Сечение сферы плоскостью. Изображение шара и его сечений

Определение.

Сфера (поверхность шара ) - это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар - это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) - это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) - это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара :

V = 4 π R 3 = 1 π D 3
3 6

Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4π R 2 = π D 2

Уравнение сферы

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат :

x 2 + y 2 + z 2 = R 2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0) в декартовой системе координат :

(x - x 0) 2 + (y - y 0) 2 + (z - z 0) 2 = R 2

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

Основные свойства сферы и шара

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются , а в плоскости пересечения образуется круг.


Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы - это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) - это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость - это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость - это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг . Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d < R

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m < R

Местом сечения секущей плоскости на сфере всегда будет малая окружность , а на шаре местом сечения будет малый круг . Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R 2 - m 2 ,

Где R - радиус сферы (шара), m - расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) - это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Касательная, касательная плоскость к сфере и их свойства

Определение. Касательная к сфере - это прямая, которая касается сферы только в одной точке.

Определение. Касательная плоскость к сфере - это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение. Сегмент шара - это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2π Rh

Cтраница 1


Сечение шара плоскостью, проходящей через центр, называется большим кругом. Радиус большого круга равен радиусу шара.  

Сечение шара плоскостью всегда представляет собой круг. На рис. 153 показан шар, пересеченный горизонтальной плоскостью R и фронтально-проектирующей плоскостью Q, заданных следами Rv и Qv. Он проектируется на плоскость Н также в виде круга, имеющего общий центр с очерком горизонтальной проекции шара. Для определения крайних точек t и t большой ог. Промежуточные точки эллипса, например / i и / 2, могут быть получены приемом, описанным при решении аналогичной задачи при построении точек, лежащих на поверхности шара.  

Сечение шара любой вертикальной плоскостью, проходящей через центр, дает большой круг, называемый меридианом.  

Сечение шара плоскостью, расположенной от центра шара на расстоянии, меньшем радиуса, есть круг.  

Сечение шара плоскостью представляет собой круг. Плоскость, проходящая через центр шара, пересекает его по кругу, диаметр которого равен диаметру шара. Для построения изображения усеченного шара строят проекции осей эллипса, а также точек эллипса, лежащих на очерковых образующих шара.  

Сечение шара плоскостью, перпендикулярной его радиусу, делит радиус пополам.  

Сечение шара, проходящее через ось конуса - большой круг шара, в который вписан ДЛВ5 (рис. 185), где [ ЛВ ] - диаметр основания конуса.  

Сечение шара плоскостью, проходящей через основание пирамиды, есть круг, в который вписан ДЛВС. Так как С 90, то центр этого круга О лежит на середине гипотенузы.  

Сечение шара плоскостью, проходящей через центр шара, называется большим кругом. Кйсательной плоскостью к сфере (шару) называется плоскость имеющая со сферой единственную общую точку. Эту точку называют точкой касания сферы и плоскости. Для того чтобы плоскость была касательной к сфере, необходимо и достаточно, чтобы эта плоскость была перпендикулярна к радиусу сферы и проходила через его конец.  

Поэтому сечение шара, проходящее через его центр и касающееся основания пирамиды, будет являться кругом, вписанным в треугольник SEF, где SE и SF - апофемы боковых граней, a EF - высота ромба.  

Рассмотрим сечение шара, проходящее через ось усеченного конуса. В сечении мы получим круг, в который вписана трапеция ABCD.  

Каждое сечение шара плоскостью, проходящей через его центр, дает большой круг.  

О Сечение шара, проходящее через ось конуса - это большой круг шара, в который вписан Д ABS (рис. 339), где [ АВ ] - диаметр основания конуса.  

ГЛАВА ЧЕТВЁРТАЯ

КРУГЛЫЕ ТЕЛА

II ШАР

Сечение шара плоскостью

125. Определение . Тело, происходящее от вращения полукруга вокруг диаметра, называется шаром , а поверхность, образуемая при этом полуокружностью, называется шаровой или сферической поверхностью. Можно также сказать, что эта поверхность есть геометрическое место точек, одинаково удалённых от одной и той же точки (называемой центром шара).

Отрезок, соединяющий центр с какой-нибудь точкой поверхности, называется радиусом , а отрезок, соединяющий две точки поверхности и проходящий через центр, называется диаметром шара. Все радиусы одного шара равны между собой; всякий диаметр равен двум радиусам.

Два шара одинакового радиуса равны, потому что при вложении они совмещаются.

126. Теорема. Всякое сечение шара плоскостью есть круг.

