Понятие и задачи космического мониторинга окружающей среды. Дистанционные методы исследований

Современный мир не перестает удивлять нас новыми открытиями и достижениями. В наши дни человек владеет колоссальными знаниями. Область его интересов и деятельность ограничиваются не только Землей, а выходят и за ее пределы.

Наука и технологии служат человеку в первую очередь для улучшения качества его жизни и становятся теми средствами, с помощью которых можно находить более эффективные способы решения экономических, экологических и социальных проблем.

Сегодня все более активно используются данные о нашей планете, получаемые с искусственных спутников и пилотируемых космических аппаратов. Они называются данными дистанционного (удаленного) зондирования. Этот широко применяемый в наши дни термин - синоним словосочетаний «изображение Земли из космоса» и «космические снимки Земли». К основным достоинствам дистанционного зондирования можно отнести возможность мониторинга (от лат. monitor - тот, кто предупреждает) или регулярных наблюдений за динамикой географических процессов.

Дистанционные методы исследования окружающей среды были известны еще в древнем Риме. В XVIII в. люди научились получать первые снимки-рисунки различных объектов с помощью фотокамеры - камеры-обскуры (от лат. camera - комната и obscura - темная). С развитием фотографии появилась возможность моментально получать детальные и точные снимки. Сначала проводилась фотосъемка местности (с воздушных шаров и воздушных змеев, позднее - с аэростатов и аэропланов). Первый космический снимок Земли был сделан в I960 г.

За последние годы развитие компьютерных технологий и ГИС привели к тому, что данные спутникового мониторинга нашли применение в самых разных областях - от сельского хозяйства до геоэкологии. Это позволило оперативно реагировать на малейшие изменения в окружающей среде и предупреждать опасные явления и процессы.

Одно из известных вам направлений использования космических снимков - метеорология. Изучение - одна из самых сложных научно-практических задач. Возможности дистанционных методов зондирования позволили вести наблюдение за на обширных пространствах в режиме реального времени и отслеживать формирование (определять тип и мощность облачности, получать ее стереоскопическое изображение, измерять температуру и т.д.). Слежение за формированием и передвижением позволило заранее прогнозировать опасные для человека явления природы (ураганы, смерчи, торнадо) и тем самым предупреждать их тяжелые последствия.

Космическая съемка незаменима при составлении метеопрогнозов, прогнозировании опасных атмосферных явлений, при исследовании Земли. Она позволяет определять местоположение локальных источников загрязнения (теплоэлектростанций, целлюлозно-бумажных комбинатов и др.) и вести наблюдение за экологической ситуацией в районах захоронения токсичных отходов.

Важное практическое направление использования космоснимков - учет природных ресурсов. Дистанционное зондирование значительно упростило оценку их запасов, особенно в труднодоступных районах. Так, при изучении стало проще производить подсчет площадей лесов, определять тип лесонасаждений и возраст деревьев, доминирующие породы и объем биомассы. Упростились не только картографирование лесных массивов, но и контроль за их сохранностью, включая контроль за рубками, границами водоохранных зон и т.п.

Спутниковые данные помогают раннему (оперативному) обнаружению пожаров. Известно, что при площади очага пожара менее 5 га его ликвидация осуществляется десантом всего из 4-б человек, то есть относительно легко и быстро.

Природные стихийные бедствия, такие как наводнения, ураганы, землетрясения, торнадо и другие, наносят огромный экономический ущерб и приводят к человеческим жертвам. Поэтому мониторинг чрезвычайных ситуаций очень важен. Использование дистанционных методов зондирования позволяет прогнозировать возникновение чрезвычайных ситуаций, локализировать опасные явления на начальных стадиях развития и значит - уменьшить возможный ущерб.

В настоящее время наземные службы России контролируют 27% площади лесного фонда, 47% - находятся под охраной авиационной лесной службы. Неохраняемая площадь составляет 26%, или около 300 млн га. Над этой площадью контроль осуществляется только при помощи спутниковой съемки. С ее помощью можно выявить вновь возникающие очаги пожара даже под дымовой завесой, а в случае возгорания торфа - даже при отсутствии открытого пламени.

Применение дистанционного зондирования в изучении минеральных ресурсов позволяет исследовать условия залегания горных пород и оценить объемы предполагаемых месторождений. Эффективно использование космических снимков и при поиске нефти, природного газа, угля, решении проблем развития альтернативных источников энергии, таких как геотермальная, энергия солнца и ветра, а также при строительстве и эксплуатации атомных и гидроэлектростанций.

Космические снимки используют для изучения водных и биоресурсов, в частности для определения запасов фитопланктона и рыбного промысла, для исследования ареалов обитания различных видов животных.

Применение космических снимков в сельском хозяйстве позволяет повысить эффективность использования земель, так как они «видят» районы с угнетенной и помогают определить, куда и сколько нужно внести удобрений, где и как часто производить полив, когда можно собирать урожай.

Применение космических снимков для исследования морских акваторий также позволяет решать разнообразные хозяйственные задачи: исследовать ледовую обстановку, осуществлять контроль над рыболовством. Кроме того, они обеспечивают проведение мониторинга температурного режима и солености воды, изучение изменений береговой линии шельфа. Особенно заинтересованы в дистанционном зондировании морских акваторий научно-исследовательские организации и компании, занимающиеся добычей морепродуктов и в шельфовой зоне и обеспечивающие судоходство и навигацию.

Космические снимки позволяют оценить и льда, что вместе с анализом температурных показателей дает возможность прогнозировать скорость таяния снега и предупреждать наводнения. Обнаружение и локализация ледяных , на сибирских реках, например, позволяют избежать резкого подъема уровня воды и связанных с ним бедствий.

Развитие хозяйственной деятельности неразрывно связано с использованием природных ресурсов. Интенсивное их потребление в прошлом веке привело к существенному ухудшению экологической ситуации во многих районах страны. Система спутникового мониторинга помогает своевременно обнаруживать загрязнения водных объектов и почв, воздуха и , мест разрывов нефте- и газопроводов, оценить выбросы загрязняющих веществ промышленными предприятиями и своевременно бороться с проблемами обезлесения и опустынивания.

На сегодняшний день практически не осталось направлений в исследовании Земли, в которых бы не использовались космические снимки. Применение спутникового мониторинга дает возможность управлять территориями, правильно и своевременно принимать решения в случае возникновения чрезвычайной ситуации.

Напомним, что для дешифрирования космического снимка в первую очередь необходимо определить, какое это явление (объект) изображено на снимке и на какой территории. Затем - найти явление (объект) на карте, определить его географическое положение, качественные и количественные характеристики.

Дистанционного зондирования мйтоды (a. remote sensing, distances methods; н. Fernerkundung; ф. teledetection; и. metodos a distancia ), - общее название методов изучения наземных объектов и космич. тел неконтактным путём на значит. расстоянии (напр., с воздуха или из космоса) разл. приборами в разных областях спектра. Д. м. позволяют оценивать региональные особенности изучаемых объектов, выявляемые на больших расстояниях. Термин получил распространение после запуска в 1957 первого в мире ИСЗ и съёмки обратной стороны Луны сов. автоматич. станцией "Зонд-3" (1959).
Различают активные Д. м., основанные на использовании отражённого объектами излучения после облучения их искусств. источниками, и пассивные, к-рые изучают собств. излучение тел и отражённое ими солнечное. В зависимости от расположения приёмников Д. м. подразделяют на наземные (в т.ч. надводные), воздушные (атмосферные, или аэро-) и космические. По типу носителя аппаратуры Д. м. различают самолётные, вертолётные, аэростатные, ракетные, спутниковые Д. м. (в геол.-геофиз. исследованиях - аэрофотосъёмка, аэрогеофизическая съёмка и космическая съёмка). Отбор, сравнение и анализ спектральных характеристик в разных диапазонах электромагн. излучения позволяют распознать объекты и получить информацию об их размере, плотности, хим. составе, физ. свойствах и состоянии. Для поисков радиоактивных руд и источников используется g-диапазон, для установления хим. состава г. п. и почв - ультрафиолетовая часть спектра; световой диапазон наиболее информативен при изучении почв и растит, покрова, ИК - даёт оценки темп-р поверхности тел, радиоволны - информацию о рельефе поверхности, минеральном составе, влажности и глубинных свойствах природных образований и об атмосферных слоях.
По типу приёмника излучения Д. м. подразделяют на визуальные, фотографические, фотоэлектрические, радиометрические и радиолокационные. В визуальном методе (описание, оценка и зарисовки) регистрирующим элементом является глаз наблюдателя. Фотографич. приёмники (0,3-0,9 мкм) обладают эффектом накопления, однако они имеют разл. чувствительность в разных областях спектра (селективны). Фотоэлектрич. приёмники (энергия излучения преобразуется непосредственно в электрич. сигнал при помощи фотоумножителей, фотоэлементов и др. фотоэлектронных приборов) также селективны, но более чувствительны и менее инерционны. Для абс. энергетич. измерений во всех областях спектра, и особенно в ИК, используют приёмники, преобразующие тепловую энергию в др. виды (чаще всего в электрические), для представления данных в аналоговой или цифровой форме на магнитных и др. носителях информации для их анализа при помощи ЭВМ. Видеоинформация, полученная телевизионными, сканерными (рис.), панорамными камерами, тепловизионными, радиолокационными (бокового и кругового обзора) и др. системами, позволяет изучить пространственное положение объектов, их распространённость, привязать их непосредственно к карте.


