Осмотическое и онкотическое давление. Методы измерения онкотического давления плазмы крови, что это и способы нормализации

В жидкой части крови растворены минеральные вещества - соли. У млекопитающих их концентрация составляет около 0,9 %. Они находятся в диссоциированном состоянии в виде катионов и анионов. От содержания этих веществ зависит в основном осмотическое давление крови.

Осмотическое давление - это сила, вызывающая движение растворителя через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный. Клетки тканей и клетки самой крови окружены полупроницаемыми оболочками, через которые легко проходит вода и почти не проходят растворенные вещества. Поэтому изменение осмотического давления в крови и тканях может привести к набуханию клеток или потере ими воды. Даже незначительные изменения солевого состава плазмы крови губительны для многих тканей, и прежде всего для клеток самой крови. Осмотическое давление крови держится на относительно постоянном уровне за счет функционирования регулирующих механизмов. В стенках кровеносных сосудов, в тканях, в отделе промежуточного мозга - гипоталамусе имеются специальные рецепторы, реагирующие на изменение осмотического давления,- осморецепторы.

Раздражение осморецепторов вызывает рефлекторное изменение деятельности выделительных органов, и они удаляют избыток воды или солей, поступивших в кровь. Большое значение в этом отношении имеет кожа, соединительная ткань которой впитывает избыток воды из крови или отдает ее в кровь при повышении осмотического давления последней.

Величину осмотического давления обычно определяют косвенными методами. Наиболее удобен и распространен криоскопический способ, когда находят депрессию, или понижение точки замерзания крови. Известно, что температура замерзания раствора тем ниже, чем больше концентрация растворенных в нем частиц, то есть чем больше его осмотическое давление. Температура замерзания крови млекопитающих на 0,56-0,58 °С ниже температуры замерзания воды, что соответствует осмотическому давлению 7,6 атм, или 768,2 кПа.

Определенное осмотическое давление создают и белки плазмы. Оно составляет 1/220 общего осмотического давления плазмы крови и колеблется от 3,325 до 3,99 кПа, или 0,03-0,04 атм, или 25-30 мм рт. ст. Осмотическое давление белков плазмы крови называют онкотическим давлением. Оно значительно меньше давления, создаваемого растворенными в плазме солями, так как белки имеют огромную молекулярную массу, и, несмотря на большее их содержание в плазме крови по массе, чем солей, количество их грамм-молекул оказывается относительно небольшим, к тому же они значительно менее подвижны, чем ионы. А для величины осмотического давления имеет значение не масса растворенных частиц, а их число и подвижность.

Онкотичеекое давление препятствует чрезмерному переходу воды из крови в ткани и способствует реабсорбции ее из тканевых пространств, поэтому при уменьшении количества белков в плазме крови развивайся отеки тканей.

Среди разнообразных показателей внутренней среды организма осмотическое и онкотическое давление занимают одно из главных мест. Они являются жесткими гомеостатическими константами внутренней среды и их отклонение (повышение или понижение) опасно для жизнедеятельности организма.

Осмотическое давление

Осмотическое давление крови — это давление, возникающее на границе раздела растворов солей или других низкомолекулярных соединений различной концентрации.

Его величина обусловлена концентрацией осмотически активных веществ (электролитов, неэлектролитов, белков), растворенных в плазме крови, и регулирует транспорт воды из внеклеточной жидкости в клетки и наоборот. Осмотическое давление плазмы крови в норме составляет 290±10 мосмоль/кг (в среднем равно 7,3 атм., или 5600 мм рт.ст., или 745 кПа). Около 80% величины осмотического давления плазмы крови обусловлено натрия хлоридом, который полностью ионизирован. Растворы, осмотическое давление которых такое же, как плазмы крови, называются изотоническими , или изоосмическими. К ним относят 0,85- 0,90% раствор натрия хлорида и 5,5% раствор глюкозы. Растворы с меньшим осмотическим давлением, чем у плазмы крови, называются гипотоническими , а с большим - гипертоническими.

Осмотическое давление крови, лимфы, тканевой и внутриклеточной жидкостей приблизительно одинаково и отличается достаточным постоянством. Это необходимо для обеспечения нормальной жизнедеятельности клеток.

Онкотическое давление

Онкотическое давление крови — представляет собой часть осмотического давления крови, создаваемую .

Величина онкотического давления колеблется в пределах 25-30 мм рт.ст. (3,33- 3,99 кПа) и на 80% определяется альбуминами вследствие их малых размеров и наибольшего содержания в плазме крови. Онкотическое давление играет важную роль в регуляции обмена воды в организме, а именно в ее удержании в кровеносном сосудистом русле. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи, всасывание воды из кишечника. При понижении онкотического давления плазмы (например, при болезнях печени, когда снижено образование альбуминов, или болезнях почек, когда повышено выделение белков с мочой) развиваются отеки, так как вода плохо удерживается в сосудах и переходит в ткани.

