концентрация – время» к значению МПК (AUC/ МПК), в частности адекватный клинический эффект при применении ципрофлоксацина может быть достигнут при значении AUC/ МПК, превышающих 100.

Необходимо отметить, что результаты фармакокинетических и фармакодинамических исследований являются хорошей основой для проведения рациональной антибактериальной терапии. Однако не только они, в конечном итоге, определяют исходы антибактериальной терапии больного. Сложные взаимодействия между антибиотиком, микроорганизмом и макроорганизмом достаточно часто не поддаются точному количественному анализу или качественному описанию. Однако исследования в этом направлении помогают в понимании механизмов действия антибактериальных препаратов и, в конечном итоге, способствуют повышению эффективности лечения больных бактериальными инфекциями.

С точки зрения возможности применения антибактериальных препаратов, больных в инфекционных стационарах можно разделить на две группы. Первая – больные с инфекционными заболеваниями, при которых выбор антибактериального препарата полностью основывается на клиническом диагнозе, поскольку микроорганизм, вызывающий заболевание, всегда один и тот же. Вторая – больные с бактериальными заболеваниями, при которых выбор антибактериального препарата должен быть по возможности обоснован данными бактериологических исследований. Главным образом, это лица, заболевания у которых вызваны условно патогенными микроорганизмами (ангины, бронхиты, пневмонии и др.) В этих случаях желательно проведение проб на чувствительность микроорганизмов к антибиотикам.

Однако, как в первом, так и во втором случаях, необходимо придерживаться общих правил назначения антибактериальных препаратов. Необходимо наиболее точно установить диагноз с определением очага инфекции, возбудителя заболевания и его чувствительности к антибактериальным препаратам. Последнего легче достичь, если материал для определения возбудителя взят у больного до назначения этиотропной терапии. Возможно и эмпирическое назначение антибиотика, но в этих случаях необходимо использовать имеющиеся научные данные о чувствительности микроорганизма к антибиотикам и провести выбор конкретного препарата с учетом фармакокинетики, фармакодинамики, побочных действий, сопутствующей патологии и стоимости. Не следует назначать антибактериальные препараты до уточнения диагноза, за исключением неотложных ситуаций, когда у тяжелых больных антибактериальная терапия может назначаться даже при подозрении на бактериальную инфекцию. Преждевременное или необоснованное назначение антибактериальных препаратов является ошибочной тактикой, так как эти препараты потенциально опасны, дорогостоящи и могут способствовать селекции устойчивых штаммов микроорганизмов.

Наряду с антибактериальной терапией должны проводиться мероприятия, способствующие санации очага инфекции (дренирование абсцесса, удаление препятствия в мочевыводящих и дыхательных путях и др.).

При решении вопроса о целесообразности назначения антибактериальных средств следует учитывать, что в лечении больных хроническими инфекционными заболеваниями и в некоторых случаях острыми (гастроэнтерит и др.) далеко не всегда требуется назначение антибиотиков. Врач всегда должен проводить выбор оптимальных доз препаратов, кратности и способов введения, при этом необходимо определить длительность курса проводимой антибактериальной терапии.

Желательно проведение микробиологического контроля за излечением. Нецелесообразно назначение антибактериальных препаратов для лечения бактерионосителей. В этих случаях более рациональным является проведение мероприятий с целью нормализации естественной флоры (исключением является брюшной тиф).

Лечебный эффект антибактериального препарата связан с его воздействием на микроорганизм – возбудитель заболевания, в связи с чем результативность антибиотикотерапии зависит от точности установления этиологического агента инфекционного процесса с последующим выбором оптимального антибиотика. Антимикробный спектр антибиотика определяет основные показания к его применению или указывает на целесообразность комбинированной терапии. Представленные в таблицах 1-11 данные могут служить определенным ориентиром, позволяющим выбрать антибиотик при известной этиологии заболевания.

Иногда возникает необходимость сочетанного применения антибиотиков. Назначать два и более антибактериальных препарата целесообразно в следующих случаях: при имеющей место тяжелой или генерализованной инфекции с неустановленным возбудителем; больным с агранулоцитозом, иммунодефицитом также с неустановленным возбудителем заболевания. При проведении комбинированной антибактериальной терапии необходимо учитывать сочетаемость антибиотиков, которая основывается на перечисленных ниже моментах. Не следует комбинировать бактерицидное и бактериостатическое антибактериальное средство, так как имеется вероятность ослабления действия первого препарата. При комбинации антибиотиков необходимо учитывать механизм их воздействия на бактерии. Нежелательно назначать препараты, имеющие один механизм действия, так как конкуренция за “рецептор” будет ослаблять активность каждого.

Таблица 1

Антибактериальные препараты эффективные против

грамположительных кокков

БАКТЕРИАЛЬНЫЙ ВОЗБУДИТЕЛЬ АНТИБАКТЕРИАЛЬНЫЕ ПРЕПАРАТЫ
РЕКОМЕНДУЕМАЯ РЕЗЕРВНАЯ
1 2 3
Staphylococcus : S . aureus

Метициллинчувствительные

Метициллинрезистентные

S . epidermidis

S.saprophyticus

Пенициллиназорезистентные пенициллины: оксациллин, клоксациллин, нафциллин + рифампицин или гентамицин

Ванкомицин + рифампицин или гентамицин,

линезолид

Ампициллин, амоксициллин, фторхинолоны

Цефалоспорины 1 поколения, клиндамицин, ампициллин/сульбактам, амоксициллин, имипенем, фторхинолоны

Фторхинолоны

Цефалоспорины, ванкомицин+ рифампицин или гентамицин, линезолид

Streptococcus: S.pyogenes (serogr. A)

S.agalactiae (serogr B)

S.salivarius

S.sanguis

S.mutans

S.pneumoniae

Пенициллин G или V, или ванкомицин

Амоксициллин, ампициллин, азитромицин

Эритромицин, все бета-лактамные антибиотики, азитромицин, кларитромицин, линезолид

Цефалоспорины, азитромицин, хлорамфеникол, клиндамицин, ванкомицин, линезолид

Окончание таблицы 1

1 2 3
Enterococcus: E.faecalis (serogr. D)

E.faecium (serogr. D)

Ванкомицинрезистентные

Пенициллин G (или ампициллин/амоксициллин) + гентамицин

Ципрофлоксацин + гентамицин + рифампицин,

линезолид

Фторхинолоны, хлорамфеникол, тетрациклин, линезолид

Ванкомицин + гентамицин, ампициллин, фторхинолоны, имипенем

Новобиоцин + ципрофлоксацин или доксициклин

Ампициллин + ципрофлоксацин + аминогликозиды

Нитрофурантоин

Peptostreptococcus (анаэробы): P.anaerobius

P.asaccharolyticus

Пенициллин G, ампициллин/амоксициллин Цефалоспорины 1 поколения, клиндамицин, хлорамфеникол, меропенем, эритомицин, доксициклин, ванкомицин, имипенем

Во время вспышки инфекции применение антибиотиков в целом должно быть ограничено. Это ограничение должно носить избирательный характер, оно должно относиться только к тем антибиотикам, к которым устойчивы микробы, вызвавшие вспышку. Что касается других антибиотиков, не связанных с проблемами резистентности в данном учреждении, то их, как правило, следует применять достаточно широко как в профилактических, так и в лечебных целях.

Врач, выписывающий антибиотик, должен самостоятельно решать, какой антибиотик наиболее пригоден в том или ином случае, при этом необходимо учитывать, что информация, содержащаяся в инструкциях, прилагаемых к упаковкам антибиотиков носит только ориентировочный характер. Еще более серьезной проблемой является необоснованное применение антибиотиков исключительно на эмпирической основе, т.е. несмотря на отсутствие точного микробиологического диагноза и клинико-лабораторных параметров, на которые можно было бы ориентироваться. Чаще всего назначают аминогликозиды, цефалоспорины из-за их широкого спектра действия, хотя при бактериологически подтвержденных инфекциях применение данных препаратов не совсем бывает оправдано.

Перевод Л. Бредневой

Ежегодно обновляемое пособие представлено авторами на Зальцбургском международном медицинском семинаре «Инфекционные заболевания», основанном Американско-австрийским фондом при финансовой поддержке Института «Открытое общество» (Фонда Джорджа Сороса) и содействии правительства Австрии в 1993 г. Вашему вниманию предлагается дополненное и переработанное издание 2008 г. Пособие отличает исключительно ясное, четкое изложение основ антимикробной терапии, ее современного состояния.

Использование материалов пособия и их публикация разрешены авторами.

Доктор Робертс – профессор Вейл-Корнеллского медицинского университета, адъюнкт-профессор Рокфеллеровского университета, практикующий врач Нью-Йоркского пресвитерианского госпиталя и Мемориального госпиталя для лечения больных раком и сопредельными заболеваниями (Нью-Йорк).

Последипломное образование и медицинскую степень доктор Робертc получил в Дормутском колледже и Темплском университете на медицинском факультете. Закончив резидентуру по внутренним болезням, два года служил в военном исследовательском институте Волтера Рида. Затем работал в качестве приглашенного исследователя и доцента в лаборатории клеточной физиологии и иммунологии Рокфеллеровского университета, после чего стал штатным сотрудником Корнеллского университета.

Последние 35 лет доктор Робертс заведует кафедрой инфекционных заболеваний, является действующим Президентом медицины, директором и деканом филиалов Корнеллского медицинского центра.

Нью-Йоркский госпиталь наградил доктора Робертса за обучение персонала в 1981 г., а в 1983-1984, 1995-1996, 1998-1999 гг. он признан студентами второго года обучения одним из наиболее уважаемых преподавателей в медицинском колледже Корнеллского университета. Пять лет был директором курса патологической физиологии у студентов второго года обучения.

Доктор Робертс – автор более 140 статей по инфекционной патологии, 30 глав книг и редактор 2 учебников. Круг его интересов включает вопросы молекулярной эпидемиологии полирезистентных грамположительных микроорганизмов, в частности ванкомицинрезистентный Enterococcus faecium, метициллинрезистентный Staphylococcus aureus и Staphylococcus epidermidis, пенициллинрезистентный Streptococcus pneumoniae.

Доктор Робертс входит в редколлегии различных медицинских журналов, является членом различных профессиональных организаций, включая общество докторов Американских колледжей и общества инфекционистов Америки.

Доктор Барри Хартман получил степень доктора медицины на медицинском факультете Государственного медицинского центра Херши и Медицинского центра Корнеллского университета (штат Пенсильвания).

Свои главные исследования доктор Хартман провел до 1985 г. в лаборатории Александра Томаша (Рокфеллеровский университет, Нью-Йорк), изучая механизм метициллинрезистентного Staphylococcus aureus. Барри Хартман оставил лабораторию для продолжения клинической практики и преподавательской деятельности.

Доктор Хартман в настоящее время является практикующим профессором Вейл-Корнеллского медицинского колледжа и практикующим врачом Нью-Йоркского пресвитерианского госпиталя в области внутренних и инфекционных заболеваний. Он получил несколько наград за преподавательскую деятельность. Круг его профессиональных интересов – антибиотики и резистентность к ним, хирургические инфекции, эндокардит, СПИД.

Свойства идеального антимикробного препарата

1. Селективная активность.

2. Бактерицидность.

3. Способность не вызывать значительную резистентность.

4. Соответствие терапевтическому ряду пенициллины/аминогликозиды.

5. Отсутствие токсичности.

6. Наличие постоянной антибактериальной активности – «срок хранения».

7. Низкая стоимость.

8. Удобство применения, per os однократно в день.

Факторы, влияющие на выбор антимикробного препарата

1. Контроль за чувствительностью микроорганизма к антибиотикам (АБ).

2. Токсичность АБ: нет препаратов полностью безопасных; дополнительная токсичность.

3. Возраст и масса тела пациентов. Женщинам в период беременности и детям противопоказаны тетрациклины, сульфаниламиды, хлорамфеникол, фторхинолоны; пациентам пожилого возраста (с заболеваниями почек) – ванкомицин, аминогликозиды.

4. При осложнении инфекционных заболеваний бактериальным шоком показано внутривенное введение высоких доз АБ широкого спектра действия.

5. Анатомическая локализация инфекции – проникновение в спинномозговую жидкость.

6. Сопутствующие заболевания печени и почек (метаболизм или экскреция АБ).

7. Антибактериальная специфичность препаратов.

8. Бактерицидная активность препаратов: «скомпрометированный хозяин», сердечные клапаны, остеомиелит, менингит.

9. Экскреция препаратов: экскреция нафциллина происходит в печени в отличие от пенициллина, экскреция которого происходит в почках. Хлорамфеникол метаболизируется в печени путем конъюгации, поэтому его нельзя назначать новорожденным.

10. Взаимодействие препаратов.

11. Генетические факторы.

Противопоказаны:

При дефиците глюкозо-6-фосфат дегидрогеназы (гемолизе) – сульфаниламиды, нитрофураны, хлорохин/примахин;

При нарушении ацетилирования (внезапном или постепенном) – изониазид.

12. Согласие пациента.

13. Стоимость препарата.

Причины неудач применения антибактериальной терапии

1. Неправильный диагноз.

2. Резистентность микроорганизма к АБ.

3. Необычная иммунная защита.

5. Ограниченные инфекции.

6. Инородное тело.

Ошибки в применении антибактериальной терапии
Поликлиническая практика

1. АБ – наиболее часто назначаемые препараты (15% случаев).

2. 60% пациентов с простудой, вирусными заболеваниями получают антибактериальную терапию (обычно пенициллин, тетрациклин или макролиды).

3. Каждый четвертый гражданин США принимает АБ 1 раз в год (при этом в 90% случаев АБ не назначены врачом).

Госпитальная практика

1. Каждый третий пациент получает АБ:

45% – один препарат;

20% – два препарата;

5% – четыре препарата (отделения интенсивной терапии).

2. Обосновано назначение лишь трети лекарственных средств (ЛС; успокоительные, слабительные).

3. 2/3 пациентов либо не нуждаются в антибактериальной терапии, либо получают неадекватную дозировку препарата.
Недостатки антибактериальной терапии

1. Несвоевременная идентификация возбудителя: эмпирическое назначение аминогликозидов может препятствовать обнаружению культур микобактерий.