Наиболее полные и достоверные сведения об изучаемых объектах даёт многоканальная съёмка - одновременные наблюдения в нескольких диапазонах спектра (напр., в видимом, ИК и радиообласти) или радиолокация в сочетании с методом съёмки более высокого разрешения.
В геологии Д. м. используются для изучения рельефа, строения земной коры, магнитных и гравитац. полей Земли, разработки теоретич. принципов автоматизир. систем космофотогеол. картирования, поиска и прогнозирования м-ний п. и.; исследования глобальных особенностей геол. объектов и явлений, получения предварит, данных о поверхности Луны, Венеры, Марса и др. Развитие Д. м. связано с улучшением наблюдат. базы (спутники-лаборатории, балонные аэростанции и др.) и техн. аппаратуры (внедрение криогенной техники, снижающей уровень помех), формализацией дешифровочного процесса и созданием на этой основе машинных методов обработки информации, дающих макс. объективность оценок и корреляций. Литература : Аэрометоды геологических исследований, Л., 1971; Баррет Э., Куртис Л., Введение в космическое землеведение. Дистанционные методы исследования Земли, пер. с англ., М., 1979; Гонин Г. Б., Космическая фотосъемка для изучения природных ресурсов, Л., 1980; Лаврова Н. П., Стеценко А. Ф., Аэрофотосъемка. Аэрофотосъемочное оборудование, М., 1981; Радиолокационные методы исследования Земли, М., 1980; "Исследование Земли из космоса" (с 1980); Дистанционное зондирование: количественный подход, пер. с англ., М., 1983; Теicholz E., Processing Satellite Data, "Datamation", 1978, v. 24, No 6. К. А. Зыков.

  • - обследования в сельском хозяйстве, совокупность методов сбора, обработки и использования материалов аэро- и космич...

    Сельско-хозяйственный энциклопедический словарь

  • - Рис. 1. Аппарат Ван Слайка для определения щелочного резерва плазмы крови. Рис. 1. Аппарат Ван Слайка для определения щелочного резерва плазмы крови...

    Ветеринарный энциклопедический словарь

  • - в демoграфин, совокупность приёмов изображения закономерностей развития и размещения нас., зависимостей между демографич. процессами и структурами с помощью начертаний. По сравнению с алгебраич...

    Демографический энциклопедический словарь

  • - 1) методы изучения газового состава крови, основанные на принципе физического и химического вытеснения газов крови, поглощении выделяющихся газов химическими реактивами и измерении давления в замкнутой системе до и...

    Большой медицинский словарь

  • - совокупность приемов, позволяющих исследовать и прогнозировать развитие природных объектов путем сопоставления прихода и расхода вещества, энергии и других потоков...

    Экологический словарь

  • - защиты растений, совокупность приемов сокращения численности нежелательных организмов с помощью др. живых существ и биопродуктов...

    Экологический словарь

  • - метод решения краевых задач математической физики, сводящиеся к минимизации функционалов - скалярных переменных величин, зависящих от выбора одной или нескольких функций...

    Энциклопедический словарь по металлургии

  • - способы, приемы, средства обеспечения необходимого управляющего воздействия органов исполнительной власти, органов местного самоуправления, осуществляющих исполнительную деятельность, их должностных лиц,...

    Административное право. Словарь-справочник

  • - I Ван-Сла́йка ме́тоды газометрические методы количественного определения аминного азота, кислорода и углекислого газа крови - см. Азот. II Ван-Сла́йка ме́тоды 1) методы изучения газового состава крови,...

    Медицинская энциклопедия

  • - методы выявления гистиоцитов в препаратах нервной ткани и различных органов с помощью аммиачного серебра или пиридиново-содовых растворов серебра...

    Большой медицинский словарь

  • - методы обезвреживания отбросов, содержащих органические вещества, основанные на их разогревании в результате жизнедеятельности термофильных аэробных микроорганизмов...

    Большой медицинский словарь

  • - методы оценки предположений о характере наследования, основанные на сопоставлении наблюдаемых и ожидаемых соотношений больных и здоровых в семьях, отягощенных наследственными болезнями, с учетом способа...

    Большой медицинский словарь

  • - гистохимические методы выявления ферментов, основанные на реакции образования осадков фосфата кальция или магния в местах локализации ферментативной активности при инкубации срезов тканей с органическими...

    Большой медицинский словарь

  • - радиометрические методы, основанные на использовании g -излучения. По виду излучения различают: Г.-м., использующие g -излучение г. п. и руд, и Г.-м., использующие рассеянное g...

    Геологическая энциклопедия

  • - дистанционного зондирования мйтоды, - общее название методов изучения наземных объектов и космич. тел неконтактным путём на значит. расстоянии разл. приборами в разных областях спектра...

    Геологическая энциклопедия

  • - "...2...

    Официальная терминология

"Дистанционные методы" в книгах

84. Методы элементарной математики, математической статистики и теории вероятностей, эконометрические методы

Из книги Экономический анализ. Шпаргалки автора Ольшевская Наталья

84. Методы элементарной математики, математической статистики и теории вероятностей, эконометрические методы При обосновании потребностей в ресурсах, учете затрат на производство, разработке планов, проектов, балансовых расчетах в обычных традиционных экономических

Дистанционные формы обучения

Из книги Преподавание внетелесных путешествий и осознанных сновидений. Методики набора групп и их эффективного обучения автора Радуга Михаил

Дистанционные формы обучения Описание Дистанционная форма обучения – это личное обучение одного человека или групп людей с преподавателем с помощью различных средств коммуникации. Все прочие частные детали и структуру этого процесса определяет выбранная подформа

Дистанционные настройки

Из книги Секрет целительства Рэйки автора Адмони Мириам

Дистанционные настройки Те из читателей, кто интересовался сайтами по Рэйки в Интернете, наверняка знают, что «настройки Рэйки» получить очень просто. Зайди на соответствующий форум, можно даже не под своим именем, и попроси у ведущего форум Мастера «дистанционную

Дистанционные коррекции: работа по фантому, фотографии и телефонному звонку. Коррекция в обратном ходе времени

Из книги Эниология автора Рогожкин Виктор Юрьевич

Дистанционные коррекции: работа по фантому, фотографии и телефонному звонку. Коррекция в обратном ходе времени Многие целители, колдуны и т. д. для придания себе большей значимости особое значение придают дистанционным видам работы с пациентами: по фотографии,

ДИСТАНЦИОННЫЕ ИЗМЕРЕНИЯ 1: ПАРАЛЛАКС

Из книги Астрономия автора Брейтот Джим

ДИСТАНЦИОННЫЕ ИЗМЕРЕНИЯ 1: ПАРАЛЛАКС Две соседних звезды одинаковой яркости могут находиться на совершенно разном расстоянии от Земли; одна может быть гораздо ярче и гораздо более отдаленной, чем другая. Метод параллаксаРасстояния до звезд, расположенных менее чем в

ДИСТАНЦИОННЫЕ ИЗМЕРЕНИЯ 2: ЗА ПРЕДЕЛАМИ ПАРАЛЛАКСА

Из книги Астрономия автора Брейтот Джим

ДИСТАНЦИОННЫЕ ИЗМЕРЕНИЯ 2: ЗА ПРЕДЕЛАМИ ПАРАЛЛАКСА Блеск звезды, наблюдаемой с Земли, зависит от ее светимости и расстояния до нее. Абсолютную звездную величину можно вычислить на основании видимой звездной величины и расстояния до звезды. Эйнар Герцшпрунг в 1911 году и

3. Методы лечения абсцесса и гангрены легкого. Общие и местные, консервативные и оперативные методы лечения

Из книги автора

3. Методы лечения абсцесса и гангрены легкого. Общие и местные, консервативные и оперативные методы лечения Поскольку при гангрене легкого прогноз всегда серьезный, обследование и лечение больных необходимо проводить как можно быстрее. Первоначальной задачей является

Часть 9. Дистанционные информационные взаимодействия живого человека с разными объектами нашего мироздания

автора Лисицын В. Ю.

Часть 9. Дистанционные информационные взаимодействия живого человека с разными объектами нашего мироздания Дистанционные информационные взаимодействия живого организма человека с разными формами существования Вселенной происходят в рамках определенных отношений. К

Глава 1. Дистанционные информационные взаимодействия живых биосистем, включая человека, со свойствами разных веществ

Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

Глава 1. Дистанционные информационные взаимодействия живых биосистем, включая человека, со свойствами разных веществ В связи с этим большое научное и практическое значение заслуживают исследования Н.Л. Лупичева, В.Г. Марченко (1989 г.) и Н.Л. Лупичева (1990 г.). Они проводили

Глава 2. Дистанционные информационные взаимодействия живого человека с разными предметами

Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

Глава 2. Дистанционные информационные взаимодействия живого человека с разными предметами В связи с этим ученые А.П. Дубров, В.Н. Пушкин (1989 г) писали: «ПСИХОКИНЕЗ нередко характеризуется как способность человека воздействовать на различные предметы с помощью мысленного

Глава 4. Дистанционные информационные взаимодействия живого человека с явлениями природы

Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

Глава 4. Дистанционные информационные взаимодействия живого человека с явлениями природы Для этого вновь процитируем прекрасную работу А.П. Дуброва и В.Н Пушкина (1989 г.), в которой они написали следующее: «Автор одной из статей о необычайных способностях А. В. Игнатенко

Глава 4. Дистанционные информационные взаимодействия живого человека с любым растением

Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

Глава 4. Дистанционные информационные взаимодействия живого человека с любым растением По мнению автора, правомерно процитировать интереснейший фрагмент из работы А.П. Дуброва и В.Н. Пушкина под названием: «БИОИНФОРМАЦИОННЫЙ КОНТАКТ ЧЕЛОВЕК – РАСТЕНИЕ».В связи с этим мы