Осмотическим назы­вается давление, которое обуславливается переходом растворителя (вода) через полупроницаемую мембрану из менее в более кон­центрированный раствор. Другими словами движение растворителя направлено от меньшего к большему осмотическому давлению. Сравните с гидростатическим давлением: движение жидкости направлено от большего к меньшему давлению. Обратите внимание! Нельзя в определении говорить « ... давлением... назы­вается сила... » ++601++. Осмотическое дав­ление крови равно приблизительно 7,6 атм. или 5776 мм рт.ст. (7,6´760). Осмотическое давление крови зависит в основном от растворен­ных в ней низкомолекулярных соединений, главным образом солей. Около 60 % этого давления создается NaCl. Осмотическое давление в крови, лимфе, тканевой жидкости, тканях приблизительно оди­наково и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает существенных изменений. Онкотическое давление - часть осмотического давления, обусловленная белками. 80 % онкотического давления создают аль­бумины. Онкотическое давление не пре­вышает 30 мм рт. ст., т.е. составляет 1/200 часть осмотического давления. Чем больше онкотическое давление, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду [++601++]. При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани. Онкотическое давление играет более важную роль в регуляции водного обмена, чем осмотическое. Почему? Ведь оно в 200 раз меньше осмотического. Дело в том, что Градиент концентрация электролитов (которые обуславливают осмотическое давление) по обе стороны биологических барьеров В клинической и научной практике широко используются такие понятия как изотонические, гипотонические и гиперто­нические растворы. Изотонические растворы имеют суммарную концентрацию ионов, не превышающую 285-310 ммоль/л. Это может быть 0,85 % раствор хлористого натрия (его часто назы­вают "физиологическим" раствором, хотя это не полностью отражает ситуацию), 1,1 % раствор хлористого калия, 1,3 % раствор бикарбоната натрия, 5,5 % раствор глюкозы и т.д. Гипотонические растворы имеют меньшую концентрацию ионов - менее 285 ммоль/л, а гипертонические, наоборот, большую выше 310 ммоль/л. Эритроциты, как известно, в изотоническом растворе не изменяют свой объем, в гипертоническом - умень­шают его, а в гипотоническом - увеличивают пропорционально степени гипотонии, вплоть до разрыва эритроцита (гемолиза). Явление осмотического гемолиза эритроцитов используется в клинической и научной практике с целью определения качест­венных характеристик эритроцитов (метод определения осмоти­ческой резистентности эритроцитов). Функциональные системы осморегуляции Осморегуляция - поддержание на заданном уровне осмоти­ческого давления крови, осуществляется с участием осморецепторов, расположенных в супраоптическом ядре гипоталамуса, а также в печени, почках, сердце. На основе афферентации к центру осморегуляции, расположенному в гипоталамусе, проис­ходит изменение продукции антидиуретического гормона, окситоцина, что приводит к изменению реабсорбции воды в собирательных трубках почек и за счет этого достигается норма­лизация осмотического давления крови. Учитывая, что основ­ным ионом, создающим осмотическое давление, является нат­рий, одновременно происходит регуляция его содержания в крови с участием ренин-ангиотензин-альдостеронового меха­низма и за счет натрийуретического гормона (атриопептина). ++492++ Регуляция ионного состава крови имеет прямое отношение к регуляции осмотического давления, волюморегуляции, но она предназначена и для отдельных ионов, независимо от уровня осмотического давления и ОЦК. Рецепторы, восприни­мающие уровень ионов: натриевые, калиевые, кальциевые, хлорные - в основном расположены в печени, а также, вероятно, в гипоталамусе. Информация достигает центра регуляции ион­ного состава крови, который расположен в гипоталамусе, от него сигналы управления идут к железам внутренней секреции, в том числе к коре надпочечников (выделение альдостерона), поджелудочной железы (инсулин). Кроме того, кровь непосред­ственно оказывает влияние на железы внутренней секреции, продуцирующие ионрегулирующие гормоны, в том числе на почки (ренин-ангиотензин-альдостероновый механизм), щито­видную и паращитовидную железы (паратгормон, тиреокальцитонин), предсердие (натрийуретический гормон). b. Система крови (по Г.Ф.Лангу): циркулирующая, депонированная, органов кроветворе­ния и кроверазрушения. ЛАНГ Георгий Федорович (1875-1948), российский терапевт, основатель крупной научной школы, академик АМН (1945). Основные труды по кардиологии и гематологии. Разработал учение о гипертонической болезни. Государственная премия СССР (1951, посмертно). Ланг Г.Ф. (1939 г.) предложил ввести понятие система крови, в которой объединить 1. кровь 2. органы, в которых происходит обра­зование клеток крови 3. органы, в которых происходит разрушение клеток крови 4. регулирующий нейрогуморальный аппарат Кровь (циркулирующая, депонированная), костный мозг (красный), тимус (вилочковая железа), лимфоузлы, селезенка, печень. Компоненты этой системы осуществляют непосредственный контакт с кровяным руслом. Такое взаимоотношение обеспечивает не только транспорт клеток, но и поступление различных гуморальных факторов из крови в кроветворные органы. Особенности крови как ткани (соединительной, внутренней среды обладает следующими особен­ностями: 1) все ее составные части образуются за пределами сосу­дистого русла; 2) межклеточное вещество ткани является жидким; 3) основная часть крови находится в постоянном движении. Костный мозг (medulla ossium) - содержимое костных полостей, считается главным местом образования клеток крови у высших позвоночных. Различают «красный» и «жёлтый» (жировой) костный мозг. При взрослении часть красного костного мозга переходит в жёлтый, при резком усилении эритропоэза жёлтый костный мозг переходит в красный (говорят о расширении плацдарма кроветворения). У взрослых красный костный мозг расположен в губчатом веществе плоских костей и эпифиза трубчатых костей, у новорождённых и в диафизе. Место расположения жёлтого костного мозга диафиз трубчатых костей. В красном костном мозге находится основная масса кроветворных элементов. В нем же осуществляются реутилизация железа, синтез гемоглобина, накопление резервных липидов; образуются В-лимфоциты, плазматические клетки красного костного мозга образуют антитела. С костным мозгом связано и разрушение эритроцитов. В регуляции деятельности системы крови важную роль играют гуморальные факторы - эритропоэтины, лейкопоэтины, тромбопоэтины. Кроме них действуют и другие гуморальные агенты, например андрогены. Медиаторы (ацетилхолин, адреналин) влияют на систему крови не только вызывает перераспределение форменных элементов, но и путем прямого влияния на холино- и адренорецепторы клеток. Определенное влияние оказывает нервная система. c. Плазма крови человека: понятие, состав, свойства. Пла?зма кро?ви (от греч. plasma - нечто сформированное, образованное) - жидкая часть крови, в которой взвешены форменные элементы. Макроскопически представляет собой однородную прозрачную или несколько мутную желтоватую жидкость, собирающуюся в верхней части сосуда с кровью после осаждения форменных элементов. Гистологически плазма является межклеточным веществом жидкой ткани крови. Ионный состав плазмы или сыворотки: (ммоль/л)