2. Побочные реакции.

3. Микробная резистентность.

4. Возникновение госпитальных суперинфекций при одновременном использовании четырех АБ (отделения интенсивной терапии).

5. Высокая стоимость антибактериального лечения:

Затраты на разработку ЛС в США в 2002 г. составили 403 млн долларов; в 2006 г. – 1 млрд долларов;

В 2006 г. продажи рецептурных препаратов в мире составили 602 млрд долларов; в США – 252 млрд долларов;

Нью-Йоркский пресвитерианский госпиталь в 2006 г. насчитывал 2 400 коек (both campuses), при этом расходы на приобретение всех ЛС составили 125 млн долларов, на приобретение АБ – 20 млн долларов (16%).

Механизмы действия антибактериальных препаратов
1. Ингибирование биосинтеза фолиевой кислоты:

Пириметамин;

Сульфаниламиды;

Триметоприм.
2. Ингибирование синтеза белка:

Аминогликозиды;

Хлорамфеникол;

Клиндамицин;

Эритромицин и пролонгированные макролиды;

Тетрациклины;

Синерцид-квинпристин-дальфопристин;

Линезолид.
3. Влияние на клеточную мембану:

Амфотерицин В;

Нистатин;

Полимиксин;

Имидазолы;

Триазолы;

Даптомицин.
4. Ингибирование синтеза клеточной стенки:

β-лактамы:

Пенициллины;

Цефалоспорины;

Карбапенемы (имепинем);

Монобактамы (азтреонам);

Ванкомицин.
5. Ингибирование ДНК-полимеразы:

Фторхинолоны.
6. РНК-синтез:

Рифампицин.

Определение чувствительности АБ

1. Диско-диффузная техника (Кирби – Майера метод):

Автоматизированные системы «Микроскан» или «Витек».

2. Микробная ингибирующая концентрация/микробная поддерживающая концентрация:

Метод разведения в бульоне/агаре;

Титрационный микропланшет – 2 разведения;

Е-тест.
Определение концентрации АБ

1. Сывороточный бактерицидный тест (Shchicter).

2. Радиоиммуноферментный (РИФ) тест.

3. Энзимный (ELISA, EMIT) тест.

4. Хроматографический (GLS, HPLC) тест.

Механизмы резистентности микроорганизмов

1. Изменение мишени действия ЛС (центра связывания) – приобретенная невосприимчивость.

2. Влияние на транспорт АБ в бактериальную клетку (проникающий барьер) или повышенное выведение из клетки (например тетрациклина).

3. Инактивация или детоксикация АБ в промежуточной среде.

4. Блокирование реакций или метаболической чувствительности к АБ.

5. Создание неблагоприятных условий для метаболизма АБ.

6. Избыточный синтез ферментов.

7. Метаболический антагонизм.

Примеры резистентных микроорганизмов

1. Ампициллинрезистентный Haemophilus influenzae – β-лактамазы, внутренняя резистентность.

2. Пенициллинрезистентная Neisseria gonorreae – β-лактамазы, внутренняя резистентность.

3. Обширный спектр β-лактамаз, продуцируемых Klebsiella pneumoniae.

4. Метициллинрезистентный Staphylococcus aureus, внутренняя резистентность.

5. Пенициллинполирезистентный Streptococcus pneumoniae, внутренняя резистентность.

6. Ванкомицинполирезистентные энтерококки и стафилококки.

Фармакологические особенности АБ
I. Распределение:

Низкая концентрация в цереброспинальной жидкости:

Бензатин пенициллин – эффективны максимальные парентеральные дозы;

Макролиды;

Клиндамицин;

Цефалоспорины (І и ІІ поколения);

Аминогликозиды;

Тетрациклины;

Фторхинолоны – максимальные дозы позволяют достичь достаточной концентрации.

II. Метаболизм – экскреция:

А. Печень:

1. Нафциллин.

2. Макролиды.

3. Клиндамицин.

4. Хлорамфеникол.

5. Тетрациклины/тигециклин.

6. Сульфаниламиды.

7. Фторхинолоны.

8. Линезолид.

9. Дальфопристин/квинпристин (синерцид).

Б. Почки:

1. Пенициллины (нафциллин).

2. Ванкомицин.

3. Цефалоспорины (цефперазон, цефтриаксон).

4. Аминогликозиды.

5. Сульфаниламиды.

6. Липопептид/даптомицин.

7. Полимиксины.

III. Побочные реакции:

1. Местные реакции при пероральном, парентеральном, внутриоболочечном введении:

Гиперчувствительные реакции – β-лактамазы:

Немедленный тип (IgE);

Замедленный тип (IgG);

Эозинофилия.

2. Зависящие от дозы: токсическое воздействие на почки, ЦНС, костный мозг.

3. Иммунологические: повреждение оболочек эритроцитов и лейкоцитов (пенициллин).

4. Приготовление ЛС:

Na соль вместо К соли (1,6 милиэкв K/1 МЕ пенициллина – 4,2 милиэкв Na/г);

Арбенициллин/тикарцилин: консервант (парабен), лактоза;

Синдром Фанкони – при приеме тетрациклина с истекшим сроком годности.

5. Повышение температуры тела вызывает любой из АБ.

6. Взаимодействие препаратов.

7. Идиосинкразия.

Антибактериальная профилактика
1. Принципы антибактериальной профилактики:

Частое развитие инфекций после воздействия микроорганизмов;

Инфекция, вызванная одним микроорганизмом;

Наличие эффективных нетоксичных антибиотиков;

Короткий курс приема.
2. Единственный возбудитель – короткий курс профилактики:

Неонатальная офтальмия;

Бактериальный менингит;

Заболевания, передающиеся половым путем;

Инфекционный эндокардит.
3. Единственный возбудитель – длительный курс профилактики:

Острая ревматическая атака;

Туберкулез;

Путешествия в эндемические районы;

Неонатальная инфекция, вызванная Streptococcus B;

Пневмоцистоз;

После спленэктомии.
4. Множественные возбудители – длительный курс профилактики:

Рецидивирующие урологические инфекции;

Рецидивирующие респираторные инфекции;

Грамотрицательный сепсис у пациентов с нейтропенией;

Пациенты после трансплантации органов с вирусными/грибковыми поражениями.
5. Множественные возбудители – короткий курс профилактики:

A. Предоперационная профилактика:

Кардиологическая хирургия;

Сосудистая хирургия;

Ортопедическая хирургия;

Отоларингологическая хирургия;

Гастроинтестинальная хирургия;

Урологическая хирургия;

Акушерство и гинекология.

Б. Взгляд на профилактику перед хирургическим вмешательством:

Неотъемлемый риск развития инфекции в операционной ране;

Логическое обоснование профилактики;

Выбор момента времени и продолжительности применения антибактериальных препаратов;

Выбор антибактериального препарата.

Пенициллины
I. Натуральные пенициллины:

Пенициллин G* – растворимый кристаллин, растворимый прокаин, бензатин, феноксиэтил;

Пенициллин V* – феноксиметил пенициллин.
II. Полусинтетические пенициллиназорезистентные пенициллины:

Метициллин, нафциллин, оксациллин*;

Диклоксациллин*, клоксациллин.
III. Аминопенициллины:

Ампициллин (IV), амоксициллин*.
IV. Карбоксипенициллины:

Карбенициллин, тикарциллин.
V. Уреидопенициллины:

Пиперациллин.
VI. Комбинация ингибиторов β-лактамаз:

Ампициллин+сульбактам (Уназин)* – парентерально;

Амоксициллин+клавуланат* – перорально;

Тикарциллин+клавулановая кислота (Тиментин) – парентерально;

Пиперациллин+тазобактам (Зосин)* – парентерально.

Пенициллиназочувствительные пенициллины – узкий спектр действия:

Водный пенициллин G* (кристаллин, бензилпенициллин) – Пфизерпен;

Бензилпенициллин G прокаин – Пфизерпен, Кристициллин;

Бензилпенициллин G бензатин – Бициллин-LA, Пермапен;

Фенитициллин пенициллин (феноксиэтил) – Максипен, Синтициллин;

Пенициллин V калиевая соль* (феноксиметил) – Компоциллин-VK, V-Циллин К.

1. Грамположительные кокки (стрептококки группы А, Viridans Streptococci, пневмококки, менингококки, гонококки).

2. Грамположительные бактерии (Listeria, дифтероиды, Clostridia, Anthrax).

3. Грамотрицательные бактерии (Pasteurella multocida, Streptobacillus monilifomis, не продуцирующие β-лактамазы бактероиды).

4. Спирохеты.

5. Actinomyces israeli.

Пенициллиназорезистентные пенициллины – ограниченный спектр:

Нафтициллин натриевый (Унипен);

Оксациллин натриевый* (Простафлин,Бактоцил);

Клоксациллин натриевый (Тегопен);

Диклоксациллин натриевый* (Динапен, Верациллин).

Антимикробный спектр действия:

Грамположительные кокки (Staphylococcus aureus, стрептококки группы А, пневмококки).

Пенициллины, активные в отношении грамотрицательных бактерий:
1. Аминопенициллины:

Ампициллин:

Безводные формы (Омнипен, Пенбритин);

Натриевые соли (Полициллин-N);

Тригидрат (Полициллин-N);

Амоксициллин* (Лароцин).
2. Карбоксипенициллины:

Карбенициллин инданил натриевый (Геоциллин);

Тикарциллин (Тикар).
3. Уреидопенициллины:

Пиперациллин (Пипрацил).

Антимикробный спектр активности:
Ампициллин:

1. Грамположительные кокки (стрептококки группы А, пневмококки, энтерококки).

2. Грамотрицательные кокки (менингококки, гонококки).

3. Грамположительные бактерии (Listeria).

4. Грамотрицательные бактерии (E. coli, Proteus mirabilis, Salmonella, кроме S. typhosa, Shigella, H. influenzae).

5. Спирохеты (Borrelia burgdorferi, T. Pallidum).

Тикарциллин:

1. Грамотрицательные бактерии (E. coli, Enterobacter, Proteus, Pseudomonas).

Уреидопенициллины*:

1. In vitro: высокоактивны в отношении семейства Enterobacteriaceae, включая Klebsiella, Serratia, Salmonella, Pseudomonas, B. fragilis, Enterococcus.

2. Фармакокинетика: период полураспада составляет 50-60 мин, высокий уровень содержания в желчи, выведение с мочой.

3. Преимущества: широкий спектр действия; чувствительны по отношению к ампициллину, карбенициллину и цефалотинрезистентным штаммам; отсутствие нефротоксичности; мононатриевая соль.

4. Недостатки: чувствительны к β-лактамазам S. аureus, E. coli, Klebsiella.

Ввиду непредвиденной резистентности в отношении колоний Pseudomonas (20%) не могут быть использованы в качестве монотерапии.

Комбинации ингибиторов β-лактамаз:

1. In vitro: спектр активности больше чем у амоксициллина, ампициллина, тикарциллина или пиперациллина, против микробов, продуцирующих специфические β-лактамазы (S. аureus, H. influenzae, гонококка, Klebsiella, Moraxella, бактероиды).

2. Имеют минимальную антибактериальную активность (сульбактам обладает активностью в отношении Acinetobacter).

3. Соотношение в сыворотке ампициллина/сульбактама (приблизительно 9:1) необходимо для оптимального подавления лактамаз, необходимый уровень не достигается в цереброспинальной жидкости из-за разницы проникновения в спинномозговую жидкость.

Антипсевдомональные пенициллины
ТИКАРЦИЛЛИН ПИПЕРАЦИЛЛИН

карбенициллин
тикарциллин+клавулановая кислота
пиперацилин+тазобактам*

Цефалоспорины
(β-лактамы и дигидротиазиновое кольцо; табл.1)
Первое поколение:

Парентеральные:

Цефалотин (Кефлин);

Цефазолин* (Анцеф);

Цефрадин (Велозеф).

Пероральные:

Цефалексин* (Кефлекс);

Цефадроксил* (Дурацеф);

Цефрадин (Велозеф).

Второе поколение:

Цефаклор* (Цеклор);

Цефлокситин* (Мефоксин);

Цефуроксим* (Зинацеф);

Цефотетан (Цефотан);

Цефпрозил* (Цефзил);

Цефдинир (Омницеф);

Цефуроксим акситил* (Цефтин);

Цефиксим (Супракс);

Лоракарбеф (Ларадид);

Цефподоксим* (Вантин);

Цефдиторен (Спектрацеф).

Третье поколение. Особенности: возросла резистентность к β-лактамазам, увеличилось время полураспада, повысился уровень содержания в крови, проникновения в спинномозговую жидкость, активность по отношению к Pseudomonas aeruginosa:

Цефотаксим (Клафоран) в педиатрическом формуляре;

Цефтриаксон* (Роцефин);

Цефтризоксим (Цефизокс);

Цефтазидим* (Фортаз);

Цефтибутен* (Седакс).

Четвертое поколение:

Цефепим* (Максипим).

Молекулярная структура третьего поколения цефалоспоринов:

Позиция 1 – увеличение активности в отношении гонококков.

Позиция 3 – ответственна за развитие кровотечений, дисульфурановых реакций.

Позиция 7 – увеличивает круг стабильности и резистентности к β-лактамам, период полураспада, уменьшает активность в отношении грамположительных бактерий.

Второе поколение цефалоспоринов:

Группа А (H. influenzae):

Цефуроксим*.

Группа В (анаэробы):

Цефокситин*;

Цефотетан.

Третье поколение цефалоспоринов:

Воздействующие на кишечную флору:

Цефтриаксон*;

Цефотаксим*;

Цефтизоксим.

Воздействующие на псевдомонаду:

Цефтазидим*.
Четвертое поколение цефалоспоринов:

Цефепим*.

Показания к назначению цефалоспоринов третьего поколения:

Респираторные, кардиологические, кишечные, урогинекологические инфекции, инфекции мягких тканей, вызванные:

Грамотрицательными микроорганизмами, резистентными к доступным в настоящее время АБ;

Грамотрицательными микроорганизмами, чувствительными к аминогликозидам у пациентов со сниженной функцией почек;

Грамотрицательный бактериальный менингит;

Цефтриаксон – при эндокардите, вызванном Streptococcus viridans;

Цефтриаксон – при поражении ЦНС при болезни Лайма.