Глава 5. Дистанционные информационные взаимодействия между людьми

Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

Глава 5. Дистанционные информационные взаимодействия между людьми Общение посредством речиВ связи с этим практическое значение имеют исследования В.А. Вороневич (1994 г.). Впервые в литературе им представлен уникальный материал, демонстрирующий визуализацию каналов

5.2.1. Методы использования слова (словесные методы обучения)

Из книги Специальный армейский рукопашный бой. Часть 2, Часть 3 главы 10, 11. автора Кадочников Алексей Алексеевич

5.2.1. Методы использования слова (словесные методы обучения) Посредством слова руководитель занятия излагает материал, ставит задачи, формирует отношение к ним, руководит их выполнением, анализирует и оценивает результаты. Основные разновидности этого метода:

49. Химический состав, методы получения порошков, свойства и методы их контроля

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

49. Химический состав, методы получения порошков, свойства и методы их контроля Порошковые материалы – материалы, получаемые в результате прессования металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме

Рабочая программа учебной
дисциплины

УТВЕРЖДАЮ

Проректор-директор ИПР

«_____» ________ 201 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дистанционные методы ИССЛЕДОВАНИЙ

НАПРАВЛЕНИЕ ООП: 022000 ЭКОЛОГИЯ И ПРИРОДОПОЛЬЗОВАНИЕ

ПРОФИЛЬ ПОДГОТОВКИ: Геоэкология

КВАЛИФИКАЦИЯ (СТЕПЕНЬ): бакалавр

БАЗОВЫЙ УЧЕБНЫЙ План ПРИЕМА 2010 г. (с изменениями 2012 г.)

КУРС 3; СЕМЕСТР 5;

КОЛИЧЕСТВО КРЕДИТОВ: 3

ПРЕРЕКВИЗИТЫ: Геология; География; Экология;

КОРЕКВИЗИТЫ: Геоинформационные системы в экологии; Ресурсы Земли; Охрана окружающей среды

ВИДЫ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ И ВРЕМЕННОЙ РЕСУРС:

часов (ауд.)

Лабораторные занятия

часов (ауд.)

Практические занятия

часов (ауд.)

АУДИТОРНЫЕ ЗАНЯТИЯ

5 1

САМОСТОЯТЕЛЬНАЯ РАБОТА

часа

ФОРМА ОБУЧЕНИЯ

ВИД ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ: ЗАЧЕТ В 5 СЕМЕСТРЕ

Обеспечивающая кафедра: «Геоэкологии и геохимии »

ЗАВЕДУЮЩИЙ КАФЕДРОЙ: д. г.-м. н., профессор

РУКОВОДИТЕЛЬ ООП: д. г.-м. н., профессор

ПРЕПОДАВАТЕЛЬ: к. г.н., доцент

ФТПУ 7.1-21/01

Рабочая программа учебной
дисциплины

Предисловие

1. Рабочая программа составлена на основе Федерального государственного образовательного стандарта по направлению 022000 «Экология и природопользование », утвержденного 22 декабря 2009 г. № 000

РАССМОТРЕНА и ОДОБРЕНА на заседании обеспечивающей кафедры геоэкологии и геохимии 13.10.2011 г. протокол

2. Разработчики:

доцент кафедры ГЭГХ ____________

3. Зав. обеспечивающей кафедрой ГЭГХ ____________

4.Рабочая программа СОГЛАСОВАНА с институтом, выпускающими кафедрами направления; СООТВЕТСТВУЕТ действующему плану.

Зав. выпускающей кафедрой ___________

1. Цели освоения дисциплины

В результате освоения данной дисциплины студент приобретает знания, умения и навыки, обеспечивающие достижение целей основной образовательной программы «Экология и природопользование».

Студент, изучивший курс «Дистанционные методы исследования», должен знать:

Основные современные системы, методы и технологии дистанционных методов исследования окружающей среды и спектры решаемых геоэкологических задач;

Цели предмета «Дистанционные методы исследования» достигаются за счёт выполнения комплекса учебно-методических работ:

Овладение общетеоретическими знаниями о современных методах дистанционных исследований окружающей среды;

Умение на лабораторных занятиях применять современные методы дистанционного зондирования для решения широкого спектра геоэкологических задач;

Освоение общих принципов обработки данных ДМИ, возможности получения результатов ДМИ, доступа к информации.

2. Место дисциплины в структуре ООП

Дисциплина относится к дисциплинам математического и естественнонаучного цикла (Б.2). Она непосредственно связана с дисциплинами естественнонаучного и математического цикла («Геология», «География», «Экология» и др.) и частично опирается на освоенные при изучении данных дисциплин знания и умения.

Знания и умения, полученные при освоении данной дисциплины, являются основой для изучения ряда дисциплин математического и естественнонаучного (Б.2) и профессионального (Б.3) циклов: «Ресурсы Земли», «Охрана окружающей среды», «Оценка воздействия на окружающую среду», «Геоэкология», «Основы поисков и геолого-экономической оценки природных ресурсов», «Геоинформационные системы в экологии».

3. Результаты освоения дисциплины

Студент, изучивший дисциплину «Дистанционные методы исследования» должен уметь:

Четко формулировать задачи, комплексирование дистанционных методов при геоэкологических исследованиях разного масштаба и ориентации мониторинга окружающей среды;

Уметь на основе анализа литературных источников и комплекта космических снимков давать оценку состояния окружающей среды.

После изучения данной дисциплины студенты приобретают знания, умение и опыт, соответствующие результатам основной образовательной программы. Соответствие результатов освоения дисциплины «Дистанционные методы исследования» формируемым компетенциям ООП представлено в таблице.

Формируемые компетенции в соответствии с ООП*

Результаты освоения дисциплины

ОК-1, ОК-2, ОК-6, ОК - 13

В общекультурными компетенциями:

Владеть культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения;

Уметь логически верно, аргументировано и ясно строить устную и письменную речь;

Иметь базовые знания в области информатики и современных геоинформационных технологий , владеть навыками использования программных средств и работы в компьютерных сетях, умением создавать базы данных и использовать ресурсы Интернета, владеть ГИС-технологиями; уметь работать с информацией из различных источников для решения профессиональных и социальных задач;

Владеть основными методами, способами и средствами получения, хранения, переработки информации, иметь навыки работы с компьютером как средством управления информацией.

В результате освоения дисциплины бакалавр должен обладать следующими профессиональными компетенциями:

Компетенциями в области «Природопользование»:

Знать теоретические основы биогеографии , общего ресурсоведения и регионального природопользования, картографии.

*Расшифровка кодов результатов обучения и формируемых компетенций представлена в ФГОС ВПО по направлению подготовки бакалавров по направлению 022000 «Экология и природопользование».

4. Структура и содержание дисциплины

Раздел 1. Введение

Лекции. Определение и содержание понятий «дистанционные методы исследований» (ДМИ) и «дистанционное зондирование земли» (ДЗЗ). Взаимосвязь с основными дисциплинами учебного плана. Актуальность применения ДМИ. Основные группы методов. Исторические сведения об использовании ДМИ. Развитие ДМИ и ДЗЗ в Мире, России, г. Томске, ТПУ. Научная и учебная литература , периодические и информационно-справочные издания.

Раздел 2. Физические основы ДМИ. Электромагнитное излучение (ЭМИ) как основа ДМИ.

2.1. Общие сведения об ЭМИ

Лекции. Определение и основные характеристики (параметры) ЭМИ. Шкала длин волн, основные диапазоны (излучения): космическое, гамма, рентгеновское, оптическое (ультрафиолетовое, видимое, инфракрасное или тепловое), радиодиапазон (СВЧ, ВЧ, УКВ, КВ, средневолновое, длинноволновое), сверхнизкочастотное (пульсации звезд, катаклизмы типа землетрясений, извержений вулканов и т. п.). Спектральная (длина волны, энергия кванта, интенсивность…), временная и поляризационная характеристики ЭМИ. Особенности лазерного излучения. Основные диапазоны, используемые в ДМИ. Основные ДМИ по типу измеряемой энергии и их характеристика (пассивные, активные).

Солнце как основной источник ЭМИ в природе. Характеристика спектра солнечной радиации.

Лабораторная работа 1-2. Занятие с учебно-методическими материалами (Альбомы космоснимков, образцы дешифрирования аэрофотоснимков, Дешифрирование многозональных аэрокосмических снимков).

2.2. Взаимодействие ЭМИ с атмосферой

Лекции Основные физические и химические параметры атмосферы, влияющие на ЭМИ. Взаимодействие ЭМИ с озоном. Зоны прозрачности атмосферы для теплового излучения. Взаимодействие атмосферы с ЭМИ микроволнового диапазона. Причины избирательного поглощения и рассеяния. ЭМИ в атмосфере (рассеяние Рэлея, Ми). Влияние положения участка земной поверхности по отношению к Солнцу на характеристику ЭМИ и особенности применения ДМИ для решения различных задач.

2.3. Взаимодействие ЭМИ с различными веществами и средами на поверхности Земли

Лекции. Характеристика главных процессов взаимодействия ЭМИ с веществами на поверхности Земли (отражение, рассеивание, абсорбция , трансмиссия, эмиссия) и их важнейшие константы (альбедо, коэффициент поглощения, экстинкция, чистое пропускание, эмиссия). Основные факторы взаимодействия, влияющие на эффективность применения ДМИ при решении геоэкологических задач.

Раздел 3. Основные характеристики природных сред и материалов для ДМИ

3.1. Характеристики горных пород

Лекции. Отражательная и поглощательная способности горных пород, их зависимость от минералогических и геохимических характеристик, генетической породы. Диагностика горных пород при ДМИ. Влияние вторичных процессов (гидротермальные изменения, выветривание) на первичные характеристики пород. Части спектра ЭМИ, в которых горные породы обладают высокими контрастными характеристиками.