УСЛОВИЯ НАТРИЙ КАЛИЙ КАЛЬЦИЙ МАГНИЙ ХЛОР
Норма 142 4,4 2,5 0,9 103
Повышенное - выше: 150 5,1 2,75 1,0 110
Сниженное - ниже: 135 3,8 2,1 0,7 98
Состав плазмы относительно постоянен, во многом зависит от приема пищи, воды и солей. Концентрация глюкозы, белков, всех катионов, хлора и гидрокар­бонатов удерживается в плазме на довольно постоянном уровне и лишь на короткое время может выходить за пределы нормы. Содержание фосфатов, мочевины, мочевой кис­лоты, нейтрального жира изменяется в широких пределах. В общей сложности минеральные вещества плазмы составляют около 0,9%. В среднем 1 литр плазмы человека содержит 900-910 г воды, 65-85 г белка и 20 г низкомолекулярных соединений. Плотность плазмы составляет от 1,025 до 1,029, pH - 7,34-7,43 Важнейшей составной частью плазмы являются белки, содержа­ние которых составляет 7-8% от массы плазмы. Белки плазмы - альбумины, глобулины и фибриноген. К альбуминам относятся белки с относительно малой молекулярной массой (около 70 000), их 4- 5%, к глобулинам - крупномолекулярные белки (молекулярная масса до 450000) - количество их доходит до 3%. На долю глобулярного белка фибриногена (молекулярная масса 340 000) при­ходится 0,2-0,4%. С помощью метода электрофореза, основанного на различной скорости движения белков в электрическом поле, глобулины могут быть разделены на α1‑, α2- и γ-глобулины. Функции белков плазмы крови весьма разнообразны: белки обес­печивают онкотическое давление крови, от которого в значительной степени зависит обмен воды и растворенных в ней веществ между кровью и тканевой жидкостью; регулируют рН крови благодаря наличию буферных свойств; влияют на вязкость крови и плазмы, что чрезвычайно важно для поддержания нормального уровня кро­вяного давления, обеспечивают гуморальный иммунитет, ибо явля­ются антителами (иммуноглобулинами); принимают участие в свер­тывании крови; способствуют сохранению жидкого состояния крови, так как входят в состав противосвертывающих веществ, именуемых естественными антикоагулянтами; служат переносчиками ряда гор­монов, липидов, минеральных веществ и др.; обеспечивают процессы репарации, роста и развития различных клеток организма. Правило Гэмбла – плазма крови должна быть электронейтральна, сумма анионов и катионов равны между собой. d. Плазмозамещающие средства. Для обеспечения жизнедеятельности изолированных органов и тканей, а также при кровопотере используют растворы, близкие по ионному составу к плазме крови Плазмозамещающие растворы - препараты, применяемые при острых кровопотерях, шоке различного происхождения, нарушениях микроциркуляции, интоксикациях и других изменениях гемодинамики. Они не могут выполнять функцию крови, так как не содержат форменных элементов крови. Плазмозаменители не являются источниками энергетических запасов. Классификация По функциональным свойствам и назначению плазмозамещающие растворы делятся на следующие группы: · Гемодинамические - средства, предназначенные для лечения и профилактики шока, нормализации уровня артериального давления ит.д.; · Дезинтоксикационные - средства, предназначенные для лечения различных интоксикаций, например, при ожоговой болезни или тяжелой интоксикации, вызванной патогенными микроорганизмами; · средства для коррекции кислотно-щелочного ионного равновесия - лекарственные средства, предназначенные для нормализации электролитного баланса и устранения дегидратации (от лат. de - удаление, устранение; греч.hydos - вода; син.: обезвоживание); · препараты для парентерального питания. Кислотно‑основное состояние крови Определяется концентрацией водородных ионов (рН). Когда говорят о рН крови имеют в виду рН плазмы.

Часть общего осмотического давления, обусловленная белками, называется коллоидно-осмотическим (онкотическим) давлением плазмы крови. Онкотическое давление равно 25 - 30 мм рт. ст. Это составляет 2 % от общего осмотического давления.

Онкотическое давление в большей степени зависит от альбуминов (80 % онкотического давления создают альбумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. При снижении концентрации белка в плазме крови (гипопротеинемия ) вода перестает удерживаться в сосудистом русле и переходит в ткани, развиваются отеки. Причиной гипопротеинемии может быть потеря белка с мочой при поражении почек или недостаточный синтез белка в печени при её повреждении.

Регуляция рН крови

рН (водородный показатель) – это концентрация водородных ионов, выраженная отрицательным десятичным логарифмом молярной концентрации ионов водорода. Например, рН=1 означает, что концентрация равна 10 -1 моль/л; рН=7 - концентрация составляет 10 -7 моль/л, или 100 нмоль/л. Концентрация водородных ионов существенно влияет на ферментативную деятельность, на физико-химические свойства биомолекул и надмолекулярных структур. В норме рН крови соответствует 7,36 (в артериальной крови - 7,4; в венозной крови - 7,34). Крайние пределы колебаний рН крови, совместимые с жизнью, - 7,0-7,7, или от 16 до 100 нмоль/л.

В процессе обмена веществ в организме образуется огромное количество «кислых продуктов», что должно приводить к сдвигу рН в кислую сторону. В меньшей степени в организме накапливаются в процессе метаболизма щелочи, которые могут снизить содержание водорода и сместить рН среды в щелочную сторону - алкалоз. Однако реакция крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови и нервно-рефлекторных механизмов регуляции.

Буферные системы крови

Буферные растворы (БР) сохраняют устойчивость буферных свойств в определенном интервале значений рН, то есть обладают определенной буферной емкостью. За единицу буферной емкости условно принимают емкость такого буферного раствора, для изменения рН которого на единицу требуется добавить 1 моль сильной кислоты или сильной щелочи на 1 л раствора.