1) Предположим сначала, что (черт. 137) секущая плоскость АВ проходит через центр О шара. Все точки линии пересечения принадлежат шаровой поверхности и поэтому одинаково удалены от точки О, лежащей в секущей плоскости; следовательно, сечение есть круг с центром в точке О.

2) Положим теперь, что секущая плоскость СО не проходит через центр. Опустим на неё из центра перяендикуляр OK и возьмём на линии пересечения какую-нибудь точку М. Соединив её с О и А, получим прямоугольный треугольник МОК, из которого находим:

MK =√OM 2 - ОК 2 . (1)

Так как длины отрезков ОМ и ОК не изменяются при изменении положения точки М на линии пересечения, то расстояние МК есть величина постоянная для данного сечения; значит, линия пересечения есть окружность, центр которой есть точка К.

127. Следствие. Пусть R и r будут длины радиуса шара и радиуса круга сечения, а
d - расстояние секущей плоскости от центра, тогда равенство (1) примет вид:
r =√R 2 - d 2 .

Из этой формулы выводим:

1) Наибольший радиус сечения получается при d = 0, т. е. когда секущая плоскость проходит через центр шара . В этом случае r =R. Круг, получаемый в этом случае, называется большим кругом .

2) Наименьший радиус сечения получается при d = R. В этом случае r = 0, т. е. круг сечения обращается в точку.

3) Сечения, равноотстоящие от центра шара, равны.

4) Из двух сечений, неодинаково удалённых от центра шара, то, которое ближе к центру, имеет больший радиус.

128. Теорема. Всякая плоскость (Р, черт. 138), проходящая через центр шара, делит его поверхность на две симметричные и равные части.

Возьмём на поверхности шара какую-нибудь точку А; пусть АВ есть перпендикуляр, опущенный из точки А на плоскость Р. Продолжим АВ до пересечения с поверхностью шара в точке С. Проведя ВО, мы получим два равных прямоугольных треугольника
АОВ и ВОС (общий катет ВО, а гипотенузы равны, как радиусы шара); следовательно, АВ = ВС; таким образом, всякой точке А поверхности шара соответствует другая точка С этой поверхности, симметричная относительно плоскости Р с точкой А. Значит, плоскость Р делит поверхность шара на две симметричные части.

Эти части не только симметричны, но и равны, так как, разрезав шар по плоскости Р, мы можем вложить одну из двух частей в другую и совместить эти части.

129. Теорема. Через две точка шаровой поверхности, не лежащие на концах одного диаметра, можно провести окружность большого круга и только одну .

Пусть на шаровой поверхности (черт. 139), имеющей центр О, взяты какие-нибудь две точки, например С и N, не лежащие на одной прямой с точкой О. Тогда через точки С, О к N можно провести плоскость. Эта плоскость, проходя через центр О, даст в пересечении с шаровой поверхностью окружность большого круга.

Другой окружности большого круга через те же две точки С и N провести нельзя. Действительно, всякая окружность большого круга должна, по определению, лежать в плоскости, проходящей через центр шара; следовательно, если бы через С и N можно было провести ещё другую окружность большого круга, тогда выходило бы, что через три точки С, N и О, не лежащие на одной прямой, можно провести две различные плоскости, что невозможно.

130. Теорема. Окружности двух больших кругов при пересечении делятся пополам.

Центр О (черт. 139), находясь на плоскостях обоих больших кругов, лежит на прямой, по которой эти круги пересекаются; значит, эта прямая есть диаметр того и другого круга, а диаметр делит окружность пополам.