Вторичное тепловое излучение (эмиссия) горных пород. Взаимосвязь вещественного состава, генетических особенностей горных пород с их физическими свойствами и эмиссией. Условия благоприятные для проведения инфракрасных съёмок.

Использование спектральных характеристик горных пород при ДМИ в целях геокартирования, решения геоэкологических задач, прогнозирования и поисков месторождений полезных ископаемых .

Лабораторная работа 3. Поиск данных по темам дистанционного зондирования в сети Internet

3.2. Характеристика почв

Лекции. Отражательная и поглотительная способности почв, их отличие от горных пород. Причины отличия. Различие основных типов почв по их спектральной яркости. Связь спектральной характеристики почв с их основными параметрами (минеральный и химический состав, содержание органики, влажность , структура и др.). Спектральные каналы для изучения основных характеристик почв.

Тепловое излучение почв. Основные свойства почв, определяющие её температурные характеристики.

Использование характеристик почв при ДМИ для их картирования и решения геоэкологических задач.

3.3. Характеристика растительности

Лекции. Отражательная и пропускная способность. Спектральные характеристики отраженного и прошедшего излучения при его взаимодействии с различными растительными сообществами, с больной и здоровой листвой. Влияние внешних факторов на характеристики растений (климат, тип почв, характер питательных и загрязняющих веществ и др.).

Характеристика теплового (температурного) излучения растений и его связь с внутренними и внешними факторами.

Смещение спектральных характеристик растительных сообществ как чуткий индикатор изменения различных факторов окружающей среды.

3.4. Характеристика вод озёр, рек, морей

Лекции. Процессы рассеяния и поглощения света, происходящие в толще воды. Зависимость спектральных характеристик воды от различных факторов (мутность, взвеси, планктон, солёность, температура и т. д.) и их проявленность в различных частях спектра ЭМИ. Актуальность исследования и мониторинга акваторий дистанционными методами.

Раздел 4. Техника и методика дистанционных исследований, характер решаемых задач. Основные группы ДМИ (космические, аэро-, наземные), уровень их развития и возможности прогресса, решаемые задачи, доступность потребителю.

4.1. Системы и приборы ДЗ из космоса

Лекции. Основные типы космических носителей, их характеристика и возможности решения задач ДЗЗ. Главные типы космических орбит (по форме, по наклонению, по отношению к Солнцу или Земле, по высоте) и их использование для ДЗЗ.

Методы измерений и наблюдений из космоса (фотографические, телевизионные, сканерные, радиолокационные и др.), решаемые задачи, преимущества и недостатки.

Отечественные и зарубежные современные космические системы и программы ДЗЗ, сравнительный анализ, решаемые задачи.

Доступ к информации ДЗ из космоса потребителей за рубежом, в России, в Западной Сибири, в Томске. Центры, лаборатории, пункты, станции приёма, хранения и тематической интерпретации данных. Возможность доступа к архивным данным, оперативность исполнения текущих заказов, стоимость основных услуг.

Региональные центры: - Западно-Сибирский региональный центр приёма и обработки спутниковых данных (ЗапСиб РЦ ПОД), Центр космического мониторинга природных ресурсов и процессов Сибири (ЦКПС); решаемые задачи, возможности создания и использования региональной ГИС.

Персональные станции приёма (ППС) информации ДЗЗ, основные характеристики, возможности. Требования к ППС.

Использование данных ДЗЗ из космоса при геоэкологических исследованиях и мониторинге окружающей среды.

Лабораторная работа 4-5. Определение последствий природных катастроф. Дешифрирование снимков.

Лабораторная работа 6-7. Дешифрирование космического снимка и оценка экологического состояния на заданной территории.

4.2. Аэрометоды дистанционных исследований

Лекции. История развития аэрометодов. Преимущества и недостатки. Характеристика различных методов (фотосъёмка, съёмка в ИК-диапазоне, радиолокация, магнитометрия, гравиметрия, гамма-спектрометрическая и радиометрическая съёмки, аэрозольные и газовые съёмки и др.). Основные решаемые задачи, методика, масштабы работ.

Лабораторная работа 8-9 . Определение границ водных поверхностей на космических снимках.

4.3. Наземные системы дистанционных исследований

Лекции. Основные виды наземных ДМИ и их характеристика (фотографические, геофизические, телевизионные, лидарные и др.). Решаемые задачи, методика, преимущества и недостатки. Нетрадиционные методы ДИ. Возможности различных фирм и научных центров г. Томска и ТПУ в организации и проведении наземных дистанционных исследований и мониторинга.

Лабораторная работа 10-11. Оценка антропогенного влияния на окружающую среду по данным дистанционного зондирования земли.

Раздел 5. Комплексирование ДМИ

Лекции. Рациональное комплексирование ДМИ на различных стадиях геоэкологических и геологичесих работ, при организации различных видов экологического мониторинга. Возможности и высокие перспективы использования ГИС-технологий при ДМИ. Примеры.

Лабораторная работа 12. Дешифрирование и сравнение космоснимков с районов экологических катастроф

Лабораторная работа 13. Защита рефератов

Закрепление теоретического материала при проведении практических работ с использованием картографического материала, атласов, специальной литературы, выполнение проблемно-ориентированных индивидуальных заданий.

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов (CРC)

6.1 Текущая СРС направлена на углубление и закрепление знаний, а также на развитие практических умений.

Текущая СРС включает следующие виды работ:

Работа студентов с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме;

Изучение тем, вынесенных на самостоятельную проработку;

Изучение теоретического материала к лабораторным занятиям;

Подготовке к зачету.

6.2 Творческая проблемно-ориентированная самостоятельная работа (ТСР) направлена на развитие интеллектуальных умений, комплекса универсальных (общекультурных) и профессиональных компетенций, повышение творческого потенциала бакалавров и заключается в поиске, анализе и презентации материалов по заданным темам рефератов.

6.2.1. Перечень тем для самостоятельной работы (рефераты, КР):

1. Современные активные методы ДИ, их преимущества и недостатки.

2. Использование ДМИ при оценке состояния и мониторинге ОС урбанизированных территорий.

3. Электромагнитное излучение Солнца и его использование при ДМИ.

4. Современные ДМИ атмосферы (решаемые экологические задачи, технические характеристики, методика).

5. Характеристики космических носителей и орбит с позиции их использования для ДМИ ОС.

6. Комплексирование ДМИ в решении задач горно-геологического мониторинга.

7. Современные аэрометоды дистанционных исследований.

8. Важнейшие характеристики растительности, используемые при ДМИ.

9. Наземные системы дистанционных исследований ОС.

10. Методы гамма-спектрометрии в геоэкологии.

11. Доступ потребителей к космической информации ДЗ Земли.

12. Важнейшие характеристики почв, используемые при ДМИ.

13. История развития и современное состояние ДМИ.

14. Развитие и состояние ДМИ в Западно-Сибирском регионе и в г. Томске.

15. Взаимодействие ЭМИ с атмосферой.

16. Основные характеристики горных пород, изучаемые ДМИ.

17. Основные характеристики почв, изучаемые ДМИ.

18. Основные характеристики растительности, изучаемые ДМИ.

19. Основные характеристики вод озёр, рек, морских побережий, изучаемые ДМИ.

20. Методы съёмки при ДМИ.

21. Фотографические методы и их использование при геологических и экологических исследованиях.

22. Телевизионные методы ДЗ и их использование при геологических и экологических исследованиях.

23. Сканерные методы ДЗ и их использование при геологических и экологических исследованиях.

24. Гамма-спектрометрические методы ДЗ и их использование при геологических и экологических исследованиях.

25. Радиолокационные методы ДЗ и их использование при геологических и экологических исследованиях.

26. Лидарные методы ДЗ и их использование при геологических и экологических исследованиях.

27. Методы ИК-съёмки и их использование при геологических и экологических исследованиях.

28. Голографические методы ДЗЗ.

29. Современные космические системы ДЗЗ.

30. Аэрометоды ДЗЗ.

31. Наземные методы дистанционных исследований.

32. Нетрадиционные виды ДЗ.

33. ДМИ в решении геологических задач (картирование, прогнозирование и поиски МПИ по видам).

34. Обработка результатов ДЗЗ с применением современных технологий.

35. Получение данных ДЗЗ (в том, числе характеристика наземных станций приема).

36. ДМИ в нефтегазовой отрасли.

37. ДМИ в решении конкретных геоэкологических задач.

38. ДМИ в мониторинге ОС.

Кроме того, допускаются свободные темы по конкретным регионам и районам.

· Определение последствий природных катастроф (по данным ДЗ): последствия цунами, шторма, наводнения и т. д.

· Мониторинг изменения береговой линии Аральского моря по данным ДЗ.

· Использование данных ДЗ при проведении геоэкологических исследований в районе месторождения Самотлор.

· Дистанционное зондирование при мониторинге урбанизированных территорий (город…).

· Использование данных ДЗ при проведении мониторинга территории…., загрязненной в результате ….

По итогам работы представляется письменный отчёт в форме курсовой работы и презентация в электронном виде, делается устное сообщение перед студентами группы.

Основные разделы: введение, основная часть (с главами по теме работы), заключение, список литературы, включающий не менее трёх источников (20010 – 2012 года).

6.3 Контроль самостоятельной работы

Оценка результатов самостоятельной работы осуществляется в виде двух форм: самоконтроль и контроль со стороны преподавателя.

7. Средства текущей и итоговой оценки качества освоения дисциплины (фонд оценочных средств)

Контроль знаний студентов по дисциплине осуществляется по 2 видам: текущий и итоговый.