Буферная емкость находится в прямой зависимости от концентрации БР: чем концентрированнее раствор, тем больше его буферная емкость; разведение БР сильно уменьшает буферную емкость и лишь незначительно изменяет рН.


Тканевая жидкость, кровь, моча и другие биологические жидкости являются буферными растворами. Благодаря действию их буферных систем поддерживается относительное постоянство водородного показателя внутренней среды, обеспечивающее полноценность метаболических процессов (см. Гомеостаз ). Наиболее важной буферной системой является бикарбонатная система крови .

Бикарбонатная буферная система

NaHCO 3 = 18

Поступающая в кровь в результате обменных процессов кислота (HA) вступает в реакцию с гидрокарбонатом натрия:

НА + NаHCO 3 ® NaA + H 2 CO 3 (1)

Это чисто химический процесс, вслед за которым включаются физиологические регуляторные механизмы.

1. Двуокись углерода возбуждает дыхательный центр, объем вентиляции увеличивается и СО 2 выводится из организма.

2. Результатом химической реакции (1) является уменьшение щелочного резерва крови, восстановление которого обеспечивается работой почек: образующаяся в результате реакции (1) соль (NаА) поступает в почечные канальцы, клетки которых непрерывно секретируют свободные водородные ионы и обменивают их на натрий:

NaА + H + ® HA + Na +

Образующиеся в канальцах почек нелетучие кислые продукты (HA) выводятся с мочой, а натрий реабсорбируется из просвета почечных канальцев в кровь, восстанавливая тем самым щелочной резерв (NаHCO 3).

Особенности бикарбонатного буфера

1. Самый быстродействующий.

2. Нейтрализует как органические, так и неорганические кислоты, поступающие в кровь.

3. Взаимодействуя с физиологическими регуляторами pH, обеспечивает выведение летучих (легкие) и нелетучих кислот, а также восстанавливает щелочной резерв крови (почки).

Фосфатная буферная система

Na 2 HPO 4 = 4

Эта система нейтрализует поступающие в кровь кислоты (НА) благодаря их взаимодействию с гидрофосфатом натрия.

НА + Na 2 HPO 4 ® NaА + NaH 2 PO 4

Образующиеся вещества в составе фильтрата поступают в почечные канальцы, где гидрофосфат натрия и натриевая соль (NaА) взаимодействуют с водородными ионами, а дигидрофосфат выделяется с мочой, освобождающийся натрий реабсорбируется в кровь и восстанавливает щелочной резерв крови:

Na 2 HPO 4 + H + ® NaH 2 PO 4 + Na +

NaA + H + ® HA + Na +

Особенности фосфатного буфера

1. Емкость фосфатной буферной системы мала в связи с небольшим количеством в плазме фосфатов.

2. Основное назначение фосфатная буферная система приобретает в почечных канальцах, участвуя в восстановлении щелочного резерва и выведении кислых продуктов.

Гемоглобиновая буферная система

KHb KHbO 2

HHb (венозная кровь) HHbO 2 (артериальная кровь)

Образующаяся в процессе обмена веществ двуокись углерода поступает в плазму, а затем в эритроцит, где под влиянием фермента карбоангидразы при взаимодействии с водой образуется угольная кислота:

СО 2 + Н 2 О ® Н 2 СО 3

В тканевых капиллярах гемоглобин отдает свой кислород тканям, а восстановленная слабая соль гемоглобина вступает в реакцию с еще более слабой угольной кислотой:

KНb + H 2 CO 3 ® KHCO 3 + HHb

Таким образом, происходит связывание водородных ионов гемоглобином. Проходя через капилляры легких, гемоглобин соединяется с кислородом и восстанавливает свои высокие кислотные свойства, поэтому реакция с Н 2 СО 3 протекает в обратном направлении:

ННbO 2 + KHCO 3 ® KHbO 2 + H 2 CO 3

Двуокись углерода поступает в плазму, возбуждает дыхательный центр и выводится с выдыхаемым воздухом.

Введение

1. Онкотическое давление плазмы крови. Значение данной константы для водно-солевого обмена между кровью и тканями

2. Общая характеристика факторов (акцелератов) свертывания крови. Первая фаза свертывания крови

3. Сердечно-сосудистый центр: его локализация, особенности функционирования

4. Системное АД, основные гемодинамические факторы, определяющие его величину

5. Состав и ферментативные свойства сока поджелудочной железы, механизмы регуляции его секреции. Значение желчи

6. Нервно-рефлекторная регуляция дыхания: рецепторы, нервные центры, эффекторы

Заключение

Список литературы

Введение

Физиология – наука о жизнедеятельности организма как целое, его взаимодействие с окружающей средой и о динамике жизненных процессов. Этим определяются и методы физиологических исследований. Физиология изучает только живые организмы.

Физиология широко пользуется химическими и физико-химическими методами исследования, так как свойствами живого организма являются обмен веществ и энергии, то есть химические и физические процессы.

1. Онкотическое давление плазмы крови. Значение данной константы для водно-солевого обмена между кровью и тканями

Онкотическое давление плазмы крови зависит в основном от концентрации белков, их размеров и гидрофильности (способности удерживать воду). Осмотическое давление водных растворов обусловлено солями. Онкотическое давление (ОнД) имеет большое значение в распределении воды и растворенных в ней веществ между кровью и тканями. ОнД крови составляет в среднем 7,5-8,0 атмосфер.

Осмотическое давление крови, лимфы и тканевой жидкости в норме поддерживается на постоянном уровне, хотя оно может незначительно изменяться, например при обильном поступлений в кровь воды или солей, но на непродолжительное время. Давление быстро выравнивается благодаря деятельности выделительных органов (почки, потовые железы), удаляющих избыток воды или солей.

При введении в кровь (внутривенно или внутриартериально) лекарственных веществ или солевых растворов, нужно обеспечивать одинаковое их осмотическое давление с осмотическим давлением крови.