Или сферой . Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, называется радиусом . Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром . Концы любого диаметра называются диаметрально противоположными точками шара. Всякое сечение шара плоскостью есть круг . Центр этого круга есть основание перпендикуляра, опущенного из центра на секущую плоскость. Плоскость, проходящая через центр шара, называется диаметральной плоскостью . Сечение шара диаметральной плоскостью называется большим кругом , а сечение сферы - большой окружностью . Любая диаметральная плоскость шара являются его плоскостью симметрии . Центр шара является его центром симметрии . Плоскость, проходящая через точку шаровой поверхности и перпендикулярная радиусу, проведенному в эту точку, называется касательной плоскостью . Данная точка называется точкой касания . Касательная плоскость имеет с шаром только одну общую точку - точку касания. Прямая, проходящая через заданную точку шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной . Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара. Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Шаровым слоем называется часть шара, расположенная между двумя параллельными плоскостями, пересекающими шар. Шаровой сектор получается из шарового сегмента и конуса. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется. Основные формулы Шар (R = ОВ - радиус): S б = 4πR 2 ; V = 4πR 3 / 3. Шаровой сегмент (R = ОВ - радиус шара, h = СК - высота сегмента, r = КВ - радиус основания сегмента): V сегм = πh 2 (R - h / 3) или V сегм = πh(h 2 + 3r 2) / 6 ; S сегм = 2πRh . Шаровой сектор (R = ОВ - радиус шара, h = СК - высота сегмента): V = V сегм ± V кон, «+» - если сегмент меньше,«-» - если сегмент больше полусферы. или V = V сегм + V кон = πh 2 (R - h / 3) + πr 2 (R - h) / 3 . Шаровой слой (R 1 и R 2 - радиусы оснований шарового слоя; h = СК - высота шарового слоя или расстояние между основаниями): V ш/сл = πh 3 / 6 + πh(R 1 2 + R 2 2 ) / 2 ; S ш/сл = 2πRh . Пример 1. Объем шара равен 288π см 3 . Найти диаметр шара. Решение V = πd 3 / 6 288π = πd 3 / 6 πd 3 = 1728π d 3 = 1728 d = 12 см. Ответ: 12. Пример 2. Три равных сферы радиусом r касаются друг друга и некоторой плоскости. Определить радиус четвертой сферы, касающейся трех данных и данной плоскости. Решение Пусть О 1 , О 2 , О 3 - центры данных сфер и О - центр четвертой сферы, касающейся трех данных и данной плоскости. Пусть А, В, С, Т - точки касания сфер с данной плоскостью. Точки касания двух сфер лежат на линии центров этих сфер, поэтому О 1 О 2 = О 2 О 3 = О 3 О 1 = 2r . Точки равноудалены от плоскости АВС , поэтому АВО 2 О 1 , АВО 2 О 3 , АВО 3 О 1 - равные прямоугольники, следовательно, ∆АВС - равносторонний со стороной 2r . Пусть х - искомый радиус четвертой сферы. Тогда ОТ = х . Следовательно, Аналогично Значит, Т - центр равностороннего треугольника. Поэтому Отсюда Ответ: r / 3 . Сфера, вписанная в пирамиду В каждую правильную пирамиду можно вписать сферу. Центр сферы лежит на высоте пирамиды в точке ее пересечения с биссектрисой линейного угла при ребре основания пирамиды. Замечание. Если в пирамиду, необязательно правильную, можно вписать сферу, то радиус r этой сферы можно вычислить по формуле r = 3V / S пп , где V - объем пирамиды, S пп - площадь ее полной поверхности. Пример 3. Коническая воронка, радиус основания которой R , а высота H , наполнена водой. В воронку опущен тяжелый шар. Каким должен быть радиус шара, чтобы объем воды, вытесненный из воронки погруженной частью шара, был максимальным? Решение Проведем сечение через центр конуса. Данное сечение образует равнобедренный треугольник. Если в воронке находится шар, то максимальный размер его радиуса будет равен радиусу вписанной в получившийся равнобедренный треугольник окружности. Радиус вписанной в треугольник окружности равен: r = S / p , где S - площадь треугольника, p - его полупериметр. Площадь равнобедренного треугольника равна половине высоты (H = SO ), умноженной на основание. Но поскольку основание - удвоенный радиус конуса, то S = RH . Полупериметр равен p = 1/2 (2R + 2m) = R + m . m - длина каждой из равных сторон равнобедренного треугольника; R - радиус окружности, составляющей основание конуса. Найдем m по теореме Пифагора: , откуда Кратко это выглядит следующим образом: Ответ: Пример 4. В правильной треугольной пирамиде с двугранным углом при основании, равным α , расположены два шара. Первый шар касается всех граней пирамиды, а второй шар касается всех боковых граней пирамиды и первого шара. Найти отношение радиуса первого шара к радиусу второго шара, если tgα = 24/7 . Решение