Уникальные особенности цефалоспоринов третьего поколения:

Активны в отношении грамотрицательной кишечной палочки:

β-лактамная резистентность;

Обладают бактерицидным действием;

Высоко активны по отношению к чувствительным грамотрицательным бактериям (гонококкам);

Активны по отношению к полирезистентным грамотрицательным бактериям;

Активны в отношении Pseudomonas aeruginosa (цефразидим, цефепим);

Проникают в спинномозговую жидкость;

Имеют удлиненный период полураспада.

Недостатки:

1. Стоимость.

2. Ограниченная грамположительная активность.

3. Дисульфурановые реакции и кровотечения, связанные с метилтиотетразол-цепочкой в третьей позиции (цефоперазон).

4. Диарея, псевдомембранозный колит.

5. Суперинфицирование энтерококками+ кандидой.

6. Возникающая резистентность.

Индивидуальные особенности:

1. Активность в отношении Pseudomonas aeruginosa (цефоперазон, цефепим).

2. Увеличенное время полураспада (цефтриаксон).

3. Печеночный клиренс (цефтриаксон).

4. ЦНС – поражения при инфекции Лайма (цефтриаксон).

Карбапенемы

Тиенамицин – нестабилен.

Имипенем* – быстро метаболизируется, не активен в моче, оказывает токсическое действие на почки.

Примаксим* = имипенем+циластатин (ингибитор дегидропептидазы) – комбинация делает возможным повышение активности в моче.
Верное назначение («магическая пуля») – активен в отношении:

Грамположительных и грамотрицательных микроорганизмов;

Анаэробов (широчайший спектр действия для любых парентеральных микробов);

Резистентных микроорганизмов – метициллинрезистентного S. aureus (MRSA), метициллинрезистентного S. epidermidis (MRSE), Pseudomonas maltophilia, Pseudomonas сepacia.

Доза: 500 мг каждые 6 ч внутривенно.

Проблемы:

1. Минимальная концентрация в спинномозговой жидкости.

2. Судороги , связанные с дозой (у пожилых, при почечной недостаточности).

3. Возникающая резистентность: P. aeruginosa (не используется в качестве монотерапии или профилактики).

4. Перекрестная аллергия с β-лактамами (10-25%).

Меропенем (Меррем) :

Стабильность по отношению к почечной дегидропептидазе;

Возможны незначительные судороги;

Спектр действия подобен таковому имипенема;

Одобрен в лечении менингитов у детей.

Эртапенем (Инванз)*:

Однократная дневная доза;

Ограниченная активность в отношении Pseudomonas, Acinetobacter, энтерококков.

Дорипенем (Дорибакс)*:

Широкий спектр активности;

Возможное увеличение активности по отношению к Pseudomonas.

Монобактамы (натуральные)
Азтреонам (Азактам)*:

Активность в отношении пенициллинсвязывающего белка-3 только грамотрицательных бактерий (включая Pseudomonas);

Резистентен в отношении β-лактамов гонококка;

Отсутствует активность по отношению к грамположительной флоре и анаэробам;

Применяется при инфекциях, вызванных резистентными микроорганизмами, или у пациентов с почечной недостаточностью;

Отсутствует перекрестная аллергия с β-лактамами;

Повышает функциональные печеночные тесты.

Доза: 1-2 г каждые 6-8 ч внутривенно при тяжелой гонококковой инфекции.

Ванкомицин
Спектр активности:

Грамположительные кокки (Viridans streptococci, энтерококки, S. aureus, S. epidermidis, S. pneumoniae);

Грамположительные бактерии (дифтероиды, Clostridium).
Клинические показания:
1. Резистентные микроорганизмы.

Системные инфекции, вызванные резистентными микроорганизмами:

Метициллинрезистентным S. аureus;

Метициллинрезистентным S. epidermidis;

Пенициллинрезистентным Streptococcus pneumoniae;

Другими грамположительными резистентными микроорганизмами.

Первоначальная эмпирическая терапия при клапанном эндокардите, предположительно вызванном метициллинрезистентным S. epidermidis.

Системная инфекция, вызванная S. аureus у больных, находящихся на гемодиализе.
2. Аллергия к пенициллину.

Назначается как альтернативная терапия у пациентов с задокументированной аллергией к пенициллину.
Терапевтические показания:

Энтерококковая инфекция;

Инфекция, вызванная S. aureus;

Инфекция, вызванная S. epidermidis.

3. Пероральный ванкомицин: назначение обосновано только после неудачной терапии или при тяжелых побочных реакциях, вызванных метронидазолом (метронидазол – препарат выбора для лечения псевдомембранозного колита, вызванного Clostridium difficile) .
Другие антибиотики с грамположительной активностью

Тейкопланин-гликопептид – одобрен для применения в Европе, но не в США.

Рамопланин-депсипептид – применяется местно и перорально.

Даптомицин-липопротеин (Кубицин).

Телитромицин-кетолид (Кетек) – из-за гепатотоксичности используется ограничено.

Тигециклин-глицилциклин (Тигасил) – подобен миноциклину.

Далбаванцин-липогликопептид – подобен тейкопланину, с длительным периодом полураспада.

Синерцид (инъекционный стрептограмин)*:

Дериват пристинамицина IA, квинипристина IIA (B) и далфопристина (A). Комбинация в соотношении 30:70 обеспечивает синергичную активность;

Связывается с 50S-субъединицей рибосом;

Проявляет бактериостатическое действие в отношении E. faecium (в отношении E. faecalis резистентен);

Высокая внутриклеточная активность и длительный эффект после окончания антибиотикотерапии.

Дозы: 7,5 мг/кг каждые 8 или 12 ч.
Побочные реакции:

Флебит (44%);

Повышение активности трансаминаз;

Синдром миалгии/артралгии.

Линезолид (Зувокс)*:

Входит в новый класс оксазолидинонов;

Cелективно связывается с 50S-субъединицей рибосом;

Высокая активность в отношении грамположительных микроорганизмов;

Бактериостатик (МПК90 (минимальная подавляющая концентранция – 2 мг/мл);

Пероральная и внутривенная форма выпуска (100% биодоступность).

Дозы: 400 и 600 мг каждые 12 ч.
Возможные побочные реакции: подавляет синтез моноаминоксидазы, вызывает супрессию костного мозга, неврит глазного нерва, периферическую нейропатию, лактоцидоз.

Даптомицин (Кубицин)*:

Липопептид – обладает бактерицидными свойствами;

Воздействует на бактериальную мембрану;

Повышает уровень креатинфосфокиназы;

Активен в отношении грамположительных бактерий, включая ванкомицинрезистентные микроорганизмы.
Показания: инфекции кожи и слизистых оболочек, не применяется при бактериемии.
Однократная дневная доза: 4 против 6 мг/кг /в/в.
Противопоказан пациентам с пневмонией – инактивируется сурфактантом.

Телитромицин (Кетек)*:

Входит в класс кетолидов;

Дериват 14-членного кольца макролидов (Кларитромицин);

Селективная активность по отношению к Допамину 11 и V из 23S-единицы рибосом (РНК);

Действует в отношении внебольничных микроорганизмов респираторной группы;

Сохраняющаяся активность в отношении erm-, mef-промежуточных макролидов, резистентных к S. pneumoniae;

Пероральная форма выпуска кислотостабильна, прием однократный.
Побочные реакции:

Могут усилиться симптомы миастении;

Гепатотоксичность, включая острый некроз гепатоцитов.

Аминогликозиды

Стрептомицина сульфат*

Неомицина сульфат (Мицифрадин)

Канамицина сульфат (Кантрекс)*

Гентамицина сульфат (Гарамицин)*

Тобрамицин (Небсин)*

Амикацин (Амикин)*

Нетилмицин (Нетромицин)

Спектиномицина дигидрохлорид (Тробицин)*
Спектр активности:

Грамотрицательные бактерии (E. coli, Klebsiella, Enterobacter, Proteus, Pseudomonas);

In vitro активен в отношении стафилококков, энтерококков, микобактерий в качестве комбинированной терапии;

Спектиномицин применяется только при лечении гонореи.
Специальные рекомендации в отношении дозировки: однократная дневная доза у пациентов с нормальной функцией почек.

Побочные реакции аминогликозидов:

1. Токсичность в отношении VIII пары черепных нервов:

Вестибулярной ветви: стрептомицин, гентамицин, тобрамицин;

Слуховой ветви: неомицин, канамицин, амикацин.

2. Нефротоксичность.

3. Паралич дыхательной мускулатуры, вызванный неостигмином.

4. Реакции гиперчувствительности встречаются редко.

5. Редко – парестезии и периферические нейропатии.

6. In vitro гентамицин инактивируется карбенициллином.

Показания к комбинированной терапии:

Начальная терапия, когда этиологический фактор неизвестен.

Полимикробная инфекция.

Маловыраженная или «замедленная» лекарственная резистентность к микобактерии туберкулеза.

Синергизм – результат действия совместного применения лекарственных средств в виде потенциирования эффекта одного препарата другим (табл.2 .).

Антибиотики широкого спектра действия
Хлорамфеникол (Хлоромицетин)*
– используется редко ввиду потенциального развития апластической анемии.

Тетрациклины:

Тетрациклина гидрохлорид (Ахромицин V)*;

Тетрациклина фосфат (Тетрекс);

Демеклоциклин (Декломицин);

Доксициклин (Вибрамицин)*;

Миноциклин (Миноцин);

Тигециклин (Тигасил)*.
Спектр активности:
1. Хлорамфеникол:

Грамположительные кокки (пневмококки, S. aureus, E. faecium);

Грамотрицательные кокки (менингококки);

Грамотрицательные бактерии (E. coli, Klebsiella, Enterobacter, P. mirabilis, S. typhi, S. paratyphi, B. fragilis, H. Influenzae);

Риккетсия.
2. Тетрациклины:


Грамотрицательные бактерии (направленная чувствительность);

Donovania granulomatis (паховая гранулема);

H. ducreyi (шанкроид);

Mycoplasma pneumoniae;

Treponema pallidum;

Chlamydia (орнитоз, трахома, венерическая лимфогранулема, неспецифический уретрит);

Риккетсия;

Ureaplasma urealyticum;

Borrelia burgdorferi (Лайм-боррелиоз);

Ehrlichia.

Клинические показания к назначению тетрациклинов приведены в табл.3
Клинические показания к назначению хлорамфеникола:

1. Тиф и паратиф.

2. Системная инфекция, вызванная H. influenzae.

3. Абсцесс мозга, вызванный Bacteroid fragilis.

4. Альтернативный пенициллину препарат при пневмококковой и менингококковой инфекции.

5. Альтернативный тетрациклину препарат при риккетсиозах.

6. Альтернативный доксициклину препарат при эрлихиозе.

Эритромицин:

Эритромицина эстолят не входит в NYH-формуляр;

Эритромицина этилсукцинат (Эритроцин, Педиамицин)*;

Эритромицина глюцептат;

Эритромицина лактобионат (Эритроцина лактобионат)*;

Эритромицина стеарат (Эритроцина стеарат)*.

Пролонгированные макролиды:

Азитромицин;

Кларитромицин (Биаксин)*;

Диритромицин (Динабак).

Производные нитроимидазола:

Метранидазол (Флагил)*;

Тинидазол*.
Линкозамиды:

Клиндамицина гидрохлорид (Клеоцин)*;

Клиндамицина пальмитрат гидрохлорид;

Клиндамицина фосфат*.

Противотуберкулезные препараты:

Рифампицин (Римактан)*;

Рифабутин (Микобутин)*;

Рифамиксин (Ксифаксин)* – невсасываемое производное рифампицина.
Спектр активности:
1. Эритромицин:

Грамположительные кокки (стрептококки группы A, пневмококки, S. aureus);

Грамотрицательные кокки (гонококки);

Treponema pallidum;

Mycoplasma pneumoniae;

Legionella pneumophila;

Borrelia burgdorferi;

Chlamydia pneumoniae.
2. Макролиды пролонгированного действия (в дополнение к спектру активности эритромицина):
Азитромицин:

Toxoplasma gondii;

Chlamydia trachomatis;

Cryptosporidia;

M. avium-комплекс – в качестве профилактики у ВИЧ-позитивных пациентов.

Кларитромицин:

M. avium-комплекс;

H. influenzae;

Moraxella catarrhalis;

Chlamydia pneumonia;

Helicobacter pylori.

Диритромицин – спектр действия подобен таковому эритромицина.
3. Производные нитроимидазола:

Метронидазол* (см. клинические показания);

Тинидазол*.
4. Линкозамиды:
Клиндамицин:

Грамположительные кокки (стрептококки группы A, Streptococcus viridans, S. aureus);

Bacteroides fragilis;

Toxoplasma gondii (в сочетании с пириметамином).

Рифампицин:

Грамположительные кокки (S. aureus, S. epidermidis);

Грамотрицательные кокки – менингококки;

M. tuberculosis и M. leprae;

Legionella pneumophila.

Рифамбутин:

Mycobacterium avium-комплекс (профилактика);

Mycobacterium tuberculosis.

Рифамиксин:

Диарея путешественника;

C. difficile – в стадии изучения;

Воспалительные заболевания кишечника.

Клинические показания
1. Эритромицин:

Альтернативный препарат для лечения стрептококковой инфекции группы А и пневмококковой инфекции.

Инфекции (кожи и мягких тканей) легкой степени тяжести, вызванные S. aureus.

Инфекции, вызванные Mycoplasma pneumoniae.

Инфекции, вызванные Legionella pneumophila.

Инфекции, вызванные Chlamydia trachomatis.

Энтериты, вызванные Campylobacter jejeuni.

Коклюш.

Дифтерия.

Инфекции, вызываемые Rochalimaea.
2. Макролиды пролонгированного действия (в дополнение к показаниям к применению эритромицина):

Азитромицин:

Диарея при криптоспоридиозе;

Токсоплазмоз;

Профилактика Mycobacterium avium-комплекса.