Физиологические растворы все же не равноценны плазме крови, так как не содержат высокомолекулярных коллоидных веществ, которыми являются белки плазмы. Поэтому к солевому раствору с глюкозой прибавляют различные коллоиды, например водорастворимые высокомолекулярные полисахариды (декстран), или особым образом обработанные белковые препараты. Коллоидные вещества добавляют в количестве 7-8%. Такие растворы вводят человеку, например, после большой кровопотери. Однако наилучшей кровезамещающей жидкостью все же является плазма крови.

2. Общая характеристика факторов (акцелератов) свертывания крови. Первая фаза свертывания крови

В процесссвертываемости крови вовлечено много веществ. Двенадцать из них называются факторами свертываемости; они пронумерованы от I до XIII, поскольку фактор VI оказался тем же самым, что и фактор V. Этот список из 12 факторов, тем не менее, неполон, в процессе свертывания участвуют и другие вещества, например АДФ и серотонин.

Гемостаз, или образование сгустка, начинается с сосудистой стадии: это 30-минутный период, который начинается, когда, стенка кровеносного сосуда повреждена. Спазм сосуда (ангиоспазм) приводит к снижению потери крови в больших сосудах и может даже полностью остановить капиллярную потерю крови. Начальное повреждение стенок сосудов совместно с их спазмом, вызывает изменение базальной мембраны. Стенки становятся «липкими», что помогает не только удержать тромбоциты, но и запечатать мелкие сосуды. Все это - результат выделения химических веществ (включая гормоны местного действия) стенками сосудов, который, однако, инициирует вторую стадии: гемостаза - тромбоцитарную.

3. Сердечно-сосудистый центр: его локализация, особенности функционирования

Сердце представляет собой полый мышечный орган, разделенный продольной перегородкой на изолированные друг от друга правую и левую половины. Каждая из них состоит из предсердия и желудочка, разделенных фиброзными перегородками. Односторонний ток крови из предсердий в желудочки и оттуда в аорту и легочную артерию обеспечивается клапанами, находящимися у входного и выходного отверстий желудочков. Открытие и закрытие клапанов зависят от величины давлений по обе их стороны.

Мышечные волокна сердца содержат миофибриллы, имеющие поперечную исчерченность. Диаметр мышечных волокон составляет 12-24 мк, длина может достигать 50 мк.

Толщина стенок разных отделов сердца неодинакова. Это обусловлено различиями в мощности производимой работы. Наибольтая работа выполняется мышцами левого желудочка, толщина стенки которого достигает 10-15 мм. Стенки правого желудочка несколько тоньше (5-8 мм), еще тоньше стенки предсердий (2-Змм).

Размеры сердца обусловлены объемом его полостей и толщиной стенок. Эти величины зависят от размеров тела, возраста, пола и двигательной активности человека. Размеры сердца определяют путем рентгенографии, объемы полостей - при помощи радиокардиографии (введение в кровь радиоактивных веществ и регистрация проходящей через сердце крови при помощи счетчиков Гейгера-Мюллера). У здоровых взрослых мужчин среднего роста и веса длинник сердца равен в среднем 14 см, поперечник 12 см, объем полостей желудочков 250-350 мл. У женщин эти величины несколько меньше.

Общий объем сердца определяют при помощи специального метода - биплановой телерентгенографии. Снимки сердца при этом делаются в двух проекциях. На основании полученных величин вычисляют объем сердца. В среднем он составляет у мужчин 700-900 мл, у женщин 500-600 мл. Тяжелый физический труд и занятия спортом способствуют развитию гипертрофии миокарда и ведут к увеличению объема полостей сердца.

Сердце снабжается кровью через венечные артерии, начинающиеся у места выхода аорты. Кровь поступает в венечные артерии во время расслабления сердца. При сокращении желудочков вход в венечные артерии прикрывается полулунными клапанами, а сами артерии сжимаются сократившейся мышцей сердца. Поэтому кровоснабжение сердца при его сокращении уменьшается. В венечные артерии поступает около 200-250 мл крови в 1 мин. При физической работе кровоснабжение сердца увеличивается. Объем притекающей к нему крови зависит от мощности выполняемой работы. При очень напряженной работе кровоснабжение сердца может возрастать до 1000 мл.

Сердечная мышца обладает способностью к автоматии, возбудимостью, проводимостью и сократимостью.

Автоматия сердца. Способность сердца ритмически сокращаться без внешних раздражений, под влиянием импульсов, возникающих в нем самом, называется автоматией сердца. Возбуждение в нем возникает в месте впадения полых вен в правое предсердие. Здесь находится скопление атипической мышечной ткани, называемое синоатриальным узлом или узлом Кис-Фляка. Атипическая мышечная ткань по своему строению отличается от основной массы миокарда. Клетки этой ткани богаты протоплазмой, поперечная же исчерченность в них выражена менее четко.

Возникающее в синоатриальном узле - главном водителе ритма сердца - возбуждение распространяется до атриовентрикулярного узла, расположенного в правом предсердии в межпредсердной перегородке. От этого узла отходит пучок Гиса, он делится на две ножки, разветвления которых, называемые волокнами Пуркине, проводят возбуждение к мускулатуре желудочков.

Синоатриальный узел обладает наиболее выраженной автоматией. В нормальных условиях импульсы из этого отдела сердца обеспечивают деятельность всех остальных. Автоматия других участков миокарда, в частности атриовентрикулярного узла, выражена слабее. Она подавляется импульсами от главного водителя ритма сердца.

Если, например, у лягушки изолировать синоатриальный узел (путем перерезки или охлаждения соответствующих участков сердца), то деятельность сердца временно прекращается. Затем сокращения его возникают вновь, но ритм их будет менее частым, чем был до изоляции главного водителя ритма. Этот опыт, впервые проведенный Станниусом, доказывает ведущую роль синоатриального узла для нормальной работы сердца.