Пусть РАВС - правильная пирамида и точка Н - центр ее основания АВС . Пусть М - середина ребра ВС . Тогда - линейный угол двугранного угла , который по условию равен α , причем α < 90° . Центр первого шара, касающегося всех граней пирамиды, лежит на отрезке РН в точке его пересечения с биссектрисой . Пусть НН 1 - диаметр первого шара и плоскость, проходящая через точку Н 1 перпендикулярно прямой РН , пересекает боковые ребра РА, РВ, РС соответственно в точках А 1 , В 1 , С 1 . Тогда Н 1 будет центром правильного ∆А 1 В 1 С 1 , а пирамида РА 1 В 1 С 1 будет подобна пирамиде РАВС с коэффициентом подобия k = РН 1 / РН . Заметим, что второй шар, с центром в точке О 1 , является вписанным в пирамиду РА 1 В 1 С 1 и поэтому отношение радиусов вписанных шаров равно коэффициенту подобия: ОН / ОН 1 = РН / РН 1 . Из равенства tgα = 24/7 находим: Пусть АВ = х . Тогда Отсюда искомое отношение ОН / О 1 Н 1 = 16/9. Ответ: 16/9. Сфера, вписанная в призму Диаметр D сферы, вписанной в призму, равен высоте Н призмы: D = 2R = H . Радиус R сферы, вписанной в призму, равен радиусу окружности, вписанной в перпендикулярное сечение призмы. Если в прямую призму вписана сфера, то в основание этой призмы можно вписать окружность. Радиус R сферы, вписанной в прямую призму, равен радиусу окружности, вписанной в основание призмы. Теорема 1 Пусть в основание прямой призмы можно вписать окружность, и высота Н призмы равна диаметру D этой окружности. Тогда в эту призму можно вписать сферу диаметром D . Центр этой вписанной сферы совпадает с серединой отрезка, соединяющего центры окружностей, вписанных в основания призмы. Доказательство Пусть АВС…А 1 В 1 С 1 … - прямая призма и О - центр окружности, вписанной в ее основание АВС . Тогда точка О равноудалена от всех сторон основания АВС . Пусть О 1 - ортогональная проекция точки О на основание А 1 В 1 С 1 . Тогда О 1 равноудалена от всех сторон основания А 1 В 1 С 1 , и ОО 1 || АА 1 . Отсюда следует, что прямая ОО 1 параллельна каждой плоскости боковой грани призмы, а длина отрезка ОО 1 равна высоте призмы и, по условию, диаметру окружности, вписанной в основание призмы. Значит, точки отрезка ОО 1 равноудалены от боковых граней призмы, а середина F отрезка ОО 1 , равноудаленная от плоскостей оснований призмы, будет равноудалена от всех граней призмы. То есть F - центр сферы, вписанной в призму, и диаметр этой сферы равен диаметру окружности, вписанной в основание призмы. Теорема доказана. Теорема 2 Пусть в перпендикулярное сечение наклонной призмы можно вписать окружность, и высота призмы равна диаметру этой окружности. Тогда в эту наклонную призму можно вписать сферу. Центр этой сферы делит высоту, проходящую через центр окружности, вписанной в перпендикулярное сечение, пополам. Доказательство
Пусть АВС…А 1 В 1 С 1 … - наклонная призма и F - центр окружности радиусом FK , вписанной в ее перпендикулярное сечение. Поскольку перпендикулярное сечение призмы перпендикулярно каждой плоскости ее боковой грани, то радиусы окружности, вписанной в перпендикулярное сечение, проведенные к сторонам этого сечения, являются перпендикулярами к боковым граням призмы. Следовательно, точка F равноудалена от всех боковых граней. Проведем через точку F прямую ОО 1 , перпендикулярную плоскости оснований призмы, пересекающую эти основания в точках О и О 1 . Тогда ОО 1 - высота призмы. Поскольку по условию ОО 1 = 2FK , то F - середина отрезка ОО 1 : FK = ОО 1 / 2 = FО = FО 1 , т.е. точка F равноудалена от плоскостей всех без исключения граней призмы. Значит, в данную призму можно вписать сферу, центр которой совпадает с точкой F - центром окружности, вписанной в то перпендикулярное сечение призмы, которое делит высоту призмы, проходящую через точку F , пополам. Теорема доказана. Пример 5. В прямоугольный параллелепипед вписан шар радиуса 1. Найдите объем параллелепипеда. Решение Нарисуйте вид сверху. Или сбоку. Или спереди. Вы увидите одно и то же - круг, вписанный в прямоугольник. Очевидно, этот прямоугольник будет квадратом, а параллелепипед будет кубом. Длина, ширина и высота этого куба в два раза больше, чем радиус шара. АВ = 2 , а следовательно, объем куба равен 8. Ответ: 8. Пример 6. В правильной треугольной призме со стороной основания, равной , расположены два шара. Первый шар вписан в призму, а второй шар касается одного основания призмы, двух ее боковых граней и первого шара. Найти радиус второго шара. Решение
Пусть АВСА 1 В 1 С 1 - правильная призма и точки Р и Р 1 - центры ее оснований. Тогда центр шара О , вписанного в эту призму, является серединой отрезка РР 1 . Рассмотрим плоскость РВВ 1 . Поскольку призма правильная, то РВ лежит на отрезке BN , который является биссектрисой и высотой ΔАВС . Следовательно, плоскость и является биссекторной плоскостью двугранного угла при боковом ребре ВВ 1 . Поэтому любая точка этой плоскости равноудалена от боковых граней АА 1 ВВ 1 и СС 1 В 1 В . В частности, перпендикуляр ОК , опущенный из точки О на грань АСС 1 А 1 , лежит в плоскости РВВ 1 и равен отрезку ОР . Заметим, что KNPO - квадрат, сторона которого равна радиусу шара, вписанного в данную призму. Пусть О 1 - центр шара, касающегося вписанного шара с центром О и боковых граней АА 1 ВВ 1 и СС 1 В 1 В призмы. Тогда точка О 1 лежит плоскости РВВ 1 , а ее проекция Р 2 на плоскость АВС лежит на отрезке РВ . По условию сторона основания равна