Текущий контроль приучает студентов к систематической работе по изучаемой дисциплине и позволяет определить уровень усвоения студентами теоретического материала. Он осуществляется в виде контрольных и проверочных работ, тестовых опросов. Оценка знаний при текущем контроле осуществляется в соответствии с рейтинг - планом по дисциплине.

Итоговый контроль – в соответствии с учебным планом:

5 семестр – зачет

1. Дайте определение понятия «Дистанционное зондирование»?

2. Что понимается под спектром ЭМИ?

3. Основные спектральные диапазоны ЭМИ, используемые в ДМИ.

4. Относятся ли геофизические методы к ДМИ?

5. Какие научные открытия и достижения лежат в основе ДМИ?

6. Главные этапы в развитии ДМИ.

7. В чём заключается роль в развитии ДМИ?

8. Когда и в каких целях в России началось использование аэросъёмки?

9. Когда и в каких целях в России началось широкое использование аэрогаммасъёмки?

10. В каких организациях г. Томска разрабатывают и применяют ДМИ?

11. Возможно ли, на обычной фотографии увидеть объект или явление не видимое «невооружённым» глазом?

12. Почему человеческий глаз видит в диапазоне 0,4 – 0,78 мкм?

13. Почему летучая мышь «видит» в другом диапазоне, нежели человек?

14. Что такое пассивные методы и какие ДМИ к ним относятся?

15. Что такое активные методы и какие ДМИ к ним относятся?

16. Какова роль Солнца в ДМИ?

17. Какие человеческие органы используются при ДМИ?

18. Чем обусловлено появление полос поглощения в спектре ЭМИ Солнца, поступающего на поверхность Земли?

19. Влияние атмосферного озона на ЭМИ Солнца?

20. Насколько атмосфера прозрачна для теплового излучения?

21. Что такое эмиттерная энергия и её значение для ДМИ?

22. Факторы, определяющие возникновение «теплового парника» в атмосфере?

23. В каких диапазонах спектра ЭМИ атмосфера Земли «прозрачна»?

24. Предпочтительная высота Солнца при аэрокосмических съёмках?

25. В каких случаях при ДМИ используется низкое стояние Солнца?

26. Почему использование светофильтров позволяет получить более качественный снимок?

27. Что такое эмиссия и её роль для ДМИ?

28. Что понимается под «независимыми» параметрами ДЗ?

29. Что понимается под «зависимыми» параметрами ДЗ?

30. Какие характеристики горных пород изучаются ДМИ?

31. Какие характеристики почв изучаются ДМИ?

32. Какие характеристики растительности изучаются ДМИ?

33. Какие характеристики вод озёр, рек, морей изучаются ДМИ?

34. При какой съёмке чётко видны границы воды и суши?

35. Основные типы космических носителей аппаратуры ДЗЗ?

36. Типы космических орбит и их использование для ДМИ?

37. Решаемые задачи ДМИ в зависимости от высоты космических орбит.

38. Виды измерений и наблюдений из космоса, решаемые задачи.

39. Техника и методика космофотосъёмки, решаемые задачи.

40. Техника и методика сканерной космосъёмки, решаемые задачи.

41. Техника и методика радиолокационной съёмки, решаемые задачи.

42. Техника и методика ИК-съёмки, решаемые задачи.

43. Техника и методика лидарной съёмки, решаемые задачи.

44. Современные виды космических систем исследования ОС.

45. Система изучения природных ресурсов на базе «Ресурс-О».

46. Как оперативно получить и (или) заказать данные ДЗЗ?

47. Опыт и перспективы использования ППС.

48. Требования, предъявляемые к ППС.

49. Основные виды аэрометодов и решаемые экологические задачи.

50. Основные положения методики аэрогаммасъёмки и решаемые задачи.

51. Виды наземных систем исследования ОС, решаемые задачи.

52. Современные ДМИ в прогнозно-поисковых геологических работах.

53. Современные ДМИ в изучении природных ресурсов.

54. Современные ДМИ в оценке состояния и мониторинге ОС.

55. Современные ДМИ в геоэкологическом картировании.

7.3. Примеры вопросов для экзамена

1. Развитие и состояние ДМИ в России. Основные факторы взаимодействия ЭМИ с веществами и средами на поверхности Земли.

2. Развитие и состояние ДМИ в Западно-Сибирском регионе и в г. Томске. Основные современные методы наблюдений и измерений при ДЗЗ из космоса.

3. Современные космические системы исследования ОС. Излучение солнца и его использование при ДМИ.

4. Современные фотографические методы исследования ОС и их использование для решения экологических задач.

Важнейшие характеристики вод, используемые при ДМИ.

5. Современные наземные мобильные методы и средства дистанционных исследований и мониторинга ОС. Активные и пассивные ДМИ, преимущества и недостатки.

8. Учебно-методическое и информационное обеспечение дисциплины

Основная литература

1. Антыпко дистанционного теплового мониторинга геологической среды городских агломераций . – М.: Недра, 1992. – 15 с.

2. , Шевченко картирование на основе космической информации. – М.: Недра, 1988. – 221 с.

3. , Гершензон системы дистанционного зондирования Земли. – М.: Изд-во А и Б, 1997. – 269 с.

4. Гонин съёмки Земли. – Л.: Недра, 1989. – 255 с.

5. Кабанов мониторинг атмосферы. Ч.1. Научно-методические основы: Монография / Под общей ред. . – Томск: Изд-во «Спектр» Института оптики и атмосферы СО РАН, 1997. – 211 с.

6. Киенко в космическое природоведение и картографирование: Учебник для Вузов. - М.: Картгеоцентр – Геоиздат, 1994. –212 с.

7. , Фридман гамма-спектрометрии природных сред. – 3 изд., перераб. и дол. – М.: Энергоатомиздат, 1991. – 232 с.

8. // Исследование Земли из космоса. 2004. №2. С.61-96.

9. Кронберг П. Дистанционное изучение Земли: основы и методы дистанционных исследований в геологии (перевод с немецкого). – М.: Мир, 1988. – 343 с.

10. , Корчуганова методы в геологии. – М.: Недра, 1993. – 224 с.

11. , Архангельский методы исследования окружающей среды: Учебное пособие для Вузов. – Томск: Изд-во STT, 200. – 184 с.

12. Поцелуев методы геологических исследований: история, современное состояние / , // Т. 1: Полезные ископаемые. - , 2008. - С. 513-518.

13. Протасевич методы обнаружения радиоактивных выбросов в атмосферу: Конспект лекций / ; Томский политехнический университет. - Томск: Изд-во ТПУ, 1997. - 36 с.

14. Региональный мониторинг атмосферы. Ч. II. Новые приборы и методики измерений: Коллективная монография / Под общей ред. . – Томск: Изд-во «Спектр» Института оптики и атмосферы СО РАН, 1997. – 295с.

15. Рис дистанционного зондирования: пер. с англ. / ; пер. , . - М.: Техносфера, 2006.

17. Региональный мониторинг атмосферы. Ч. III. Уникальные измерительные комплексы: Коллективная монография / Под общей ред. . – Томск: Изд-во «Спектр» Института оптики и атмосферы СО РАН, 1998. – 238с.

18. Чандра зондирование и географические информационные системы : пер. с англ. / , . - М.: Техносфера, 2008. - 312 с.

19. , Молодчинин состояния окружающей среды тепловой аэросъёмкой. – М.: Недра, 1992. – 64 с.

Дополнительная литература

1. Альбом - СССР из космоса. – М.: ГУК и К при СМ СССР, 1982.

2. Альбом – Дешифрирования многозональных аэрокосмических снимков (методики и результаты). – ГДР. – М.: Наука, 1982.

3. Аэрогеофизические методы прогнозирования месторождений урана/ Под. ред. . – М.: Атомиздат, 1980. – 129 с.

4. Виноградов мониторинг экосистем. – М.: Наука, 1984. – 152 с.

5. Гарбук системы дистанционного зондирования Земли: Монография / , . - М.: Изд-во А и Б, 1997. - 296 с.

6. , Дмитриевский -аэрокосмическое изучение нефтегазоносных территорий. – М.: Наука, 1994. – 288 с.

7. Дистанционные исследования при поисках полезных ископаемых. – Новосибирск: Наука, 1986. – 175 с.

8. Дистанционные исследования при нефтегазопоисковых работах. – М.: Наука, 1988. – 224 с.

9. , Красильникова природных условий и ресурсов. – М.: Недра, 1988. – 299 с.

10. , Полетаев космической геологии. – М.: Недра, 1988. – 235 с.

11. Космическая информация в геологии / Под ред. и др. – М.: Наука, 1983. – 536 с.

12. Мелух исследования с использованием космических средств / Под ред. . Серия: Охрана природы и воспроизводство природных ресурсов. – М.: ВИНИТИ, 1988. – Т. 21. – 184 с.

13. Михайлов аппаратура дистанционного зондирования Земли / , . - М.: Вузовская книга, 2008. - 340 с.

14. и др. Основы дистанционных методов мониторинга загрязнения природной среды. – Л.: Гидрометеоиздат, 19с.

15. , Архангельский методы исследования окружающей среды: Учебное пособие / Томский политехнический университет.-Томск: STT, 2001.-184 c.:

16. Природа Земли из космоса: изучение природных ресурсов Земли с помощью данных, передаваемых со спутников по радиолокации / Под ред. . – Л.: Гидрометеоиздат, 1984. – 152 с.

Интернет-ресурсы

http://www. *****/ru/index. html

http://www. *****/distzond. html

http://www. *****/

http://www. /photos/digitalglobe-imagery/

http://*****/index. php? r=18&id=6793

http://www. pryroda. /index. php? newsid=1000384

9. Материально-техническое обеспечение дисциплины

При изучении основных разделов дисциплины, выполнении практических работ студенты используют разнообразный картографический материал, включающий атласы России, Мира, комплект космо - и аэрофотоснимков, как в печатном издании, так и в электронном виде.