Кларитромицин:

Инфекция, вызванная Mycobacterium avium-комплексом, и профилактика Mycobacterium avium-комплекса;

Лайм-боррелиоз.
3. Производные нитроимидазола:
Метронидазол/тинидазол:

Амебиаз;

Жиардиаз (лямблиоз);

Псевдомембранозный колит, вызванный C. difficile;

Трихомониаз;

Неспецифический вагинит, вызванный Gardnеrella;

Анаэробная гнойная инфекция, вызванная B. fragilis;

Helicobacter pylori в комбинации с висмутом и тетрациклином или амоксициллином.
4. Линкозамиды:
Клиндамицин:

Инфекции (кожи и мягких тканей) средней степени тяжести, вызванные S. aureus, включая внебольничные штаммы MRSA.

Аспирационная пневмония.

Бабеоз.

Хориоретинит, вызванный Toxoplasma gondii.

Анаэробная гнойная инфекция.
5. Противотуберкулезные препараты**:
Рифампицин, клинические показания:
Профилактика:

Менингококковая инфекция.

Инфекции, вызванные Hаemophilus influenzae.
Комбинированная терапия:

Туберкулез.

Инфекции, вызванные другими микобактериями.

Тяжелые стафилококковые инфекции:

а) эндокардит или остеомиелит, вызванный Staphylococcus aureus;

б) эндокардит, вызванный Staphylococcus epidermidis.

Легионеллез.

Рифамбутин, клинические показания:
Профилактика:

Mycobacterium avium-комплекс.

Рифамиксин (Ксифаксон), клинические показания:

Диарея путешественника.

Общие показания для этой группы препаратов (см. выше).

Побочные действия, характерные для взаимодействия рифампицина с рядом препаратов приведены в табл.4

Сульфаниламиды

Сульфатиазин

Сульфизоксазол (Гантризин)

Сульфаметоксазол (Гантанол)

Салицилазосульфапиридин (Азулфидин)

Антимикробный спектр активности:

1. Грамположительные кокки (стрептококки группы А), профилактика острого ревматизма.

2. Грамотрицательные кокки (менингококки).

3. Грамотрицательные бактерии (индивидуально по чувствительности).

4. Нокардиоз.

Триметоприм-сульфаметоксазол (Бактрим, Септра)*:

1. Грамотрицательные кокки (гонококки).

2. Грамотрицательные бактерии (род Hemophilus, S. typhosa, род Enterobacteriaceae).

3. Toxoplasma gondii, Pneumocystis carinii.

4. Нокардиоз.

5. Staphylococcus aureus – MRSA и MSSA.

6. Stenotrophomonas maltophilia.
Фосфомицин (Монурал):

1. Органический фосфонат.

2. Грамотрицательные бактерии (индивидуально по чувствительности).

3. Однократная доза для лечения инфекций урологического тракта, вызванных E. faecalis, E. coli.
Сульфаниламиды и клинические показания к их применению (табл.5).

Фторхинолоны

Фторхинолоны – синтетические препараты, дериваты налидиксовой кислоты.
I поколение:

1. Норфлоксацин (Нороксин).

2. Ципрофлоксацин (Ципро)*.

3. Офлоксацин (Флоксин).

4. Ломефлоксацин (Максаквин).

5. Эноксацин (Пенетрекс).
II поколение:

1. Левофлоксацин (Леваксин)*.

2. Моксифлоксацин (Авелокс).

3. Гемифлоксацин (Фактив).
Широкий спектр действия in vitro – активен в отношении грамположительных и грамотрицательных микроорганизмов:

Мeningococci;

Legionella;

Mycoplasma;

Гонококков;

Chlamidia;

Микроорганизмов, вызывающих кишечную патологию (Salmonella, Shigella, Yersinia, Campylobacter):

Pseudomonas aeruginosa (ципрофлоксацин и левофлоксацин);

Метициллинрезистентного S. aureus;

Микобактерий (M. tuberculosis, M. avium);

Анаэробов (моксифлоксацин).
Резистентность к фторхинолонам проявляют:

Анаэробы;

Пневмококки;

Стрептококки группы А, устойчивые к цефалоспоринам I поколения;

Метициллинрезистентный S. aureus (внезапно возникший).
Клинические показания:

Инфекции урологического тракта;

Энтериты;

Бронхиты;

Инфекции костей и суставов;

Левофлоксацина – пневмококковые инфекции, включая пенициллинрезистентные штаммы, внебольничные пневмонии.
Полимиксин (Колистиметат)

Поверхностно-активный агент в отношении мембраны бактериальной клетки, связывает фосфолипиды, вводится в/в или в/м.
Активен только в отношении аэробных грамотрицательных бактерий.

Резервный антибиотик в отношении мультирезистентных микробов.
Побочные эффекты:

Нефротоксичность – при нарушении функции почек необходимо корректировать назначения (избегать совместного применения с аминогликозидами);

Нейротоксичность, в том числе вероятность нейромышечной блокады с параличом дыхательных мышц.

Мупироцин (Бактробан)

Ингибирует белок посредством изолейцил t-РНК синтетазы.

Первично активен по отношению к грамположительным микроорганизмам.
Используется только местно при наличии:

Назальных MRSA-колоний;

Грамположительных инфекций кожи.

Ретапамулин (Алтабакс)*

Ингибирует синтез белка 50S-рибосомальной единицей.
Используется только местно при наличии:

Streptococcus pyogenes (не одобрен для лечения MRSA).

Тигециклин (Tигасил)

Ингибирует белок – подобен тетрациклину.
Активен в отношении:

Грамположительных микроорганизмов;

Грамотрицательных микроорганизмов;

Анаэробов.
Показания:

Осложненные инфекции кожи;

Осложненные инфекции брюшной полости;

Нозокомиальные инфекции, вызванные Acinetobacter, Stenotrophomonas (не активен в отношении P. aeruginosa)

Дозы: 50 мг в/в каждые 12 ч, затем 100 мг в/в однократно в сутки. Снижать только при тяжелых нарушениях печени.
Побочные реакции:

Фоточувствительность;

Тошнота;

Рвота;

Повышение уровня печеночных ферментов.
Противопоказания:

Беременность;

Детский возраст.

Побочные реакции
I. Пенициллины:

1. Реакции гиперчувствительности (1-10%):

Немедленного типа – анафилактический шок, уртикарные высыпания и ангионевротический отек;

Замедленного типа – кореподобные высыпания на коже, сывороточная болезнь.

2. Положительная реакция Кумбса: гемолитическая анемия.

3. Клонические и генерализованные судороги при приеме высоких доз.

4. Метициллин – интерстициальный нефрит (эозинофилы в моче).

5. Анемия и лейкопения.

6. Температурная реакция.

7. Гиперкалиемия (в одном миллионе единиц пенициллина G 1,6 mEq K+).

8. Ампициллин:

Генерализованная сыпь (7-24%) у пациентов с инфекционным мононуклеозом и цитомегаловирусной инфекцией;

Гастроинтестинальные симптомы, чаще диарея.

9. Тикарциллин:

Гипернатриемия (в одном грамме двунатриевой соли содержится 4,7 mEq Na);

Тромбоцитопении с кровотечениями.

II. Цефалоспорины:

1. Реакции гиперчувствительности (1-2%).

2. Тромбофлебит.

3. Гематологические изменения: лейкопения, положительная реакция Кумбса без гемолиза.

4. Кровотечения, ассоциированные с дефицитом витамина К.

III. Ванкомицин:

1. Тромбофлебит.

2. Нефротоксичность.

3. Ототоксичность.

4. Синдром «краснокожего».

5. Тромбоцитопения.

IV. Эритромицин:

1. Местные раздражения:

Тромбофлебиты;

Гастроинтестинальные симптомы.

2. Холестатические гепатиты.

V. Клиндамицин:

1. Гастроинтестинальные симптомы.

2. Псевдомембранозный колит (C. difficile).

3. Повышение активности печеночных ферментов.

4. Лейкопения.

VI. Рифампицин:

1. Реакции гиперчувствительного типа.

2. Печеночная и почечная токсичность.

3. Кратковременные нарушения печеночных тестов.

4. Ярко-оранжевое окрашивание мочи и секретов.

5. Взаимодействие с ферментными препаратами.

VII. Хлорамфеникол:

1. Супрессия костного мозга.

2. Обратимая панцитопения (зависит от дозы).

3. Необратимая апластическая анемия (идиосинкразия, частота – 1 случай на каждые 25-40 тыс. приемов, наиболее часто возникает при пероральном и местном применении).

4. Синдром «серого младенца», обусловлен неспособностью печени метаболизировать препарат.

VIII. Тетрациклины:

1. Гастроинтестинальные симптомы (прямое воздействие).

2. Гепатотоксичность (зависит от дозы, возникает во время беременности).

3. Фоточувствительные реакции.

4. Повреждение эмали зубов при приеме детьми до 8 лет.

5. Миноциклин – головокружение.

IX. Метронидазол/Тинидазол:

1. Гастроинтестинальные симптомы (тошнота) – встречаются редко.

2. Металлический вкус во рту, стоматиты, глосситы – встречаются редко.

3. Дисульфирамподобные реакции при одновременном применении с алкоголем.

4. Парестезии.

X. Триметоприм-сульфаметоксазол:

1. Аллергические реакции (сыпи, мультиформная эритема, синдром Стивенсона – Джонсона, токсический эпидермальный некроз (сульфаметоксазол).

2. Фоточувствительные реакции (сульфаметоксазол).

3. Гиперкалиемия при высоких дозах триметоприма.

4. Билирубиновая энцефалопатия – гипербилирубинемия у новорожденных (сульфаметоксазол).

Гематологические нарушения, включая гемолитическую анемию, агранулоцитоз, билирубинемию и т. д.

XI. Фторхинолоны:

1. Лекарственные взаимодействия – повышает уровень теофиллина и кумадина.

2. Кристаллурия.

3. В эксперименте было выявлено разрушение хрящей у недоношенных животных – не назначать детям до 18 лет и беременным.

4. Связывается с антацидами – уменьшает всасывание.

5. Ципрофлоксацин, офлоксацин, норфлоксацин повышают риск разрыва ахиллового сухожилия при травме.

6. Моксифлоксацин увеличивает QT-интервал (аритмия типа «пируэт»).

7. Гемифлоксацин – сыпь.

Противотуберкулезные препараты

1. Первичного выбора:

Изониазид

Рифампицин

Этамбутамол

Пиразинамид

(Стрептомицин)

2. Альтернативного выбора:

Парааминосалициловая кислота

Циклосерин

Этионамид

Капреомицин

Канамицин

Противогрибковые препараты
олиены:

Амфотерицин В (АмВ):

АмВ-липидный комплекс (Абелцет)

АмВ-коллоидная дисперсия (Амфолекс)

АмВ-липосомы (Амбисом)

Нистатин
Эхинокандины:

Каспофунгин (Канцидас)

Микафунгин (Микамин)

Анидулафунгин (Эраксис)

Препараты других групп:

Флюцитозин (Анкобан)

Имидазолы:

Клотримазол (Миселекс)

Миконазол (Монистат)

Кетоконазол (Низорал)
Триазолы:

Флюконазол (Дифлюкан)

Итраконазол (Споранокс)

Вориконазол (Вифенд)

Позаконазол (Ноксафил)

Противотуберкулезные препараты первичного выбора
Изониазид

1. Бактерицидный препарат, ингибирующий синтез миколевой кислоты – важного компонента клеточной мембраны.

2. При пероральном приеме хорошо адсорбируется, максимальная концентрация в крови достигается через 1-2 ч.

3. Хорошо распределяется в организме, определяется в различных жидкостях (плевральной, асцитической), мокроте, слюне, а также в коже и мышцах.

4. Ацетилируется в печени и выводится почками:

Изониазид с низким уровнем ацетилирования (выпускается в США, странах Северной Европы) – более выражен токсический побочный эффект, связанный с высоким содержанием в крови (периферический неврит);

Изониазид с быстрым уровнем ацетилирования более гепатотоксичен.

5. Суточная доза для взрослых – 5 мг/кг перорально, максимальная суточная доза – 300 мг.

6. Спектр действия: M. tuberculosis, M. kansasii.

7. Побочные реакции:

Гепатит (развивается преимущественно у лиц пожилого возраста, а также лиц, принимающих одновременно рифампицин и алкоголь ежедневно);

Умеренное повышение уровня трансаминаз;

Периферический неврит;

Индивидуальная гиперчувствительность.

Рифампицин

1. В зависимости от концентрации препарат может обладать либо бактериостатическими, либо бактерицидными свойствами. Ингибирует синтез пиразинамидазы посредством подавления ДНК-зависимой РНК-полимеразы.

2. При приеме внутрь хорошо всасывается, проникает в ткани и распределяется в них.

3. Экскреция происходит с желчью (около 43%) и мочой (30-40%).Метаболизируется до диацетилированных форм.

4. Суточная доза для взрослых – 10 мг/кг перорально, максимальная суточная доза – 600 мг.

5. Спектр противотуберкулезной активности: M. tuberculosis, M. kansasii, M. marinum, некоторые штаммы M. avium.

6. Побочные реакции:

Ярко-розовый цвет жидких сред организма: слюны, слез, мочи, пота;

Кратковременное повышение печеночных проб.

Этамбутол
Фармакологические особенности:
1. Бактериостатическое действие проявляется в ингибировании синтеза одного или более продуктов обмена веществ чувствительного микроорганизма. Активен только в отношении делящейся бактериальной клетки.

2. Хорошо всасывается при приеме внутрь, пик концентрации в сыворотке крови достигается через 2-4 ч после приема однократной дозы.

3. Проникает в ткани, при приеме высокой дозы препарат обнаруживается в эритроцитах, почках, легких, слюне.

4. 2/3 дозы выводится с почками в неизмененном виде и 15% – с мочой в виде метаболитов.

5. Суточная доза для взрослых – 15-25 мг/кг перорально, максимальная суточная доза – 2,5 г.

6. Спектр действия: M. tuberculosis, M. marinum, 50% M. kansasii.