Автоматия водителей ритма сердца обусловлена периодическим изменением мембранных потенциалов в их клетках. Во время диастолы происходит постепенная деполяризация мембраны. В тот момент, когда ее потенциал оказывается значительно сниженным, возникает возбуждение, распространяющееся по всем волокнам миокарда. Периодически наступающая деполяризация клеточных мембран обусловлена изменением их проницаемости. По одним данным, во время диастолы уменьшается выход ионов калия из клеток, по другим, наоборот, увеличивается поступление туда ионов натрия. В результате концентрация ионов натрия и калия по обе стороны мембраны начинает изменяться, что ведет к ее деполяризации. Значение ионов натрия для возникновения процессов возбуждения в клетках - водителях ритма подтверждается более высоким содержанием здесь натрия по сравнению с другими участками миокарда.

Возбудимость сердца. Она проявляется в возникновении возбуждения при действии разных раздражителей. Сила раздражителя при этом должна быть не менее пороговой. При некоторых условиях пороговые раздражители вызывают сокращения максимальной силы. Эта особенность возникновения возбуждения в сердце получила название закона «все или ничего». Однако закон этот проявляется не всегда. Степень сокращения сердечной мышцы зависит не только от силы раздражителя, но и от величины ее предварительного растяжения, а также от температуры и состава питающей ее крови.

Возбудимость сердечной мышцы непостоянна. Она изменяется по ходу возбуждения. В начальном его периоде сердечная мышца невосприимчива (рефрактерна) к повторным раздражениям. Этот период называется фазой абсолютной рефрактерности. У человека она длится 0,2-0,3 сек., т. е. совпадает с временем сокращения сердца. По окончании фазы абсолютной рефрактерности возбудимость сердечной мышцы постепенно восстанавливается и на очень короткое время становится выше исходной.

Из-за длительного периода абсолютной рефрактерности сердечная мышца в обычных условиях не может сокращаться по типу тетануса, что очень важно для координации работы предсердий и желудочков.

При действии частых раздражителей сердечная мышца не отвечает на те из них, которые поступают в фазе абсолютной рефрактерности. Если же дополнительный внеочередной импульс действует на сердце в тот момент, когда его возбудимость уже восстановилась, то возникает дополнительное сокращение сердца, называемое экстрасистолой. Следующий очередной импульс при этом попадает к сердцу в фазе его рефрактерности. Сердце на него не реагирует, и поэтому после экстрасистолы наблюдается удлиненная (компенсаторная) пауза.

Проводимость сердца. Она обеспечивает распространение возбуждения от клеток водителей ритма по всему миокарду. Распространение возбуждения по сердцу осуществляется электрическим путем. Потенциал действия, возникший в одной мышечной клетке, является раздражителем для других. Способность к проведению возбуждения зависит от структурных особенностей мышечных волокон сердца и от многих других факторов. Например, она увеличивается при повышении температуры и снижается при недостатке кислорода. Разные отделы сердца имеют разную проводимость. Это зависит от содержания в них гликогена и от длительности рефрактерных фаз. Периферические разветвления проводящей системы сердца расположены непосредственно под эндокардом. Поэтому возбуждение охватывает прежде всего внутренние слои сердца и затем распространяется кнаружи. Вследствие этого скорость распространения возбуждения по сердцу зависит не только от особенностей проводящей системы, но и от толщины мышечных-стенок.

Наибольшей проводимостью обладают клетки проводящей системы сердца, и особенно волокна Пуркине. Скорость же проведения возбуждения от мышечных волокон предсердий к атровентрикулярному узлу невысока. Происходящая здесь задержка распространения возбудительного процесса обеспечивает последовательность в работе предсердий и желудочков.

Поставщиком энергии для сокращения сердечной мышцы служат макроэргические фосфорсодержащие вещества. Восстановление их происходит за счет энергии, освобождающейся при дыхательном и гликолитическом фосфорилировании. При этом преобладающими являются аэробные реакции.

4. Системное АД, основные гемодинамические факторы, определяющие его величину

Одним из наиболее важных параметров гемодинамики является системное артериальная давление, т.е. давление в начальных отделах системы кровообращения - в крупных артериях. Его величина зависти от изменений, происходящих в любом отделе системы.

Наряду с системным, существует понятие о местном давлении, т.е. давлении в мелких артериях, артериолах, венах, капиллярах. Это давление тем меньше, чем больше путь, пройденный кровью до этого сосуда при выходе ее из желудочка сердца. Так, в капиллярах давление крови больше, чем в венах, и равно 30-40 мм (начало) - 16-12 мм рт. ст. (конец). Это объясняется тем, что чем больший путь проходит кровь, тем больше энергии тратится на преодоление сопротивления стенок сосудов, в результате давление в полых венах близко к нулю или даже ниже нуля.

Основные гемодинамические факторы, влияющие на величину системного артериального давления, определяются из формулы:

Q = P*р*r 4 / 8*Ю*l,

Где Q – объемная скорость кровотока в данном органе, r – радиус сосудов, Р – разность давление на «вдохе» и «выдохе» из органа.

Величина системного артериального давления (АД) зависит от фазы сердечного цикла.

Систолическое АД создается энергией сердечных сокращений в фазу систолы, составляет 100-140 мм рт. ст. Его величина зависит, в основном, от cистолического объема (выброса) желудочка (CО), общего периферического сопротивления (R) и частоты сердечных сокращений. Диастолическое АД создается энергией, аккумулированной в стенках крупных артерий при их растяжении во время систолы. Величина этого давления составляет 70-90 мм рт. ст. Его величина определяется, в большей степени, величинами R и ЧСС. Разница между систолическим и диастолическим давлением называется пульсовым давлением, т.к. оно определяет размах пульсовой волны, равный в норме 30-50 мм рт. ст.

Энергия систолического давления расходуется: 1) на преодоление сопротивления сосудистой стенки (боковое давление - 100-110 мм рт. ст.); 2) на создание скорости движущейся крови (10-20 мм рт. ст. - ударное давление).