Шара до плоскости равно радиусу плоскости, то плоскость касается шара только в одной точке, и площадь сечения будет равна нулю, то есть если b = R, то S = 0. Если b = 0, то секущая плоскость проходит через центр шара. В этом случае сечение будет представлять собой круг, радиус которого совпадает с радиусом шара. Площадь этого круга будет, согласно формуле, равна S = πR^2.

Эти два крайних случая дают границы, между которыми всегда будет лежать искомая площадь: 0 < S < πR^2. При этом любое сечение шара плоскостью всегда является кругом. Следовательно, задача сводится к тому, чтобы найти радиус окружности сечения. Тогда площадь этого сечения вычисляется по формуле площади круга.

Поскольку расстояние от точки до плоскости определяется как длина отрезка, перпендикулярного плоскости и начинающегося в точке, второй конец этого отрезка будет совпадать с окружности сечения. Такой вывод вытекает из определения шара: очевидно, что все точки окружности сечения принадлежат сфере, а следовательно, лежат на равном расстоянии от центра шара. Это значит, что окружности сечения может считаться вершиной прямоугольного треугольника, гипотенузой которого служит радиус шара, одним из - перпендикулярный отрезок, соединяющий центр шара с плоскостью, а вторым катетом - радиус окружности сечения.

Из трех сторон этого треугольника заданы два - радиус шара R и расстояние b, то есть гипотенуза . По теореме Пифагора длина второго катета должна быть равна √(R^2 - b^2). Это и есть радиус окружности сечения. Подставляя найденное значение в формулу площади круга, легко к выводу, что площадь сечения шара плоскостью равна:S = π(R^2 - b^2).В частных случаях, когда b = R или b = 0, выведенная полностью согласуется с уже найденными результатами.

Видео по теме

Источники:

  • сечение шара плоскостью

Все планеты солнечной системы имеют форму шара . Кроме того, шарообразную или близкую к таковой форму имеют и многие объекты, созданные человеком, включая детали технических устройств. Шар, как и любое тело вращения, имеет ось, которая совпадает с диаметром. Однако это не единственное важное свойство шара . Ниже рассмотрены основные свойства этой геометрической фигуры и способ нахождения ее площади.

Инструкция

Если взять или круг и провернуть его вокруг своей оси, получится тело, называемое шаром. Иными словами, шаром называется тело, ограниченное сферой. Сфера представляет собой оболочку шара , и ее окружность. От шара она отличается тем, что является полой. Ось как у шара , так и у сферы совпадает с диаметром и проходит через центр. Радиусом шара называется отрезок, проложенный от его центра до любой внешней точки. В противоположность сфере, сечения шара представляют собой круги. Форму, близкую к шарообразной, имеет большинство и небесных тел. В разных точках шара имеются одинаковые по форме, но неодинаковые по величине, так называемые сечения - круги разной площади.

Шар и сфера - взаимозаменяемые тела, в отличие от конуса, несмотря на то, что также является телом вращения. Сферические поверхности всегда в своем сечении образуют окружность, независимо от того, как именно она - по горизонтали или по вертикали. Коническая же поверхность получается лишь при вращении треугольника вдоль его оси, перпендикулярной основанию. Поэтому конус, в отличие от шара , и не считается взаимозаменяемым телом вращения.

Самый большой из возможных кругов получается при сечении шара , проходящей через центр О. Все круги, которые через центр О, пересекаются между собой в одном диаметре. Радиус всегда равен половине диаметра. Через две точки A и B, располагающиеся в любом месте поверхности шара , может проходить бесконечное количество кругов или окружностей. Именно по этой причине через



Понравилась статья? Поделитесь ей
Наверх