7. Побочные реакции:

Токсическое воздействие на глаза (снижение остроты зрения, утрата восприятия зеленого цвета, центральная скотома) зависит от дозы;

Гиперурикемия;

Аллергическая сыпь, анафилактический шок.

Пиразинамид
Фармакологические особенности:

1. Бактерицидный препарат. Антимикробная активность проявляется в зависимости от скорости метаболизма препарата (превращения в пиразоновую кислоту). M. tuberculosis продуцирует пиразаминазу, которая дезаминируется до активной формы пиразоновой кислоты.

2. При пероральном приеме хорошо всасывается, пик концентрации в плазме крови достигается через 2 ч после приема.

3. Проникает в ткани и жидкости, включая печень, легкие и спинномозговую жидкость.

4. 70% дозы выводится с мочой благодаря почечной фильтрации. Наибольшая часть выводится в качестве гидролизированных и гидроксилированных продуктов обмена.

5. Суточная доза для взрослых – 15-30 мг/кг перорально; максимальная суточная доза – 2-3 г.

6. Спектр активности: M. tuberculosis.

7. Побочные реакции:

Гепатит;

Гастроинтестинальные нарушения;

Гиперурикемия;

Артралгия;

Гипертермия.

Стрептомицин
Фармакологические особенности:
1. Бактерицидный препарат, ингибирует синтез белка чувствительного микроорганизма, необратимо связываясь с 30S-субъединицей рибосом.

2. При пероральном приеме плохо всасывается, необходимо в/м введение для достижения адекватного уровня в сыворотке крови.

3. Хорошо распределяется в средах организма, однако плохо проникает в спинномозговую жидкость, даже у пациентов с воспалением мозговых оболочек.

4. Выводится в неизмененном виде с мочой благодаря почечной фильтрации.

5. Суточная доза для взрослых – 15 мг/кг в/м, максимальная суточная доза – 1 г.

6. Спектр действия: M. tuberculosis, M. marinum, M. kansasii.

И.К. Гиссенс, Отдел медицинской микробиологии и инфекционных болезней, Медицинский центр университета Эразма, Роттердам, Нидерланды

Применение антимикробных препаратов является определяющим фактором формирования резистентности микроорганизмов. К настоящему времени выявлено много факторов, определяющих оптимальное качество антимикробной терапии. Максимальная эффективность и минимальная токсичность препаратов должны сочетаться с наименьшей стоимостью лечения. Качество антимикробной терапии зависит от знания различных аспектов инфекционных болезней. С точки зрения эффективности терапии, многие рекомендации по применению антибиотиков нуждаются в критической оценке. Нерациональное использование антимикробных препаратов не должно приветствоваться. Предотвращение развития антибиотикорезистентности является одним из показателей качества лечения, требующим повышенного внимания. Данная статья представляет обзор хорошо установленных факторов, которые могут влиять на адекватность фармакотерапии антимикробными препаратами. Приводятся доказательные данные последних лет, подтверждающие принципы рационального применения антибиотиков, и обзор исследований, оценивавших различные факторы, влияющие на качество антибактериальной терапии. Обсуждаются критерии, связанные с антибиотикорезистентностью микроорганизмов.

1. Введение

Антимикробная химиотерапия отличается от других видов фармакотерапии тем, что основывается не только на особенностях пациента и лекарственного препарата, но также и на характеристике инфекции. Наилучшим образом сложная система взаимоотношений между макроорганизмом, микроорганизмами и антимикробными препаратами отражена в пирамиде инфекционных болезней (см.рисунок). В ней наглядно показаны множественные взаимодействия между пациентом, лекарством, патогенными микроорганизмами и нормальной микрофлорой.

Пирамида инфекционных болезней

Как видно из рисунка, активности антимикробных препаратов противостоят механизмы формирования патогенными микроорганизмами антибиотикорезистентности, а также воздействия комменсальной микрофлоры.

Применение антимикробных препаратов – главный фактор развития резистентности микроорганизмов. Несмотря на то что в некоторых странах состояние антибиотикорезистентности несколько улучшилось благодаря реализации национальных программ, совершенствования тактики назначения лекарственных средств [ 1, 2], в большинстве стран уровень устойчивости по-прежнему неуклонно растет. Подобные данные зарегистрированы в отношении пневмококков [ 3, 4], стафилококков , энтерококков , Neisseria gonorrhoeae , уропатогенных бактерий , анаэробов, таких, как Bacteroidesspp. и даже Pneumocystis carinii .

Клинические последствия антибиотикорезистентности могут быть весьма серьезными. Давно известно и уже неоднократно подтверждено [ 11, 12], что при бактериемии летальность намного выше у пациентов, получающих неадекватную антимикробную терапию, то есть препараты, к которым нечувствительны возбудители. Так, недавно было обнаружено, что высокий уровень резистентности к пенициллину представляет объективный предиктор летальности от пневмококковой бактериемии у ВИЧ-инфицированных больных .

В последние 40 лет выявлено много факторов, определяющих оптимальное качество антибактериальной терапии. Максимальная эффективность и минимальная токсичность препаратов должны сочетаться с наименьшей стоимостью лечения. Как следует из пирамиды инфекционных болезней, представленной на рисунке, качество антимикробной терапии зависит от знания различных аспектов инфекционной патологии. При назначении антибиотиков должно учитываться влияние таких факторов, как свойства макроорганизма, его вирулентность, фармакокинетика и фармакодинамика применяемых препаратов.

Пожалуй, решающее значение имеет наличие в микробиологических лабораториях современного оборудования для выделения и идентификации возбудителей и определения их чувствительности к антибиотикам (особенно при тяжелых инфекциях), а также всего необходимого для проведения лекарственного мониторинга. Профилактика антибиотикорезистентности – один из показателей качества лечения, который требует повышенного внимания.

Настоящая статья представляет обзор хорошо установленных факторов, которые могут влиять на адекватность фармакотерапии антимикробными препаратами. Приведены доказательства последних лет, подтверждающие принципы рационального применения антибиотиков, и представлен обзор исследований, оценивавших влияние различных факторов на качество антибактериальной терапии.

Целью статьи не ставилось описание мероприятий по повышению качества антимикробной терапии, так как в настоящее время имеется множество публикаций, информирующих читателя о современной стратегии рационального применения антибиотиков в стационарах [ 14, 15], у различных групп населения , в развивающихся странах и т. д.

В данном обзоре обсуждаются критерии качества, связанные с антибиотикорезистентностью микроорганизмов.

2. Как оценить качество антибактериальной терапии?

Традиционно качество лечения оценивается путем тщательного изучения медицинских документов или проведением аудиторских проверок. Аудит антимикробной химиотерапии определяют как всесторонний анализ адекватности лекарственной терапии, назначенной в конкретном клиническом случае . Несмотря на то что подобный подход весьма трудоемкий, он остается пока наиболее полноценным методом, позволяющим обсудить все аспекты лечения. Более того, сам процесс оценки (см. ниже) может быть использован в качестве образовательного мероприятия . С другой стороны, результаты аудита могут явиться основой дальнейших мероприятий по оптимизации применения антимикробных препаратов .

В последнее время в практике появились компьютерные программы, объединяющие клиническую информацию с фармакологическими и лабораторными данными и использующиеся для оценки ограниченного числа компонентов качества лечения, например сроков профилактического назначения антибиотиков и чувствительности выделенных возбудителей к препаратам, назначаемым в качестве эмпирической терапии в отделениях интенсивной терапии .

3. Критерии оценки качества применения антибиотиков

Долгое время для оценки качества антимикробной терапии при проведении аудитов широко использовались критерии, предложенные Kunin и соавт. . В тот период определение адекватности терапии основывалось главным образом на мнении "компетентных" специалистов по инфекционным болезням, проводивших оценку. Лечение расценивалось как адекватное, недостаточно адекватное или неадекватное в зависимости от того, были ли выбранные препараты менее токсичными или менее дорогими, требовалась ли коррекция дозы или назначенное антибактериальное лечение было абсолютно неоправданным.

В связи с тем, что первоначальные формулировки критериев была весьма неспецифичны, в последующие годы они неоднократно модифицировались многими исследователями, проводившими аудиты. Они адаптировали и расширяли их для того, чтобы судить о качестве лечения по специфическим аспектам, дозах , кратности приема , путях введения , достижении необходимой концентрации препаратов в плазме [ 27, 30], продолжительности лечения или антибиотикопрофилактики [ 27–29], частоте аллергических реакций [ 27, 29], стоимости лечения без учета токсичности [ 27, 30], широте спектра антимикробной активности препаратов , ошибках, выявленных после получения результатов бактериологического исследования и вынуждавших изменить лечение , данным медицинских записей, недостаточным для определения категории качества .

Мы используем модифицированный список критериев, в который включены большинство перечисленных показателей (табл.1). Он дает возможность оценить каждый параметр, связанный с применением антимикробных препаратов .

Таблица 1. Критерии оценки качества антимикробной химиотерапии

Достаточно ли данных медицинских записей для проведения оценки? Есть ли показания для антибактериальной терапии/антибиотикопрофилактики? (Оправданно ли вообще назначение антибиотиков?) Адекватен ли выбор антибиотика? Указать альтернативные препараты, учитывая:

эффективность (чувствительность, антимикробная активность) токсичность, аллергические реакции стоимость препарата спектр (слишком широкий?)

Адекватна ли продолжительность лечения?

Слишком большая Слишком короткая

Адекватны ли фармакокинетические характеристики препаратов? Учитывая:

дозу кратность путь введения

Адекватны ли сроки назначения антибиотиков?

Слишком ранние (до забора материала для бактериологического исследования) Слишком поздние (например, профилактика после операции)

4. Кто может влиять на качество назначения антимикробных препаратов? Каково значение качества?

В исследованиях качества антимикробной химиотерапии в стационарах участвуют микробиологи, клинические фармакологи и особенно работающие в них инфекционисты [ 26–29, 31, 32]. Обычно главным параметром лучшего использования антибиотиков после проведения соответствующих мероприятий считают снижение стоимости лечения [ 26–29, 33].

Некоторые авторы пытаются для оценки качества использовать такие показатели, как стабильный уровень летальности и/или длительность пребывания больного в стационаре [ 20, 30]. Соблюдение требования о получении предварительного разрешения на назначение антибиотиков, включенных в список препаратов для ограниченного использования, сопровождалось повышением чувствительности выделенных возбудителей, в то время как показатель выживаемости оставался прежним .

В нескольких недавних исследованиях на первый план было выдвинуто изучение роли консультаций, проводимых инфекционистами, и их влиянием на качество лечения. Так, в университетских клиниках США всем пациентам с выделенной гемокультурой S.aureus проводились консультации инфекционистов . Исходы лечения в группе пациентов, которые последовали совету указанных специалистов, были значительно лучше, чем в группе пациентов, которые полностью или частично проигнорировали рекомендации.

В последнее время появились сообщения о положительном влиянии консультаций инфекционистов на адекватность лечения и его результаты в некоторых европейских странах, где участие подобных специалистов в лечебном процессе является сравнительно новым [ 12, 36, 37]. Пациенты, составившие контрольную группу, либо проходили лечение тогда, когда инфекционисты не участвовали в лечебном процессе , либо им не назначались консультации подобных специалистов .

Важный фактор, определяющий качество антимикробной химиотерапии, – тесное взаимодействие с микробиологической лабораторией, обеспечивающее полноценный диагностический процесс, начиная от запроса на проведение исследований и заканчивая интерпретацией данных и практическим использованием результатов .

5. Аудит – процесс глобальной оценки качества лечения

Для всесторонней оценки необходимо для каждого назначенного препарата в определенном порядке ответить на вопросы, приведенные в табл.1, при этом ни один показатель не должен быть упущен. Для систематизации и ускорения процесса вопросы могут быть разделены по категориям в зависимости от качества применяемых антимикробных препаратов в виде таблицы . Использование подобной таблицы специалистами, проводящими аудит, позволит классифицировать назначаемые препараты. Если назначения неадекватны одновременно по нескольким причинам, они могут быть отнесены более чем к одной категории.

6. Достаточно ли данных медицинских записей для оценки качества антибактериальной терапии?

Качество не может быть оценено в тех случаях, когда недостаточно данных о лечении больного. По собственным исследованиям автора статьи, из-за отсутствия полноценной информации в медицинских записях оценка оказалась невозможной в 4% случаев профилактического применения антибактериальных препаратов и в 10% случаев назначений антибиотиков с целью лечения [ 20, 22].

Наличие или отсутствие документированного обоснования применения антимикробных препаратов прямо связано с качеством лечения [ 22, 29, 36]. В своих исследованиях Maki удалось установить взаимосвязь между адекватностью терапии и качеством заполнения врачами медицинской документации .

7. Есть ли у пациента критерии инфекции? Показана ли антибиотикотерапия?

При тяжелых инфекциях фактически всегда имеется лихорадка. Определить, нуждается ли лихорадящий пациент в назначении антибиотиков, врачу помогают знания различных аспектов инфекционных болезней и использование современного оборудования микробиологических лабораторий. В то же время выяснение различий между инфекцией и воспалением, между бактериальным сепсисом и ССВО (синдромом системного воспалительного ответа) пока остается предметом дальнейших исследований.

Кроме клинических критериев, в распоряжении имеются такие быстродоступные лабораторные показатели, как количество лейкоцитов, уровень С-реактивного белка (СРБ), скорость оседания эритроцитов. Недавно установлено, что низкая продукция CD11b-нейтрофилов представляет собой фактор неблагоприятного прогноза у новорожденных с подозрением на сепсис . Комбинированное повышение содержания IL-8 и С-реактивного белка оказалось надежным тестом, позволяющим ограничиться применением антибиотиков только у действительно инфицированных новорожденных с подозрением на нозокомиальную бактериальную инфекцию .

В последнее время появляется все больше сообщений о том, что в качестве специфического маркера тяжелых бактериальных инфекций в некоторых группах населения как у детей , так и у взрослых может использоваться прокальцитонин. Тщательный отбор пациентов, действительно нуждающихся в антибактериальной терапии, особенно необходим в амбулаторной практике при часто встречающихся инфекциях.