Показателем энергии непрерывного потока движущейся крови, результирующей «величиной всех его переменных является искусственно выделяемое среднее динамическое давление. Оно может быть рассчитано по формуле Д. Хинема: Р среднее = Р диастолическое + 1/3Р пульсового. Величина этого давления составляет 80-95 мм рт. ст.

АД изменяется также в связи с фазами дыхания: на вдохе оно снижается.

АД – относительно мягкая константа: ее величина может колебаться в течение дня: при физической работе большой интенсивности систолическое давление может возрастать в 1,5-2 раза. Увеличивается оно также при эмоциональном и других видах стресса. С другой стороны, АД здорового человека может снижаться относительно своей средней величины. Это наблюдается во время медленного сна и – кратковременно – при ортостатическом возмущении, связанном с переходом тела из горизонтального в вертикальное положение.

Наибольшие величины системного АД в условиях покоя регистрируется в утренние часы; у многих людей появляется и второй его пик в 15-18 часов.

5. Состав и ферментативные свойства сока поджелудочной железы, механизмы регуляции его секреции. Значение желчи

Поджелудочный сок имеет щелочную реакцию, рН его равен 7,8-8,4. Он содержит ферменты, расщепляющие белки, а также высокомолекулярные полипептиды, углеводы и жиры. Белковый фермент трипсин выделяется железой в недеятельном состоянии. Он активизируется энтерокиназой кишечного сока. Действие фермента липазы, расщепляющей жиры, усиливается желчью.

Секреция поджелудочного сока происходит под влиянием нервных и гуморальных факторов. Она возникает при действии условных и безусловных раздражителей. Условнорефлекторное выделение поджелудочного сока начинается при виде и запахе пищи, а у человека даже при разговоре о ней. При акте еды происходит механическое раздражение рецепторов ротовой полости и глотки. Сигналы отсюда, поступая в продолговатый мозг, вызывают выделение поджелудочного сока по механизму безусловных рефлексов. Секреторными нервами поджелудочной железы служат волокна блуждающего нерва.

Химическими возбудителями поджелудочной железы являются гормоны, вырабатываемые слизистой оболочкой двенадцатиперстной кишки. Главный из них - секретин. Он выделяется в неактивной форме, активируется соляной кислотой и, поступая в кровь, стимулирует секрецию поджелудочной железы.

Секреция поджелудочного сока начинается через 2-3 мин. после приема пищи и продолжается 6-14 часов. Количество выделяемого сока и его ферментный состав зависят от количества и состава поступающей пищи. При употреблении хлеба наибольшая секреция поджелудочной железы наблюдается на первом часу пищеварения, при употреблении мяса - на втором, молока - на третьем. Жирная пища вызывает относительно небольшое сокоотделение.

Клетки печени непрерывно выделяют желчь, которая является одним из важнейших пищеварительных соков. В перерывах между приемами пищи желчь накапливается в желчном пузыре. Здесь происходит обратное всасывание ее жидкой части. Поэтому желчь пузыря гуще по консистенции и темнее по окраске, чем желчь, выделяемая непосредственно из печени.

Желчь активирует ферменты поджелудочного и кишечного соков, в особенности липазу. Значение желчи для переваривания жира очень велико. Она эмульгирует жиры и повышает растворимость жирных кислот, что облегчает их всасывание. Усиливая щелочную реакцию в кишечнике, желчь препятствует разрушению трипсина пепсином. Кроме того, она стимулирует движения кишок и, обладая бактерицидными свойствами, задерживает гнилостные процессы в кишечнике. В сутки у человека образуется около 500 -700 мл желчи. Усиление желчеобразования при пищеварении и выделение желчи из пузыря в кишку происходят под влиянием нервных и гуморальных воздействий. Вид и запах пищи, акт еды, раздражение пищевыми массами рецепторов желудка и двенадцатиперстной кишки усиливают желчеобразование и вызывают выход желчи в кишку по механизму условных и безусловных рефлексов. Секреторным нервом печени служит блуждающий нерв. Симпатический нерв вызывает угнетение желчеобразования и прекращение эвакуации желчи из пузыря.

6. Нервно-рефлекторная регуляция дыхания: рецепторы, нервные центры, эффекторы

Интенсивность окислительных процессов в организме не является постоянной: во время покоя она относительно невелика, во время умственной и физической работы значительно возрастает. Повышенная потребность в кислороде удовлетворяется соответствующим усилением деятельности дыхательной и сердечно-сосудистой систем.

Изменение дыхания в соответствии с потребностями организма достигается посредством сложной системы нервно-гуморальных воздействий на дыхательный центр. Вентиляция легких может увеличиваться или уменьшаться в зависимости от: а) химического состава крови, протекающей через дыхательный центр (т.е. гуморальным путем); б) афферентных сигналов, приходящих к дыхательному центру из различных рецепторов, т. е. в порядке безусловного рефлекса и в) импульсов, поступающих к дыхательному центру из коры больших полушарий, т. е. по механизму условного рефлекса. В естественных условиях гуморальные (через кровь) и нервные механизмы регуляции действуют в единстве друг с другом.

Дыхательный центр. Регуляция дыхания осуществляется дыхательным центром. Он представляет собою совокупность нервных клеток в продолговатом мозгу, от которых направляются импульсы к спинальным центрам, непосредственно иннервирующим дыхательные мышцы. На деятельность дыхательного центра оказывают влияния высшие отделы центральной нервной системы, особенно кора больших полушарий. Благодаря этому осуществляется сложная произвольная регуляция дыхания, например, при разговоре, пении, выполнении физических упражнений и т. д.

В 1912 г. Легаллуа показал, что если сделать укол в определенное место продолговатого мозга, то дыхание полностью прекращается. Это явление было затем исследовано Флюрансом и Н. А. Миславским. Область продолговатого мозга, которая необходима для периодической смены вдоха и выдоха, получила название дыхательного центра. У млекопитающих и человека область, принимающая непосредственное участие в иннервации дыхательных движений, располагается в дне IV желудочка в сетевидном образовании продолговатого мозга.