Программа составлена на основе ФГОС ВПО по направлению подготовки 022000 «Экология и природопользование».

Программа одобрена на заседании кафедры ГЭГХ ИПР

(протокол № ____ от «___» _______ 2011 г.).

Учебное издание

дистанционные методы исследований

Рабочая программа для студентов, обучающихся по направлению 022000 Экология и природопользование по профилю «геоэкология»

Разработчики

Считается, что дистанционные методы применялись в географии еще в дофотографический период. Это связывалось, например, с изучением местности по рисованным перспективным изо­бражениям, издавна известным в картографии. Еще Леонардо да Винчи (1500 г.) поставил вопрос о возможностях определения размеров и положения предметов по их двум рисован­ным изображениям. Позднее ряд ученых, и в их числе М. В. Ломоносов (1764 г.) и Ботан-Бопре (1791 г.), занимались практической реализацией этой идеи. Однако только появле­ние фотографии открыло ранее невиданные перспективы в дистанционном зондировании Земли и ее изучении на основе фотографических изображений.

Со времени изобретения фотографии французами Л. Ж. М. Дагером и Ж. Н. Ньепсом (1839 г.) и англичанином У. Г. Ф. Толботом (1840-1841 гг.), а чуть позднее методики получения цветных изображений французом Л. Дюко дю Ороном (1868-1869 гг.) фотография почти сразу же стала использоваться для получения наземных фотографических снимков мест­ности с целью ее изучения. Методами наземной фототеодолитной съемки созданы карты Альп и Скалистых гор (Р. Гюбль, В. Девиль и др.). В то же время ставились опыты по фотографиро­ванию земной поверхности с воздушных шаров - «с высоты птичьего полета» (Ф. Надар - 1856 г., А. М. Кованько и В. Н. Срезневский - 1886 г.), а также с воздушных змеев и привязанных аэростатов (Р. Ю. Тиле - 1898 г., С. А. Ульянин – 1905 г.).

Опыты использования снимков, полученных с воздушных шаров, дали небольшие резуль­таты, но уже первые самолетные съемки совершили революцию. Регулярно аэросъемки в нашей стране выполняются с 30-х гг., и к настоящему времени накоплен полувековой фонд снимков, полностью покрывающих страну, для многих районов с многократным перекрытием, что особенно важно для изучения динамики географических объектов. Основной заказчик и по­требитель этой информации – Главное управление геодезии и картографии, его аэрогеодези­ческие предприятия, использующие аэрофотосъемку для топографического картографиро­вания страны. Кроме него, следует назвать ведомства, ответственные за исследования ре­сурсов страны, в системе которых созданы специальные подразделения «Аэрогеология», «Леспроект», «Сельхозаэросъемка». Через эти подразделения аэросъемочная информация становится доступной географу-исследователю.

При использовании аэроснимков довольно быстро возникла необходимость в получе­нии все более мелкомасштабных изображений, что, естественно, ограничивалось техниче­скими возможностями. Попытки в конце 50-х - начале 60-х гг. монтировать крупномас­штабные снимки и генерализовать их до мелкомасштабных не принесли желаемых резуль­татов. Поэтому для получения соответствующих снимков было важно увеличение потолка подъема самолетов, и уже к концу 50-х гг. американские самолеты «U-2» стали получать снимки с высоты до 20 км. Это тот же порядок высот, что и при использовании воздушных шаров. А вот появление баллистических ракет и их использование для фотографирования Земли сразу на порядок подняло этот потолок.


Уже в 1945 г. баллистическая ракета «V-2», запущенная с полигона Уайт-Сэндс в штате Нью-Мексико, позволила получить фотографии из космоса с высоты в 120 км. Последовавшая за этим серия запусков ракет типа «Viking» и «Aerobee» позволила фото­графировать Землю с высоты 100-150 км, а, например, в 1954 г. ракета достигла высоты в 250 км. На этой же высоте в начале 70-х гг. производилась съемка территории Австралии и Аргентины с английской баллистической ракеты «Skylark».

Несмотря на несовершенство методики получения снимков при фотографировании с баллистических ракет, они широко применялись в 60-70-е гг. и используются до настоящего времени, главным образом благодаря их относительной дешевизне при изучении незначительных по площади территорий. Известно применение данных снимков для изуче­ния растительности, типов использования земель, в том числе сельскохозяйственного, для нужд гидрометеорологии и геологии и при комплексных исследованиях природной среды.

Новая эра в дистанционном зондировании Земли открылась со времени запуска первых искусственных спутников Земли в 1957 г. в СССР и в следующем году в США, хотя, собст­венно, первые запуски не преследовали цель изучения Земли космическими средствами. Первые полеты на пилотируемых космических кораблях бывшего СССР и США - «Восток-1» (космо­навт - Ю. А. Гагарин, 1961 г.) и «Mercury МА-4» (астронавт Д. Гленн, 1962 г.) также не ставили таких задач. Но уже со времени второго пилотируемого полета Г. С. Титова произво­дилась съемка Земли. С американского корабля «Mercury МА-4» также были получены пер­вые фотографические снимки. В качестве съемочной аппаратуры использовались ручные фотокамеры.

Если в результате первых полетов получались десятки снимков, то уже к середине 60-х гг. с кораблей «Gemini» было получено более 1000 фотографий, причем большая их часть на цветной пленке и с высоким разрешением на местности - до 50 м. Однако район съемки ограни­чивался приэкваториальными поясами Земли.

Существенный прогресс в получении фотографических снимков внесли полеты «Apollo», и прежде всего с точки зрения оптимизации выбора фотографических материалов, отработки ме­тодики ориентации камер по отношению к Земле и др. С космических кораблей данной серии впервые (8-12 марта 1969 г.) произведено фотографирование в разных спектральных ин­тервалах, что положило начало многозональной фотографии. Первое фотографирование син­хронно осуществлялось четырьмя камерами на разных пленках и с разными светофильтрами.

Программа полетов космических кораблей «Союз» вначале мало внимания уделяла фото­графированию Земли, но с конца 1969 г. была сильно расширена. Охват территории не огра­ничивался приэкваториальными районами, но все-таки был не очень широким. Представляет интерес проведение подспутниковых экспериментов по синхронизации космических съемок с самолетными и экспедиционными. Многозональные фотографии были получены в 1973 г. при фотографировании девятиобъективной камерой. С корабля «Союз-7» (1969 г.) проведено спектрографирование земной поверхности, т. е. получение и регистрация спектральных отражатель­ных характеристик объектов.

Подобные подспутниковые эксперименты позволили дать объективную оценку информа­тивности различных видов космической съемки, заложить основы космических методов гео­графических исследований, установить оптимальное соотношение космической, аэро- и наземной съемок при проведении конкретных исследований. Вместе с тем подспутниковые эксперименты приобрели большое научное значение, расширяя наши представления о пере­даточной функции атмосферы, закономерностях генерализации изображений с уменьшени­ем их масштабов, оптических свойствах географических объектов, пространственной структуре ландшафтов и т. д.

Снимки с высоким разрешением на местности (порядка 10-12 м) получены с орби­тальных станций «Салют» и «Skylab», для чего широко использовались спектрозональные съемки и новые съемочные камеры, например МКФ-6, а также приборы для обработки снимков.

Однако при высоком качестве изображения фотографические снимки выполняются не систематически. Лишь в отдельных случаях возможно получение повторных снимков на од­ну и ту же территорию. Из-за эпизодичности съемок и трудностей, связанных с облачно­стью, регулярное покрытие территории таким видом съемки пока не обеспечивается, поэто­му широкое распространение получила телевизионная съемка. К ее преимуществам по срав­нению с обычной фотографией относится также получение сигналов в форме удобной для их автоматизированной фиксации на Земле, хранения и обработки на ЭВМ. В этом слу­чае не требуется возвращать на Землю кассеты с фотопленкой.

Первая телевизионная съемка Земли выполнялась с американских метеорологических спутников «Tiros» с начала 60-х гг. В нашей стране первые телевизионные съемки Земли осуществлены со спутников «Космос». Так, работа двух из них («Космос-144» и «Космос-156») позволила создать метеорологическую систему, впоследствии разросшуюся в специ­альную службу погоды (система «Метеор»).

Глобальную телевизионную съемку Земли осуществили спутники «ESSA». Несмотря на ряд трудностей, связанных с искажениями, возникающими за счет сферичности Земли при охвате больших площадей (до 6 млн. км) и относительно низком разрешении на местно­сти, они нашли широкое применение в географических исследованиях при изучении снеж­ного покрова, влажности почв, атмосферных процессов и др.

Телевизионные снимки стали получать с ресурсных спутников. Сюда относятся снимки советских спутников, работающих по программе «Метеор - Природа», и американских спутников «Landsat». Снимки, полученные с помощью аппаратуры «Фрагмент» («Метеор») и многозональной сканирующей системы MSS («Landsat»), характеризуются разрешением на местности около 100м. Важно, что съемка выполняется в четырех диапазонах видимой и ближней инфракрасной части спектра и возможно получение цветных синтезированных сним­ков.

На сканерных снимках хорошего качества, особенно на цветных синтезированных снимках, выделяются в целом те же объекты, что и на фотографических снимках, но при этом обеспечивается регулярная повторяемость съемки и удобство автоматизированной обра­ботки снимков, которые поступают в цифровом виде. Поэтому, при сохранении всего пере­численного выше широкого круга решаемых по этим снимкам задач, на первое место при ис­пользовании сканерных снимков выступают задачи оперативного контроля состояния природ­ной среды и антропогенных образований, за их изменениями, в том числе сезонными.