Так, неоправданно широкое применение антибиотиков для лечения инфекций верхних дыхательных путей у детей часто вызвано ошибочным убеждением врачей в том, что слизисто-гнойные выделения из носа являются бесспорным свидетельством наличия бактериальной инфекции .

Группой экспертов были предложены критерии, позволяющие дифференцировать острый гнойный отит от выпотного среднего отита , поскольку в последнем случае антибиотики не должны применяться. Аналогичные критерии были разработаны и для дифференцирования бактериального и вирусного риносинуситов . К сожалению, при лечении детей тактика врача часто изменяется под давлением родителей, требующих назначения антибиотиков даже в тех случаях, когда он убежден в неоправданности их применения .

Доказано, что лечение детей с лихорадкой по протоколам, в которых не предусмотрено назначение антибактериальных препаратов (например, по Филадельфийскому протоколу), достаточно безопасно, если проявления заболевания соответствуют определенным в протоколе критериям . Распространение этой информации среди родителей может уменьшить давление, оказываемое на врачей и приводящее к необоснованному использованию антибиотиков.

Полагают, что благодаря возрастающей осведомленности населения в вопросах антибиотикорезистентности возбудителей в Исландии с 1991г. наблюдается снижение частоты применения антимикробных препаратов . В последних исследованиях, кроме модернизированных критериев специфической диагностики, были тщательно изучены и некоторые спорные вопросы использования антибиотиков. Был проведен новый метаанализ.

В настоящее время многие авторы выступают против назначения антибиотиков с целью профилактики и лечения в случаях, когда нет убедительных доказательств их пользы для пациента и общества. Некоторые последние публикации по данному вопросу представлены в табл.2.

Таблица 2. Примеры последних публикаций, подтверждающих необоснованность применения антимикробных препаратов

Профилактика при проведении УЗИ-контролируемой трансректальной биопсии простаты Исследование
Профилактика при проведении эндоскопической ретроградной холецистопанкреатографии Метаанализ
Профилактика менингита при переломах основания черепа Метаанализ
Профилактика бактериурии у детей с постоянным катетером мочевого пузыря Открытое исследование
Профилактика инфекционных осложнений при простых неукушенных ранах Метаанализ
Селективная деконтаминация желудочно-кишечного тракта у пациентов отделений интенсивной терапии Обзор
Профилактическое назначение антибиотиков при преждевременных родах Метаанализ
Лечение детей с инфекциями верхних дыхательных путей Метаанализ
Лечение острых бронхитов у взрослых без сопутствующей патологии Метаанализ

Неоправданно широкое использование антимикробных химиопрепаратов традиционно является проблемой антибиотикопрофилактики в хирургии. Так, например, в последние 15 лет в 40–75% случаев в США антибиотики применялись необоснованно . Аудиты, проведенные в Канаде , Великобритании , Италии , Бельгии , Нидерландах , Израиле и Австралии , выявили подобные проблемы.

В Великобритании, например, назначение антибиотиков с терапевтической целью оказалось неоправданным (отсутствовало подтверждение инфекционной природы заболевания) в 9 – 35% случаев, и даже в 4% случаев – у пациентов с бактериемией . В Нидерландах этот показатель составил 16% у пациентов хирургического профиля и 5% – терапевтического. После проведения соответствующих мероприятий частота снизилась до 8 и 3% соответственно [ 20, 22].

8. Адекватен ли выбор антимикробного препарата?

8.1. Эффективность: чувствителен ли предполагаемый возбудитель? Сложность проблемы антимикробной терапии больных с тяжелой инфекцией состоит в том, что она почти всегда начинается тогда, когда возбудитель неизвестен или не

Похожие рефераты:

Большинство препаратов частично или полностью выделяется через почки. У пациентов с нарушенной функцией почек часто требуется изменять режим дозирования многих антимикробных препаратов.

Современные классификации, в зависимости от условий возникновения заболевания, подразделяют пневмонии на две большие группы: внебольничные и нозокомиальные (госпитальные) пневмонии.

Характеристика групп антибактериальных препаратов в отношении основных возбудителей урогенитальных инфекций: бета-лактамные антибиотики, аминогликозиды, макролиды и хинолоны. Назначение антибактериальных препаратов при цистите, пиелонефрите и уретрите.

Russian Gastroenterology Association Russian Group - Helicobacter pylori investigation Recommendations to conduct diagnosis and treatment of infection Helicobacter pylori in adults sufferred with gastric and peptic ulcer disease.

Появление множественно-резистентных возбудителей заставляет пересматривать отношение к ряду известных и давно используемых препаратов, в частности к полимиксинам – группе полипептидных антибиотиков.

Инфекционные заболевания ЛОР–органов – весьма обширная группа воспалительных заболеваний, каждое из которых человек переносит несколько раз в жизни. В эту группу входят воспалительные болезни околоносовых пазух (риносинуситы), глотки и миндалин.

Антибиотикорезистентность - фактор, определяющий выбор антимикробных препаратов для терапии инфекций мочевыводящих путей

Л.С. Страчунский В.В. Рафальский
НИИ антимикробной терапии Смоленской государственной медицинской академии

Выбор препарата для лечения пациентов с внебольничными инфекциями мочевыводящих путей (ИМП) традиционно базируется на 2 основополагающих положениях. Первое заключается в том, что структура возбудителей, вызывающих амбулаторные ИМП, с высокой долей вероятности предсказуема: 75-90% случаев инфекции вызывает Escherichia coli, 5-10% - Staphylococcus saprophyticus и 5-10% - другие возбудители . Второе положение подразумевает необходимость принимать во внимание резистентность этих возбудителей, в первую очередь E. coli. Исходя из этих положений, эмпирическая терапия короткими курсами ко-тримоксазола, до последнего времени являлась терапией выбора острого цистита в большинстве стран мира . Приведенные выше положения, применимы и при эмпирическом выборе начальной терапии острого пиелонефрита и осложненных ИМП. Как правило, в дальнейшем, антибиотикотерапия этих форм ИМП может корректироваться после получения результатов бактериологического исследования мочи.

Антибиотикорезистентность, которая традиционно считалась проблемой только для внутрибольничных инфекций и осложненных ИМП, выходит сейчас на первый план при неосложненных амбулаторных ИМП. В течение последних десятилетий в мире отмечено несколько тенденций в динамике антибиотикорезистентности уропатогенной E. coli, заставляющих пересматривать требования к антибиотикам для терапии ИМП. В частности, наиболее авторитетными руководствами по терапии ИМП, не рекомендуется использовать ко-тримоксазол, как препарат выбора, при неосложненных ИМП, если уровень резистентности E.coli к этому антибиотику превышает 10-20% . В регионах, где уровень резистентности к ко-тримоксазолу превышает пороговый уровень, в качестве препаратов выбора должны рассматриваться другие антимикробные препараты, такие как фторхинолоны, фосфомицин.

Этиология внебольничных ИМП

Существует два важных фактора влияющих на особенности этиологии и резистентности возбудителей ИМП - место возникновения инфекции и наличие осложняющих факторов. По месту возникновения ИМП принято подразделять на внебольничные (амбулаторные) и госпитальные (нозокомиальные, внутрибольничные). Первые возникают у амбулаторных пациентов вне стационаров, хотя могут быть причиной госпитализации. К госпитальным ИМП относят инфекции, развившиеся не ранее 48 после госпитализации пациентов в стационар. Этиология внебольничных ИМП достаточно хорошо изучена за последние десятилетия. Главной особенностью этих инфекций является достаточно прогнозируемый спектр возбудителей, на 85-95% представленный бактериями рода Enterobacteriacea, в основном E.coli. Структура возбудителей нозокомиальных ИМП существенно сложнее - доля E.coli как правило значительно ниже, возрастает роль P.auroginosa, неферментирующих грамотрицательных палочек, энтерококков, стафилококков. Спектр возбудителей нозокомиальных ИМП достаточно сложно предсказать, так как он может значительно отличаться между разными городами, стационарами и даже между разными отделениями одного и того же стационара. В рамках настоящей статьи будут обсуждаться особенности этиологии и резистентности только амбулаторных ИМП.

Наличие или отсутствие осложняющих факторов у пациентов с ИМП является одним из ключевых параметров, определяющих особенности наблюдения пациентов и выбора терапии . К микробиологическим особенностям осложненных ИМП относятся: более широкий спектр возбудителей и высокая частота выделения резистентных бактерий, по сравнению с неосложненными ИМП . E. coli является основным возбудителем как при неосложненных, так и при осложненных ИМП. Однако, при осложненных ИМП более часто выделяются другие бактерии, такие как, Proteus mirabilis, Klebsiella spp., Citrobacter spp., Pseudomonas spp., Enterococcus spp. и др.

Полученные нами данные свидетельствуют о том, что основным возбудителем внебольничных ИМП в России у всех категорий пациентов является E. coli . Наибольшее этиологическое значение E.coli имеет при внебольничных ИМП у взрослых пациентов (85,9%) и несколько меньше у беременных женщин и детей (53,1% и 62,9% соответственно). Учитывая наибольшую этиологическую значимость E.сoli в структуре ИМП во всех изучаемых популяциях пациентов, для практики, в первую очередь, важно знать антибиотикорезистентность именно этого возбудителя.

Антибиотикорезистентность E.сoli

Мониторинг резистентности возбудителей ИМП постоянно проводятся во многих странах мира, и является либо самостоятельным исследованием, либо частью более масштабных проектов, например SENTRY. Нередко эти исследования являются многоцентровыми международными, например проект ECO-SENS, который проводится на территории стран Европы и Канады .

Для анализа изменений резистентности уропатогенов к антибиотикам с течением времени наибольший интерес представляют эпидемиологические исследования, проводимые в Северной Америке в течение последних 10-15 лет (Рисунок 1). В США, как и большинстве стран Европы, отмечается четкая тенденция роста резистентности уропатогенной E.coli к аминопенициллинам (ампициллин) и ко-тримоксазолу. В то же время чувствительность к нитрофурантоину и фторхинолонам (ципрофлоксацин) остается высокой. Данные исследования ECO-SENS свидетельствуют о высоком уровне устойчивости в Европе уропатогенной E.coli к таким антибиотикам как ампициллин и ко-тримоксазол. Резистентность к фторхинолонам, нитрофуранам и фосфомицину по данным этого исследования была невысокой.

Рисунок 1. Динамика резистентности штаммов E.coli, выделенных у взрослых с неосложненными внебольничными ИМП в Северной Америке, %

Исследование ECO-SENS подтвердило предположение о существовании значительных географических отличий в уровне и характере антибиотикорезистентности. Так, частота выделения штаммов E.coli, резистентных к ко-тримоксазолу, колебалась от 12,2% в Великобритании до 25,7% в Испании, а к ципрофлоксацину от 0,6% до 14,7% в тех же странах.

Таблица 1. Резистентности штаммов E.coli, выделенных у взрослых с неосложненными внебольничными ИМП в некоторых странах Европы, данные исследования ECO-SENS, %

Страна Ампициллин Ко-тримоксазол Ципрофлоксацин Нитрофурантоин Фосфомицин
Бельгия 30,7 14,6 2,9 0,7 0,7
Франция 27,6 15,1 2,0 1,0 1,0
Германия 29 21 2,2 0,7 0
Нидерланды 28,7 10,3 2,1 1,0 0,5
Норвегия 23,8 11,3 0 0 1,2
Испания 53,9 25,7 14,7 4,2 0,5
Великобритания 37,2 12,2 0,6 0 0
По всем странам в среднем 29,8 14,8 2,3 1,2 0,7

В связи с существованием региональных отличий в уровне антибиотикорезистентности, крайне важной задачей является мониторинг резистентности возбудителей ИМП в России. Данные по этиологии возбудителей различных форм амбулаторных ИМП и их антибиотикорезистености были получены в ходе многоцентровых проспективных эпидемиологических исследований UTIAP-I, UTIAP-II, АРМИД, АРИМБ, организованных НИИ антимикробной химиотерапии Смоленской государственной медицинской академии и Научно-методическим центром по мониторингу за антибиотикорезистентностью Минздрава России. Особенностью данных исследований явилось использование во всех исследовательских центрах стандартизованной методики бактериологического исследования мочи. Собранные в исследовательских центрах штаммы передавались для реидентификации и определения чувствительности к антибактериальным препаратам в центральную лабораторию. Оценка чувствительности микроорганизмов была проведена к основным антибиотикам применяемых для терапии ИМП: ампициллину, амоксициллину/клавуланату, гентамицину, ко-тримоксазолу, нитрофурантоину, цефуроксиму, цефотаксиму, ципрофлоксацину, фосфомицину.

При анализе данных по устойчивости у всех категорий пациентов с амбулаторными ИМП (взрослые, беременные женщины, дети), были выявлены сходные закономерности (Таблица 2). Наиболее активным препаратом во всех популяциях пациентов с внебольничными ИМП явился фосфомицин - не выявлено ни одного резистентного к данному антибиотику штамма E.coli. Также достаточно высокой активностью обладали ко-амоксиклав, цефалоспорины II-III, фторхинолоны. Наиболее высокий уровень резистентности уропатогенной E.coli определялся к таким антибиотикам как ампициллин (амоксициллин) - частота выявления устойчивых штаммов от 31,6 до 51,5% и ко-тримоксазолу от 14,5 % до 35,5%.

Таблица 2. Резистентность E.coli, выделенной у пациентов с амбулаторными ИМП в России, к пероральным антибиотикам, %

Антибиотик Категория пациентов
Беременные с ИМП, n=117 ИМП у взрослых, n=428 ИМП у детей, n=330
Ампициллин (амоксициллин) 31,6 37,1 51,5
Амоксициллин/клавуланат 3,4 2,6 3,9
Цефуроксим 3,4 2,4 3,9
Ко-тримоксазол 14,5 21 35,5
Нитрофурантоин 4,3 1,2 -
Налидиксовая к-та - 6,9 7
Ципрофлоксацин - 4,3 -
Фосфомицин 0 0 0
Нитроксолин - 92,91 -

1 - частота выделения нечувствительных штаммов (резистентные+умереннорезистентные)

β-лактамы

Высокая резистентность возбудителей ИМП к β-лактамам описана в литературе достаточно давно. Около 25% уропатогенных штаммов E.coli еще в начале 90-х были резистентны к ампициллину и цефалоспоринам I поколения . В настоящее время этот уровень превышает 40% как в США, так и в европейских странах . Устойчивость E.coli, выделенной от пациентов с ИМП в России составляет от 31,6 до 51,5% в зависимости от популяции пациентов (Таблица 2).