Дыхательный центр - парное образование, каждая из половин которого иннервирует дыхательные мышцы той же половины тела. По Н. А. Миславскому, он делится на центр вдоха (инспираторный центр) и центр выдоха (экспираторный центр). Современные электрофизиологические исследования с применением микроэлектродной техники подтвердили наличие различных нейронов, раздражение которых вызывает либо вдох, либо выдох. В настоящее время выяснено более сложное строение дыхательного центра. Оказалось, что в варолиевом мосту находятся пневмотаксический и апнейстический центры, контролирующие нижележащие центры вдоха и выдоха и участвующие в организации нормального чередования дыхательных движений.

В дыхательном центре периодически возникают залпы нервных импульсов, которые через мотоневроны спинного мозга вызывают дыхательные движения. Дыхательную ритмику можно наблюдать даже на мозге, вынутом из организма животного. Этот факт явился одним из краеугольных камней учения об автоматической деятельности дыхательного центра. Автоматизмом дыхательного центра называют его способность периодически возбуждаться под влиянием раздражителей, имеющихся или возникающих в нем самом. В условиях целостного организма животного и человека постоянно действующим раздражителем дыхательного центра является углекислота, находящаяся в крови, омывающей продолговатый мозг. Подобно сердцу, дыхательный центр реагирует на постоянно действующее раздражение периодически возникающими вспышками возбуждения. Однако если в сердце эта периодика обусловлена длительной рефрактерной фазой, то в естественных условиях работы дыхательного центра она осуществляется рефлекторно. Афферентные сигналы, поступающие при каждом вдохе в дыхательный центр от интерорецепторов легких и проприорецепторов дыхательных мышц, периодически затормаживают деятельность дыхательного центра, трансформируя его реакцию на непрерывно действующий химический раздражитель в виде ритмически возникающих вспышек возбуждения.

Иннервация дыхательных мышц. Проводящие пути, несущие импульсы от дыхательного центра, спускаются в спинной мозг и заканчиваются около мотоневронов диафрагмальных и межреберных нервов. Импульсы, посылаемые к дыхательным центрам, возбуждают эти невроны, последние же, в свою очередь, посылают импульсы к дыхательным мышцам. Таким образом, соответственно периодическому возбуждению дыхательного центра происходят периодические сокращения дыхательных мышц. Они возникают под влиянием эфферентных импульсов, посылаемых к ним нервными центрами.

Дыхательная мускулатура иннервируется спинальными нервами. Парный диафрагмальный нерв, иннервирующий диафрагму, выходит из шейной части спинного мозга, а межреберные нервы, снабжающие межреберные мышцы, начинаются в грудной части спинного мозга.

Двигательные невроны спинного мозга, иннервирующие дыхательные мышцы, не могут самостоятельно обеспечить работу дыхательного аппарата, они всецело подчинены дыхательному центру головного мозга. В самом деле, если перерезать спинной мозг в середине грудной его части, то дыхательные движения грудной клетки ниже участка перерезки прекращаются. Если разрез сделан несколько выше - между грудной и шейной частями спинного мозга, то остается лишь диафрагмальное дыхание, межреберная же мускулатура полностью теряет способность к сокращению. После отделения спинного мозга от продолговатого парализуются и движения диафрагмы. При перерезке, произведенной между продолговатым и средним мозгом, дыхательные движения не прекращаются. В связи с этим очевидно, что место возникновения импульсов, периодически возбуждающих дыхательную мускулатуру, находится в продолговатом мозгу, где расположены клетки дыхательного центра. Значение сдвигов газового состава крови для регуляции дыхания. Важную роль в регуляции дыхания играет изменение содержания углекислоты кислорода в крови, протекающей через дыхательный центр. В процессе раздражения механорецепторов для регуляции дыхания заключается в периодической смене вдохов и выдохов, обусловленной сигналами, посылаемыми в дыхательный центр, основную роль играет блуждающий нерв, в стволе которого проходят афферентные волокна от интерорецепторов, находящихся в стенке легких.

Заключение

Физиология принадлежит к биологическим дисциплинам. Основным объектом изучения физиологии, так же как и ряда других биологических наук, является жизнь организма.

Физиология изучает процессы, протекающие в организме, начиная с примитивных функций раздражимости живого вещества до самых высших проявлений жизни организма в его взаимодействии с внешней средой.

Задача физиологии заключается в изучении жизненных процессов, протекающих в организме человека или животных, в их взаимосвязи, в установлении причинной связи между ними, общих закономерностей, лежащих в их основе, в прослеживании их эволюции, во вскрытии качественного своеобразия процессов, протекающих в живом организме, и в выявлении качественных отличий физиологических процессов на разных ступенях развития животного мира.

В каждом организме независимо от того, является ли он одноклеточным или многоклеточным, протекают физиологические процессы.

Эти процессы усложняются по мере развития органического мира. У животного с более сложной организацией они приобретают более сложный характер. Изучение физиологических процессов у животных, находящихся на разных ступенях зоологической лестницы, помогает вскрыть закономерности, лежащие в основе этих процессов у более высокоорганизованных животных, и тем самым способствует их познанию.

Человек является самым высокоорганизованным живым существом, и хотя физиологические функции, наблюдающиеся у животных, осуществляются и в организме человека, но они качественно отличаются от физиологических функций животных.

Список литературы

1. Зимкин Н.В. «Физиология человека» - Москва: Физкультура и спорт, 2008-496 с.

3. Логинов А.В. «Физиология с основами анатомии человека» - Москва: Медицина, 2008-496 с.

4. Маркосян А.А. «Физиология» - Москва: Медицина, 2007-350 с.

5. Сапин М.Р. «Анатомия и физиология» - Москва: Академия, 2009-432 с.



Понравилась статья? Поделитесь ей
Наверх