Первым спутником, нацеленным на исследование природных ресурсов Земли, стал «ERTS», дававший разрешение на местности в 50-100 м. Съемка со спутника «Landsat-4» с помощью аппаратуры «Thematic catographer» позволила добиться разрешения в 30 м при уве­личении числа спектральных каналов в видимой и ближней инфракрасной области спектра до 6. Еще большее разрешение (до 10 м) у снимков с французского спутника «Spot», здесь обеспе­чивается получение стереопар, а также регулярность повторения съемки. Для изучения при­родных ресурсов используется также многозональная съемка телевизионными сканирующими системами спутников «Метеор».

С 1972 г. с введением в эксплуатацию первого ресурсного искусственного спутника Земли (ИСЗ) «ERTS-1», а затем и последующих, обеспечивающих высококачественную регу­лярную съемку земной поверхности с периодичностью 18 суток с большой обзорностью и высо­ким пространственным разрешением, легко доступную потребителям, начался наиболее плодо­творный период применения материалов космической съемки в научных и практических целях во многих странах мира. Были сделаны новые географические открытия, обнаружены место­рождения различных полезных ископаемых и т. д. Во многие науки о Земле прочно вошел этот метод исследований, позволивший существенно расширить возможности традиционных гео­графических исследований и подняться на более высокую ступень познания закономерностей строения и функционирования географической оболочки Земли.

В нашей стране в народнохозяйственных целях введен в эксплуатацию ИСЗ «Ресурс-Ф», обеспечивающий синхронное многозональное и разномасштабное фотографирование земной поверхности. Черно-белая съемка в трех зонах видимой и ближней ИК областей спектра, а также спектрозональная съемка осуществляются в масштабах 1:1000000 и 1:200000 с про­странственным разрешением снимков соответственно 30 и 10 м. Материалы космической съемки, полученные с этого спутника, нашли широкое применение в научных исследованиях и различных отраслях хозяйства. Особенно велико его значение при комплексном и тематическом картографировании земной поверхности. В настоящее время применение космических снимков стало нормой картографического производства. Они исполь­зуются при составлении оригинальных и обновлении ранее созданных карт, обеспечивая высо­кую точность передачи конфигурации картографируемых объектов, получение сопоставимых сведений об объектах и явлениях, распространенных на обширных площадях, в один временной период, а также гарантируя необходимую периодичность съемки для современного обновления карт. Материалы космической съемки легли в основу составления нового вида картографи­ческой продукции - фотокарт топографических, общегеографических и тематических различных масштабов. В 1978 г. была создана первая космофототектоническая карта Арало-Каспийского региона масштаба 1:2500000. За рубежом опубликованы цветные и черно-белые фотокарты и фотоатласы на отдельные государства и материки.

Следует сказать, что объектом телевизионной съемки служит не только Земля, но и це­лый ряд других планет или космических тел. Можно вспомнить съемки Луны станцией «Луна», «Surveyor», «Ranger», Венеры - «Венера»; Марса, Венеры, Меркурия - с аппаратов «Mariner», «Viking»; съемки кометы Галлея и др.

Упомянем также о фототелевизионных снимках, совмещающих достоинства фотографиче­ского метода, и, прежде всего высокое разрешение на местности, и телевизионных. Первые фототелевизионные снимки получены станциями «Луна-3» и «Зонд-3» для невидимой с Земли стороны Луны, Марса - «Марс-4» и «Марс-5» и др.

В целях популяризации материалов космической съемки в ряде стран выпускают хорошо иллюстрированные альбомы и атласы цветных снимков, полученных с советских и американ­ских космических летательных аппаратов. Среди них опубликованная в СССР монография «Планета Земля из космоса» (1987), совместное советско-американское издание «Наш дом - Земля» (1988), отечественные альбомы по методике дешифрирования многозональных аэрокос­мических снимков (1982, 1988), вышедший в США атлас Северной Америки (1987), издан­ные в ФРГ альбомы снимков земной поверхности (1981), в Венгрии - национальный фото­атлас и многие другие.

В нашей стране организованы два центра получения, первичной обработки и распростра­нения космической информации - Государственный научный и производственный центр «Природа» (Госцентр «Природа») для работы с фотографической информацией долговремен­ного использования и Государственный научно-исследовательский центр исследования при­родных ресурсов (ГосНИЦИПР) для работы с оперативной сканерной информацией.

Помимо составления программ съемки и аккумулирования полученных материалов, цен­тры выполняют их первичную обработку - привязку, аннотирование, облегчая их дальнейшее использование. По заказу потребителей выполняются и более сложные виды обработки, раз­личного рода преобразования снимков. Оперативная информация, предназначенная для авто­матизированной обработки, может быть получена в виде магнитных лент для удобства ис­пользования при работе на ЭВМ.

26. Дистанционные методы исследований в современной географии

Данные дистанционного зондирования

Материалы дистанционного зондирования получают в резуль­тате неконтактной съемки с летательных воздушных и космичес­ких аппаратов, судов и подводных лодок, наземных станций. Не­которые виды дистанционного зондирования схематически изоб­ражены на рис. 10.1. Получаемые документы очень разнообразны по масштабу, разрешению, геометрическим, спектральным и иным свойствам. Все зависит от вида и высоты съемки, применяемой аппаратуры, а также от природных особенностей местности, ат­мосферных условий и т.п.

Главные качества дистанционных изображений, особенно по­лезные для составления карт, - это их высокая детальность, од­новременный охват обширных пространств, возможность получе­ния повторных снимков и изучения труднодоступных территорий. Благодаря этому данные дистанционного зондирования нашли в

картографии разнообразное применение: их используют для составления и оперативного обновления топографических и тема­тических карт, картографирования малоизученных и труднодос­тупных районов (например, высокогорий). Наконец, аэро- и кос­мические снимки служат источниками для создания общегеогра­фических и тематических фотокарт (см. разд. 11.5).

Съемки ведут в видимой, ближней инфракрасной, тепловой инфракрасной, радиоволновой и ультрафиолетовой зонах спектра. При этом снимки могут быть черно-белыми зональными и пан­хроматическими, цветными, цветными спектрозональными и даже - для лучшей различимости некоторых объектов - ложно-цветными, т.е. выполненными в условных цветах. Следует отметить особые достоинства съемки в радиодиапазоне. Радиоволны, почти не поглощаясь, свободно проходят через облачность и туман. Ноч­ная темнота тоже не помеха для съемки, она ведется при любой погоде и в любое время суток.

Фотографические снимки - это результат покадровой регист­рации собственного или отраженного излучения земных объектов на светочувствительную пленку. Аэрофотоснимки получают с са­молетов, вертолетов, воздушных шаров, космические снимки --со спутников и космических кораблей, подводные - с подводных судов и барокамер, опускающихся на глубину, а наземные - с по­мощью фототеодолитов.

Кроме одиночных плановых снимков в качестве источников используют стереопары, монтажи, фотосхемы и фотопланы, па­норамные снимки и фотопанорамы, фронтальные (вертикальные) фотоснимки и др.

В отличие от фотографических, телевизионные снимки и теле­панорамы получают путем регистрации изображения на светочув­ствительных экранах передающих телевизионных камер (видико-нов). Съемка с борта самолета или со спутника захватывает до­вольно большую полосу местности - шириной от 1 до 2 тыс. км в зависимости от высоты полета и технических характеристик съе­мочной системы. Высокоорбитальные спутники позволяют полу­чать изображение всей планеты в целом и в режиме реального времени передавать его на наземные пункты приема дистанцион­ной информации. Поэтому телевизионная съемка удобна для опе­ративного картографирования и слежения (мониторинга) за зем­ными объектами и процессами. Однако по своему разрешению и величине геометрических искажений телевизионные изображения уступают фотоснимкам.

Телевизионные снимки бывают узко- и широкополосными, они охватывают разные зоны спектра, могут иметь разную развертку и т.п. Особый вид источников - фототелевизионные снимки, в которых детальность фотографий сочетается с оперативностью пе­редачи изображений по телевизионным каналам.

Наиболее широко в картографировании используют сканерные снимки, полосы, «сцены», получаемые путем поэлементной и по­строчной регистрации излучения объектов земной поверхности. Само слово «сканирование» означает управляемое перемещение луча или пучка (светового, лазерного и др.) с целью последова­тельного обзора (осмотра) какого-либо участка.

В ходе съемки с самолета или спутника сканирующее устрой­ство (качающееся зеркало или призма) последовательно, полоса за полосой, просматривает местность поперек направления дви­жения носителя. Отраженный сигнал поступает на точечный фотоприемник, и в результате получаются снимки с полосчатой или строчной структурой, причем строки состоят из небольших эле­ментов - пикселов. Каждый из них отражает суммарную усред­ненную яркость небольшого участка местности, так что детали внутри пиксела неразличимы. Пиксел - это элементарная ячейка сканерного изображения.

При полете съемка ведется постоянно, и поэтому сканирова­ние охватывает широкую непрерывную полосу (или ленту) мест­ности. Отдельные участки полосы называют сценами. В целом ска­нерные изображения уступают по качеству кадровым фотографи­ческим снимкам, однако оперативное получение изображений в цифровой форме имеет громадное преимущество перед другими видами съемки.

Существует ряд модификаций сканерной съемки, дающих изоб­ражения с иными геометрическими и радиометрическими свойствами. Так, сканирующие устройства с линейками полупроводниковых приемников обеспечивают съемку сразу целой строки, причем она получается в проекции, близкой к центральной, что существенно уменьшает геометрические искажения. На этом принципе основана съемка с помощью многоэлементных линейных и матричных при­емников излучения (приборов с зарядовой связью - ПЗС). Они дают возможность получать по каналам радиосвязи снимки очень высоко­го разрешения на местности - до нескольких метров.