Несколько меньше данных накоплено по резистентности возбудителей ИМП к ингибиторзащищенным аминопенициллинам, в том числе к амоксициллину/клавуланату. В целом чувствительность уропатогенов к амоксициллину/клавуланату значительно выше, чем к ампициллину или амоксициллину. Однако, несмотря на относительной невысокий уровень резистентности (2,6-3,9%), в России выделяется достаточно много штаммов с промежуточной чувствительностью к этому антибиотику - 12,5-13% (Рисунок 2), в связи с этим, клиническая и микробиологическая эффективность этого антибиотика для терапии ИМП может быть недостаточно высокой. Большинство (>80%) энтерококков, выделенных от пациентов с ИМП в России чувствительны к ампициллину.

Рисунок 2. Распределение МПК амоксициллина/клавуланата для штаммов E.coli, выделенных от пациентов с неосложненными ИМП (пунктиром обозначены пограничные концентрации)

Сульфаметоксазол/триметоприм (ко-тримоксазол)

До 1990 гг резистентность к ко-тримоксазолу среди возбудителей внебольничных ИМП была низкой и не превышала 5% . Однако в последние 10-15 лет отмечается четкая тенденцию к росту резистентности уропатогенной E coli к ко-тримоксазолу. Как было сказано выше, в США резистентность к этому антибиотику возросла за последние 20 лет с 7% до 18-20%. Аналогичная закономерность выявлена в Великобритании и Канаде .

В России резистентность E coli, выделенной у пациентов с ИМП, к ко-тримоксазолу колеблется от 14,5% в случаях ИМП у беременных до 35,5% при ИМП у детей. У взрослых с неосложненными ИМП этот показатель составляет 21%. Очевидно, что уровень резистентности к этому антибиотику превысил критический уровень в 10-20%, что не позволяет рассматривать этот препарат в качестве терапии выбора при ИМП.

Одним из объяснений роста резистентности возбудителей ИМП к ко-тримоксазолу, является увеличение применения этого препарата для терапии и профилактики пневмоцистной пневмонии у ВИЧ инфицированных пациентов в последнее десятилетие . Однако, в России, где также отмечается высокий уровень резистентности к этому антибиотику, его использование у ВИЧ инфицированных не получило такого распространения, как в США или Европе. На наш взгляд, объяснением высокого уровня резистентности уропатогенов к ко-тримоксазолу может быть неоправданно широкое применение этого антибиотика, особенно при респираторных инфекциях. Кроме того, ко-тримоксазол в России отпускается безрецептурно и часто применяется населением самостоятельно без каких-либо объективных показаний .

Нефторированные (ранние, примитивные) хинолоны

В связи с разработкой более совершенных препаратов - фторхинолонов, интерес к нефторированным фторхинолонам, как препаратам для терапии ИМП, в настоящее время, незначительный. Нефторированные хинолоны уступают по микробиологической активности и фармакокинетическим характеристикам фторхинолонам. По данным исследований, выполненных в Европе, до 17% уропатогенной E.coli резистентны к налидиксовой кислоте . В ряде городов Российской Федерации, например в Санкт-Петербурге, резистентность E.coli к хинолонам достигает 16-17%. Кроме того, для поддержания адекватных концентраций в моче ранние хинолоны необходимо принимать не реже 4 раз в сутки, что резко снижает комплаентность пациентов к этим уросептикам. Учитывая угрозу роста антибиотикорезистентности в целом и к возбудителям ИМП в частности, необходимо принимать во внимание свойство ранних хинолонов индуцировать развитие резистентности не только к самим ранним хинолонам, но и к фторхинолонам.

Фторхинолоны

Фторхинолоны, наряду с фосфомицином, являются препаратами, эффективность которых не уступает ко-тримоксазолу при терапии неосложненных ИМП короткими курсами. Фторхинолоны применяются в случае аллергии к ко-тримоксазолу или в тех регионах, где устойчивость к ко-тримоксазолу превышает 10-20%. Резистентность к фторхинолонам существенно различается в зависимости от региона. Так, в США на протяжении последних 10 лет отмечается низкий уровень устойчивости к фторхонолонам возбудителей ИМП и медленный рост резистености с 0,7% в 1995 до 2,5% в 2001 г. . В некоторых странах Европы, таких как Испания, уровень резистентности к фторхинолонам возбудителей внебольничных ИМП может достигать 15% (Таблица 1). В России уровень резистености к фторхинолонам (ципрофлоксацину, норфлоксацину) относительно низкий - 4,3% (Таблица 2).

Фторхинолоны сохраняют высокую активность в отношении других грам(-) возбудителей ИМП. Отмечается относительно высокая резистентность энтерококков к фторхинолонам (20-40%), однако этиологическая роль этих возбудителей для амбулаторных ИМП невелика. S saprophyticus, как правило, чувствителен к большинству фторхинолонов, МПК ципрофлоксацина и офлоксацина несколько выше, чем других препаратов этой группы .

Нитрофурантоин

Нитрофурантоин - один из самых старых антимикробных препаратов, и, тем не менее, уровень резистентности к этому антибиотику остается невысоким в течении нескольких десятилетий. В странах Европы и США устойчивость уропатогенной E.coli к нитрофурантоину не превышает 1-2% . По нашим данным, в России резистентность к этому антибиотику составляет 1,2-4,3% в зависимости от популяции пациентов (Таблица 2).

Такое медленное развитие резистености объясняется несколькими факторами. С одной стороны, у нитрофурантоина существует несколько механизмов действия, поэтому, для развития резистентности, у бактерии должны одновременно развиться несколько мутаций. С другой стороны, нитрофурантоин имеет ограниченное применение при ИМП в силу относительно плохой переносимости и безопасности, а также фармакокинетических особенностей - нитрофурантоин не накапливается в высоких концентрациях в паренхиме почек. Поэтому этот антибиотик показан только при остром неосложненном цистите.

Уровень резистентности других грам(-) уропатогенов, например K. pneumoniae, к нитрофурантоину выше, чем у E. coli . Нитрофурантоин остается активным и в отношении грам(+) возбудителей ИМП, например S. saprophyticus и энтерококков, включая ванкомицинрезистентные штаммы.

Нитроксолин

Нитроксолин - устаревший антисептик, которые более 20 лет снят с производства в большинстве стран мира. Соответственно, исследования по изучению резистентности уропатогенов к этому препарату не проводятся. Критерии интерпретации чувствительности микроорганизмов к нитроксолину не пересматриваются уже более 15 лет. Учитывая, что этот препарат все еще применяется в России и странах СНГ, нами проводилось изучение чувствительности уропатогенов к нитроксолину в ходе проектов UTIAP-1 и UTIAP-2. Полученные данные позволяют утверждать, что 92,9% штаммов E.coli нечувствительны к данному антибиотику. Как видно из гистограммы распределения МКП (Рисунок 3), даже при неосложненных ИМП практически вся популяция E.coli находится в зоне промежуточной резистентности к нитроксолину, что свидетельствует о низкой микробиологической активности препарата и несовершенстве критериев интерпретации чувствительности.

Рисунок 3. Распределение МПК нитроксолина для штаммов E.coli, выделенных от пациентов с неосложненными ИМП (пунктиром обозначены пограничные концентрации), Россия, 2000-01 гг.

Фосфомицин

Фосфомицина трометамол - один из новых антимикробных препаратов, разработанных для терапии ИМП, в первую очередь - острого неосложненного цистита. Фосфомицин - единственный препарат, который обладает достаточно высокой эффективность при терапии острого цистита одной дозой. Фосфомицин является антибиотиком широкого спектра действия, активным в отношении большинства аэробных грам(-) и грам(+) бактерий. В исследованиях in vitro показано, что при концентрации, достигаемой фосфомицином в моче, большинство возбудителей ИМП, включая ванкомицин-резистентных энтерококков, чувствительны к этому антибиотику.

В Европе, несмотря на широкое применение препарата, резистентность к нему очень низкая и колеблется от 0 до 1,5% . Подобно нитрофурантоину, фосфомицин сохраняет свою активность и в случае инфекций, вызванных возбудителями, резистентными к другим антибиотикам. Было показано, что 100% фторхинолон-резистентных уропатогенных E. coli чувствительны к фосфомицину . Вероятно, такая особенность фосфомицина объясняется наличием нескольких механизмов действия. Благодаря уникальному механизму действия фосфомицина, практически не встречается перекрестная резистентность с другими антибиотиками.

По данным многоцентровых российских исследований (UTIAP, ARMID, ARIMB), не выявлено штаммов E.coli, резистентных к фосфомицину (Таблица 2). Данные полученные в России вполне согласуются с данными, полученными в крупных зарубежных многоцентровых микробиологических исследованиях, таких, как ECO-SENS , свидетельствующие о крайне низкой (0-1%) частоте выделения устойчивых к фосфомицину штаммов.

Влияние антибиотикорезистентности на эффективность терапии ИМП

Способность микроорганизмов формировать устойчивость к антибиотикам сопряжена с рядом негативных последствий, как для отдельных пациентов, так и для общества в целом. При устойчивости возбудителя инфекции к антибиотикам резко возрастает вероятность неудачи эмпирического лечения конкретного пациента. Назначить адекватную терапию и предотвратить неблагоприятный исход возможно при своевременном получении данных о спектре и уровне антибиотикорезистентности возбудителя. В то же время, каждое конкретное заболевание, вызываемое резистентным микроорганизмом, является проявлением процесса формирования и распространения устойчивости в микробной популяции.

До настоящего времени существовал некоторые сомнения относительно влияния резистентности уропатогенов, выявляемой in vitro на клиническую и микробиологическую эффективность антибиотикотерапии ИМП, так как известно, что уроантисептики, создают достаточно высокие концентрации в моче. В последние годы получены данные, доказывающие снижение клинической эффективности антибиотика, в частности ко-тримоксазола, в случае широкого распространения резистентных штаммов.

Оказалось, что МПК для большинства штаммов E coli, резистентных к ко-тримоксазолу выше, чем концентрации этого антибиотика в моче . Исследования по изучению чувствительности возбудителей ИМП в России позволили рассчитать МПК и МПК 90 основных антибиотиков, применяемых для терапии ИМП и сравнить их с пиковыми концентрациями в моче (Рисунок 4). Пиковые концентрации триметоприма (основного и наиболее активного компонента ко-тримоксазола) и ампициллина в моче ниже МПК 90 штаммов E.coli, выделенных у пациентов с ИМП. Напротив, фосфомицин и фторхинолоны накапливаются в моче в очень высоких концентрациях, позволяющих превысить МПК 90 в 31 и 19 раз, соответственно. Таким образом, ко-тримоксазол и ампициллин в большинстве случаев не создают в моче концентраций достаточных для эрадикации возбудителя.

Рисунок 4. МПК 90 (по данным исследования UTIAP-2, Россия, 2000-01 гг) и пиковые концентрации антибиотиков в моче . Значения МПК 90 представлены столбиками, соответствующие пиковые концентрации антибиотиков - пунктирными линиями.

Наибольший интерес и убедительность имеют данные, полученные в больших проспективных исследованиях, спланированных специально для того, чтобы выяснить влияние антибиотикорезистености на клиническую эффективность терапии ИМП. В одном из исследований, проведенном в Израиле, где профиль антибиотикорезистентности во много сходен с Россией, анализировали клиническую и микробиологическую эффективность терапии ко-тримоксазолом 960 мг дважды в день у женщин с острым неосложненным циститом (ОНЦ) в зависимости от наличия или отсутствия у возбудителя устойчивости к ко-тримоксазолу . Всем пациенткам до начала терапии проводили микробиологическое исследование мочи, а выделенные возбудители тестировали на чувствительность к антибиотикам, в том числе и ко-тримоксазолу. Оказалось, что клиническая эффективность терапии (улучшение) составила 88% в случае ОНЦ, вызванного чувствительными штаммами, и 54%, если заболевание вызывали резистентные бактерии, различия были статистически достоверными (Рисунок 5). При анализе бактериологической эффективности были выявлены еще большие различия - эрадикация возбудителя достигалась в 86% случаев, если уропатогены были чувствительны и только в 42%, если резистентны.

Аналогичные данные были получены при изучении пациентов с острым пиелонефритом (Рисунок 6) . В многоцентровом рандомизированном исследовании, выполненном в США, женщины с острым внебольничным пиелонефритом получали терапию либо ципрофлоксацином 500 мг 2 раза в день в течение 7 дней, либо ко-тримоксазолом 960 мг 2 раза в день в течение 14 дней. При оценке бактериологической эффективности, оказалось, что если инфекция была вызвана чувствительным к ко-тримоксазолу штаммом, то частота эрадикации составляла 96%, а если резистентным, то 50% (p<0,05). Кроме того, было установлено, что в случае пиелонефрита, вызванного резистентным уропатогеном, клиническая эффективность снижается с 92% до 35% (p<0,05).

Рисунок 5. Клиническая (улучшение) и микробиологическая (эрадикация возбудителя) эффективность терапии ОНЦ ко-тримоксазолом в зависимости от наличия или отсутствия резистентности у возбудителей

Рисунок 6. Клиническая (улучшение) и микробиологическая (эрадикация возбудителя) эффективность терапии пиелонефрита ко-тримоксазолом в зависимости от наличия или отсутствия резистентности у возбудителей

Таким образом, в настоящее время накоплены убедительные данные, полученные как в исследованиях in vitro, так и в клинических испытаниях, позволяющие утверждать, что клиническая, и микробиологическая эффективность антибиотиков в 1,6-3 раза ниже у пациентов с ИМП, вызванными резистентными возбудителями.