Для картографирования обширных территорий используют монтажи сканерных снимков и даже особые сканерные «фотопор­треты», которые передают облик крупных участков планеты, ма­териков и стран так, как они видны из космоса.

Радиолокационные снимки получают со спутников и самолетов, а гидролокационные снимки - при подводной съемке дна озер, морей и океанов. Бортовые радиолокаторы бокового обзора, установлен­ные на аэро-, космических и подводных носителях, ведут съемку по правому и левому бортам перпендикулярно к направлению дви­жения носителя.

Благодаря боковому обзору на снимках прекрасно проявляется рельеф местности, отчетливо читаются детали его расчленения, характер шероховатости. При съемке океанов хорошо видно вол­нение водной поверхности. Радиолокация позволила впервые под­робно картографировать рельеф далеких планет.

Среди новых видов локационных изображений отметим сним­ки, получаемые в ультрафиолетовом и видимом диапазонах с по-мощью лазерных локаторов - лидаров. Непрерывное техническое совершенствование сканерных и локационных систем, множествен­ность съемочных диапазонов, возможности их широкого комби­нирования - все это создает поистине неисчерпаемое разнообра­зие источников для тематического картографирования.

Особое значение для картографирования имеет многозональ­ная съемка. Суть ее в том, что одна и та же территория (или аква­тория) одновременно фотографируется или сканируется в несколь­ких сравнительно узких зонах спектра. Комбинируя зональные сним­ки, можно получать так называемые синтезированные изображения, на которых наилучшим образом проявлены те или иные объекты. Например, подбирая разные сочетания, можно добиться наилуч­шего изображения водных объектов, геологических отложений определенного минералогического состава, разных пород леса, сельскохозяйственных угодий под теми или иными культурами и т.п. Поэтому материалы многозональной съемки - ценнейший источ­ник, в особенности для составления тематических карт.

Дистанционные методы - методы изучения Земли и других космических тел с воздушных или космических летательных аппаратов. В состав дистанционных методов входят аэросъемка, космическая съемка, дешифрование снимков, а также визуальные наблюдения: осмотр территории наблюдателем с борта летательного аппарата.

Аэросъемка - съемка земной поверхности с летательных аппаратов с использованием съемочных систем (приемников информации), работающих в различных участках спектра электромагнитных волн. Различают: -фотографическую аэросъемку (аэрофотосъемку); - телевизионную аэросъемку; - тепловую аэросъемку; - радиолокационную аэросъемку; и - многозональную аэросъемку.

Получаемые в результате аэроснимки (аэрофотоснимки) могут быть: - плановыми, если ось снимающего аппарата располагалась отвесно; или - перспективными, если ось снимающего аппарата располагалась наклонно.

В зависимости от высоты съемки и применяемой аппаратуры снимки имеют разные масштаб, подробность и обзорность.

Дешифрование снимков - исследование аэро- и космических снимков, определение объектов, которые на них изображены, установление между ними взаимосвязей. Дешифрование снимков - важнейший дистанционный метод изучения Земли.

Начало формы

Космическая съемка - фотографическая, телевизионная и т.п. съемка Земли, небесных тел и космических явлений аппаратурой, находящейся за пределами атмосферы Земли (на искусственных спутниках Земли, космических кораблях и т.п.) и дающей изображения в различных областях электромагнитного спектра.

Получаемые в результате космической съемки космические снимки отличаются от аэроснимков гораздо большей обзорностью, огромным охватом территории: на снимке среднего масштаба 3-4 тыс.кв.км, на снимке мелкого масштаба - десятки тысяч кв.км. Средний масштаб космических снимков Земли 1:1000000, 1:10000000.

В зависимости от положения оси снимающего аппарата различают плановую и перспективную космические съемки.

Для наблюдения Земли из космоса используют дистанционные методы: исследователь имеет возможность на расстоянии получать информацию об изучаемом объекте.

Дистанционные методы, как правило, являются косвенными, т.е. с их помощью измеряют не интересующие нас параметры объектов, а некоторые связанные с ними величины. Например, нам необходимо оценить состояние сельскохозяйственных посевов. Но аппаратура спутника регистрирует лишь интенсивность светового потока от этих объектов в нескольких участках оптического диапазона. Чтобы "расшифровать" такие данные, требуются предварительные исследования, включающие в себя различные эксперименты по изучению состояния растений контактными методами; по изучению отражательной способности листьев в различных участках спектра и при различном взаимном расположении источника света (Солнца), листьев и измерительного прибора. Далее необходимо определить, как выглядят те же объекты с самолета, и лишь после этого судить о состоянии посевов по спутниковым данным.

Дистанционные методы делят на активные и пассивные. При использовании активных методов спутник посылает на Землю сигнал собственного источника энергии (лазера, радиолокационного передатчика), регистрирует его отражение. Радиолокация позволяет "видеть" Землю сквозь облака. Чаще используются пассивные методы, когда регистрируется отраженная поверхностью энергия Солнца либо тепловое излучение Земли. Главными достоинствами космических средств, при использовании их для изучения природных ресурсов и контроля окружающей среды являются: оперативность, быстрота получения информации, возможно доставки её потребителю непосредственно в ходе приёма с КА, разнообразие форм наглядность результатов, экономичность.

Таблица №1 Диапазоны волн электромагнитных излучений.

Методы изучения Земли из космоса не случайно относят к высоким технологиям. Это связано не только с использованием ракетной техники, сложных оптико-электронных приборов, компьютеров, но и с новым подходом к получению интерпретации результатов измерений. И хотя трудоемкие подспутниковые исследования проводятся на небольшой площади, они дают возможность обобщать данные на огромные пространства и даже на весь земной шар. Широта охвата является характерной чертой спутниковых методов исследования Земли. К тому же эти методы, как правило, позволяют получать результат за сравнительно короткий интервал времени.Конец формы

Начало формы

Фотографическую съемку поверхности Земли с высот более 150 - 200 км принято называть космической. Отличительной чертой КС является высокая степень обзорности, охват одним снимком больших площадей поверхности. В зависимости от типа применяемой аппаратуры и фотопленок, фотографирование может производиться во всем видимом диапазоне электромагнитного спектра, в отдельных его зонах, а также в ближнем ИК (инфракрасном) диапазоне.

Масштабы съемки зависят от двух важнейших параметров: высоты съемки и фокусного расстояния объектива. Космические фотоаппараты в зависимости от наклона оптической оси позволяют получать плановые и перспективные снимки земной поверхности. В настоящее время для съемок из космоса наиболее часто используются многоспектральные оптико-механические системы - сканеры, установленные на ИСЗ различного, назначения. При помощи сканеров формируются изображения, состоящие из множества отдельных, последовательно получаемых элементов. Термин "сканирование" обозначает развертку изображения при помощи сканирующего элемента (качающегося или вращающегося зеркала), поэлементно просматривающего местность поперек движения носителя и посылающего лучистый поток в объектив и далее на точечный датчик, преобразующий световой сигнал в электрический. Этот электрический сигнал поступает на приемные станции по каналам связи. Изображение местности получают непрерывно на ленте, составленной из полос - сканов, сложенных отдельными элементами - пикселями. Сканерные изображения можно получить во всех спектральных диапазонах, но особенно эффективным является видимый и ИК-диапазоны.

Радиолокационная (РЛ) или радарная съемка - важнейший вид дистанционных исследований. Используется в условиях, когда непосредственное наблюдение поверхности планет затруднено различными природными условиями: плотной облачностью, туманом и т. п. Она может проводиться в темное время суток, поскольку является активной. Для радарной съемки обычно используются радиолокаторы бокового обзора (ЛБО), установленные на самолетах и ИСЗ.

С помощью ЛБО радиолокационная съемка осуществляется в радиодиапазоне электромагнитного спектра. Сущность съемки заключается в посылке радиосигнала, отражающегося по нормали от изучаемого объекта и фиксируемого на приемнике, установленном на борту носителя. Радиосигнал вырабатывается специальным генератором. Время возвращения его в приемник зависит от расстояния до изучаемого объекта. Этот принцип работы радиолокатора, фиксирующего различное время прохождения зондирующего импульса до объекта и обратно, используется для получения РЛ-снимков. Изображение формируется бегущим по строке световым пятном. Чем дальше объект, тем больше времени надо на прохождение отражаемого сигнала до его фиксации электронно-лучевой трубкой, совмещенной со специальной кинокамерой.

Инфракрасная (ИК), или тепловая, съемка основана на выявлении тепловых аномалий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением. 0на. широко применяется в геологии. Температурные неоднородности поверхности Земли возникают в результате неодинакового нагрева различных ее участков.

Спектрометрическая (СМ) съемка проводится с целью измерения отражательной способности горных пород. Знание значений коэффициента спектральной яркости горных пород расширяет возможности реологического дешифрирования, придает ему большую достоверность. Горные породы имеют различную отражательную способность, поэтому отличаются величиной коэффициента спектральной яркости.

Лидарная съемка является активной и основана на непрерывном получении отклика от отражающей поверхности, подсвечиваемой лазерным монохроматическим излучением с фиксированной длиной волны. Частота излучателя настраивается на резонансные частоты поглощения сканируемого компонента (например, приповерхностного метана), так что в случае его заметных концентраций соотношение откликов в точках концентрирования и в вне их будут резко повышенными. Фактически - лидарная спектрометрия это геохимическая съемка приповерхностных слоев атмосферы, ориентированная на обнаружение микроэлементов или их соединений, концентрирующихся над современно активными геоэкологическими объектами.



Понравилась статья? Поделитесь ей
Наверх