Факторы риска антибиотикорезистентности возбудителей ИМП

Учитывая, что в случае ИМП, вызванных резистентными штаммами эффективность терапии может существенно снижаться, для врача важно иметь представление о факторах, прогнозирующих случаи инфекции, вызванной резистентными к тем или иным антибиотикам уропатогенами.

Наиболее детально изучены факторы риска развития ИМП, вызванных уропатогенами, резистентными к ко-тримоксазолу. В нескольких исследованиях , выполненных по типу случай-контроль, были проанализированы предполагаемые факторы риска выделения резистентного возбудителя ИМП (Таблица 3).

Таблица 3. Факторы риска развития ИМП, вызванных резистентными к ко-тримоксазолу уропатогенами

Оказалось, что шанс развития ИМП, вызванных резистентными к ко-тримоксазолу возбудителями, был в 5,1 раз выше у женщин, получавших ко-тримоксазол по поводу текущего эпизода ИМП или в течение 3 месяцев до этого эпизода. Соответственно, шанс развития ИМП, вызванных резистентными к ко-тримоксазолу возбудителями в 4,5 раза выше у пациентов, которым в течение 3 предшествующих месяцев назначали любые антибиотики, в 3,1 раза выше при наличии диабета, и в 2,5 раза выше при наличии в анамнезе госпитализаций. Возраст, предшествующие эпизоды ИМП, онкологические заболевания, хроническая неврологическая патология не были достоверно связаны с повышением риска антибиотикорезистентности к ко-тримоксазолу.

При более детальном анализе оказалось, что при исключении влияния предшествующих госпитализаций, диабет не является независимым фактором риска антибиотикорезистентности. Предполагается, что более частое выделение резистентных уропатогенов у пациентов страдающих диабетом может быть связано с более высокой частотой госпитализаций.

Заключение

Таким образом, основным возбудителем амбулаторных ИМП является E.coli. Рост резистентности этого возбудителя обуславливает снижение эффективности антибиотикотерапии, поэтому данные по изучению устойчивости E.coli к антибиотикам лежат в основе современной концепции выбора препаратов для терапии ИМП. В России, как и в большинстве стран мира, отмечается рост резистентности E.coli к аминопенициллинам и ко-тримоксазолу, что заставляет пересматривать место этих антибиотиков в терапии амбулаторных ИМП. В качестве препаратов выбора необходимо рассматривать, в первую очередь, антибиотики с высокой микробиологической активностью - фосфомицин и фторхинолоны.

Литература

  1. Gupta K. Addressing Antibiotic Resistance Am J Med 2002; 113 (1A): 29S-34S
  2. Warren J.W., Abrutyn E., Hebel J.R., e.a. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin. Infect. Dis 1999; 29: 745-58.
  3. Gupta K, Scholes D, Stamm WE. Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women. JAMA. 1999;281: 736-738.
  4. Gupta K, Sahm DF, Mayfield D, Stamm WE. Antimicrobial resistance among uropathogens that cause community acquired urinary tract infections in women: a nationwide analysis. Clin Infect Dis. 2001;33:89-94.
  5. Dyer IE, Sankary TM, Dawson JA. Antibiotic resistance in bacterial urinary tract infections, 1991 to 1997. West J Med. 1998;169:265-268.
  6. Naber K.G., Bergman B., Bishop M.C., et al., for the Urinary Tract Infection (UTI) Working Group of the Health Care Office (HCO) of the European Association of Urology (EAU). EAU guidelines for the management of urinary and male genital tract infections. Eur Urol 2001; 40: 576-588.
  7. Gupta K. Emerging antibiotic resistance in urinary tract pathogens. Infect Dis Clin North Am. 2003; 17(2) :243-59.
  8. Kahlmeter G. An International Survey of the Antimicrobial Susceptibility of pathogens from Uncomplicated Urinary Tract Infections: the ECO-SENS Project. J Antimicrob. Chemother., 2003; 51 (1): 69-76.
  9. Wright S.W., Wrenn K.D., Haynes M.L. Trimethoprim-sulfamethoxazole resistance among urinary coliform isolates. J Gen Intern Med. 1999; 14: 606-609.
  10. Steinke D.T., Seaton R.A., Phillips G., MacDonald T.M., Davey P.G. Factors associated with trimethoprim-resistant bacteria isolated from urine samples. J Antimicrob Chemother. 1999; 43: 841-843.
  11. Hooton T.M., Latham R.H., Wong E.S., Johnson C., Roberts P.L., Stamm W.E. Ofloxacin versus trimethoprim-sulfamethoxazole for treatment of acute cystitis. Antimicrob Agents Chemother 1989; 33(8): 1308-12.
  12. Winstanleya T.G., Limba D.I., Eggingtona R., Hancockb F. A 10 year survey of the antimicrobial susceptibility of urinary tract isolates in the UK: the Microbe Base project. J Antimicrob Chemother 1997; 40: 591-594.
  13. Zhanel G.G., Karlowsky J.A., Harding G.K., Carrie A., Mazzulli T., Low D.E., et al. A Canadian national surveillance study of urinary tract isolates from outpatients: comparison of the activities of trimethoprim- sulfamethoxazole, ampicillin, mecillinam, nitrofurantoin, and ciprofloxacin. The Canadian Urinary Isolate Study Group. Antimicrob Agents Chemother 2000; 44(4):1089-92.
  14. Karlowsky J.A., Kelly L.J., Thornsberry C., Jones M.E., Sahm D.F. Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother 2002; 46(8): 2540-5.
  15. Козлов С.Н., Рачина С.А., Домникова Н.П., Карпов О.И., Кузин В.Б., Лещенко И.В. и др. Фармакоэпидемиологический анализ лечения внебольничной пневмонии в амбулаторных условиях. Клиническая микробиология и антимикробная химиотерапия, 2000; №3: 74-81.
  16. Андреева И.В., Рачина С.А., Петроченкова Н.А., Галкин Д.В., Горенкова Е.В. и др. Самостоятельное применение антимикробных препаратов населением: результаты многоцентрового исследования. Клиническая фармакология и терапия, 2002; №3: 15-26.
  17. Davidson R., Fuller J., Mazzulli T., Porter-Pong S., McGeer A., Low D.E. High-level trimethoprim-sulfamethoxazole resistance in community-acquired urinary tract gram-negative isolates. Presented at the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Diego, CA, September 24-27, 1998.
  18. McCarty J.M., Richard G., Huck W., Tucker R.M., Tosiello R.L., Shan M., et al. A randomized trial of short-course ciprofloxacin, ofloxacin, or trimethoprim/sulfamethoxazole for the treatment of acute urinary tract infection in women. Ciprofloxacin Urinary Tract Infection Group. Am J Med 1999; 106(3): 292-9.
  19. Brown P.D., Freeman A., Foxman B.. Prevalence and predictors of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli isolates in Michigan. Clin Infect Dis 2002; 34(8): 1061-6.
  20. Shrestha N. K., Tomford J. W. Fosfomycin: a review. Infect Dis Clin Pract 2001;10:255-260.
  21. Henry D.C., Bettis R.B., Riffer E., Haverstock D.C., Kowalsky S.F., Manning K., Hamed K.A., Church D.A.. Comparison of once-daily extended-release ciprofloxacin and conventional twice-daily ciprofloxacin for the treatment of uncomplicated urinary tract infection in women.. Clin Ther 2002;24(12):2088-104.
  22. Meyers B.R., Wilkinson P., Mendelson M.H., Walsh S., Bournazos C., Hirschman S.Z. Pharmacokinetics of ampicillin-sulbactam in healthy elderly and young volunteers. Antimicrob Agents Chemother. 1991; 35(10): 2098-101.
  23. Raz R., Chazan B., Kennes Y., Colodner R., Rottensterich E., Dan M., et al. Empiric use of trimethoprim-sulfamethoxazole (TMP-SMX) in the treatment of women with uncomplicated urinary tract infections, in a geographical area with a high prevalence of TMP-SMX-resistant uropathogens. Clin Infect Dis 2002; 34(9): 1165-9.
  24. Talan D.A. Stamm W.E., Hooton T.M., Moran G.J., Burke T., Iravani A., et al.Comparison of ciprofloxacin (7 days) and trimethoprim-sulfamethoxazole (14 days) for acute uncomplicated pyelonephritis pyelonephritis in women: a randomized trial. JAMA 2000; 283(12): 1583-90.
  25. Rafalski V., Ahmetova L., Babkin P., Kogan M. e.a. Antibiotic drug prescription in community-acquired urinary tract infection: a Russian multicenter pharmacoepidemiological survey // 23 Intrenational Congress of Chemotherapy, Durban, South Africa, 7-9 June 2003.- Abs. SA 113.- P. 4.
  26. Hoban D.J., Bouchillon S.K., Johnson J.L., Zhanel G.G., Butler D.L., Miller L.A., et al. Comparative in vitro activity of gemifloxacin, ciprofloxacin, levofloxacin and ofloxacin in a North American surveillance study. Diagn Microbiol Infect Dis 2001;40(1-2):51-7.
  27. Ungheri D., Albini E., Belluco G. In-vitro susceptibility of quinolone-resistant clinical isolates of Escherichia coli to fosfomycin trometamol. J Chemother 2002; 14(3): 237-40.
  28. Nicolle L.E. Epidemiology of Urinary Tract Infection. Infect Med, 2001; 18: 153-162.
  29. Nicolle L. A Practical Guide to Antimicrobial Management of Complicated Urinary Tract Infection. Drugs Aging, 2001; 18: 243-254.
  30. Рафальский В.В., Страчунский Л.С., Кречикова О.И., Эйдельштейн И.А., Ахметова Л.И., Бабкин П.А. и др. Резистентность возбудителей амбулаторных инфекций мочевыводящих путей по данным многоцентровых микробиологических исследований UTIAP-I и UTIAP-II. Урология 2004; 2: 10-16.
  31. Winstanleya T.G., Limba D.I., Eggingtona R., Hancockb F. A 10 year survey of the antimicrobial susceptibility of urinary tract isolates in the UK: the Microbe Base project. J Antimicrob Chemother 1997; 40: 591-4.

Август 2009 г.

Клиническая фармакология противомикробных лекарственных средств

Более 50% заболеваний имеют инфекционную природу, т.е вызваны патогенными микроорганизмами. Для лечения этих заболеваний используют противомикробные средства. На долю противомикробных препаратов приходится 20% всех лекарств.

К противомикробным лекарственным средствам относятся антибиотики и синтетические ЛС (сульфаниламиды, хинолоны и др). Наиболее важное место среди этих препаратов занимают антибиотики.

Классификация

1. Антибиотики

2. Синтетические противомикробные средства

1. Сульфаниламиды

2. Хинолоны и фторхинолоны

3. Нитрофураны

4. Нитроимидазолы

3. Противогрибковые средства

4. Противовирусные средства

5. Противотуберкулезные средства

Антибиотики – это вещества биологического происхождения (т.е. продукты жизнедеятельности микроорганизмов и более высокоорганизованных растительных и животных организмов) синтезируемые преимущественно микроорганизмами и оказывающие избирательное повреждающее действие на чувствительные к ним микроорганизмы. В качестве лекарственных средств используются также полусинтетические производные антибиотиков (продукты модификации природных молекул) и синтетические антибактериальные средства.

«Фторхиролоны часто называют антибиотиками, но de-fakto они являются синтетическими соединениями» Страчунский.

Принципы противомикробной терапии

1. Антибиотики – это этиотропные препараты специфического действия, которые надо назначать в соответствии с чувствительностью к ним возбудителе заболеваний .

Лечение инфекционного заболевания следует начинать с выявления и идентификации возбудителя и определения чувствительности выявленной патогенной микрофлоры к противомикробному лекарственному средству т.е. до начала антимикробной терапии необходимо правильно собрать инфекционный материал (мазок, секрет и др.) на бактериологическое исследование и направить его в бак. лабораторию, где определяют возбудителя (при микстовой инфекции лидирующего возбудителя) и его чувствительность к антибиотику. Только на этой основе возможен оптимальный выбор препарата. Однако результат будет готов через 4-5 дней, нередко высеять и идентифицировать м/о вообще не удается.

2. Раннее начало лечения , пока количество возбудителя в организме

относительно невелико, и еще существенно не нарушены иммунитет и

другие функции организма. Но данные бак. исследования еще не

готовы, поэтому назначение антибиотика приходится делать по

предполагаемой флоре, основываясь на следующих сведениях:

1. Данные микроскопии мазка, окрашенного по Граму

2. Клиническая картина. Известно, что микроорганизмы имеют определенную тропность к тканям, обусловленную их адгезивной способностью. Например, рожистое воспаление, лимфаденит чаще вызываются стрептококками; абсцесс мягких тканей, фурункулы, карбункулы, флегмона новорожденных - стафилококки; пневмонию – пневмококки, гемофильные палочки, микоплазмы (в стационаре – золотистый стафилококк, клебсиеллы, синегнойные палочки(в каждом стационаре своя микрофлора); пиелонефрит – кишечная палочка, протей, клебсиелла и др. Гр.«-»бактерии.

3. Возраст больного. При диагнозе пневмония у новорожденных часто причиной является стафилококк, в то время как у лиц среднего возраста пневмококк.

4. Эпидемическая обстановка. Существуют понятия «домашняя», «госпитальная» инфекция, поэтому необходимо учитывать «территориальный пейзаж»

5. Предшествующее лечение, которое меняет микрофлору

3. Правильный выбор дозы (разовой, суточной) и пути введения, длительности курса лечения , чтобы обеспечить эффективную (среднюю терапевтическую концентрацию СТК) концентрацию на протяжении всего курса лечения.

Выбор пути введения зависит от биодоступности, режим дозирования

во многом зависит от скорости элиминации (биотрансформации и

экскреции). Необходимо помнить, что клиническое выздоровление

всегда наступает раньше бактериологического.

4 .Выбор антибиотика, его дозы, и способа введения должны


Похожая информация:

  1. Бихевиорально - социальные цели. Бихевиорально-социальные аспекты терапии орального характера являются прямым следствием эмоциональных и когнитивных целей и в определенной степени требуют


Понравилась статья? Поделитесь ей
Наверх