Зачем нужно размагничивание кораблей. Размагничивание корабля. б) Тепловое поле корабля

Гидроаккустическое обнаружение подводных лодок

Физическое поле корабля - область пространства, прилегающая к корпусу корабля, в котором проявляются физические свойства корабля как материального объекта. Данные физические свойства оказывают, в свою очередь, влияние на искажение соответствующего физического поля Мирового океана и прилегающего воздушного пространства.

Типы физических полей корабля

Задачи, решаемые гидроакустическим комплексом подводной лодки.

Физические поля кораблей по месту нахождения источников излучения подразделяют на первичные (собственные) и вторичные (вызванные).

Первичными (собственными) полями кораблей называются поля, источники излучения которых находятся непосредственно на самом корабле или в сравнительно тонком слое воды, омывающем его корпус.

Вторичным (вызванным), полем корабля, называется отраженное (искаженное) поле корабля, источники излучения которого расположены вне корабля (в пространстве, на другом корабле и т. д.).

Поля, которые имеют искусственную природу, т.е. формируются при помощи специальных устройств, (радио-, гидролокационных станций, оптических приборов) называются активными физическими полями.

Поля, которые создаются естественным образом кораблем в целом как конструктивным сооружением, называются пассивными физическими полями корабля.

По функциональной зависимости параметров физических полей от времени их также можно подразделить еще на статические и динамические поля.

Статическими полями считаются такие физические поля, интенсивность (уровень или мощность) источников которых остается в течении времени воздействия полей на неконтактную систему постоянной.

Динамическими (переменными во времени) физическими полями называются такие поля, интенсивность источников которых изменяется в течении времени воздействия поля на неконтактную систему.

Основные виды физических полей корабля

В настоящее время современная наука выделяет более 30 различных физических полей корабля. Степень применения свойств физических полей в проектировании технических средств обнаружения, средств слежения за кораблями, а также в неконтактных системах оружия различна. Самыми главными, на данный момент, физическими полями кораблей и подводных лодок, на основании знаний о которых ведется разработка специальных приборов, считаются: акустическое, гидроакустическое, магнитное, электромагнитное, электрическое, тепловое, гидродинамическое, гравитационное.

С учетом развития различных направлений физики и приборостроения, постоянно определяются новые физические поля морских объектов, например, ведутся исследования в области оптических, радиационных физических полей.

Главной задачей, которую решают инженеры, занимающиеся изучением свойств физических полей, является поиск и обнаружен кораблей и подводных лодок противника, наведения на них боевых средств (торпед, мин, ракет и др), а также детонация их безконтактных взрывателей. Во время Второй Мировой Войны широко использовались мины с электромагнитными, акустическими, гидродинамическими и комбинированными взрывателями, а также часто применялась гидроакустическая аппаратура обнаружения подводных лодок.

Акустическое поле корабля

Схема работы гидроакустических станций надводного корабля:
1 - преобразователь эхолота; 2 - пост гидроакустиков; 3 - преобразователь гидролокатора; 4 - обнаруженная мина; 5 - обнаруженная подводная лодка.

Акустическое поле корабля - область пространства, в которой распределяются акустические волны, образованные самим кораблем или отражающиеся от поверхности его корпуса.

Любой корабль, находящийся в движении, служит излучателем самых разнообразных по значению и характеру акустических колебаний, комплексное действие которых на окружающую водную среду создает достаточно интенсивный подводный шум в диапазоне от инфра- до ультразвуковых частот. Данное явление еще называют первичным акустическим полем корабля. Характер излучения первичного поля и его распространения определяются, как правило следующими параметрами корабля: водоизмещением, обводами (обтекаемостью формы) корпуса и скоростью хода корабля, типом главных и вспомогательных механизмов.

Поток воды при обхождении корпуса корабля определяет гидродинамическую составляющую акустического поля. Главные и вспомогательные механизмы корабля определяют вибрационную составляющую, гребные винти - кавитационную (кавитация на гребном винте - это образование на его быстро вращающихся лопастях в водной среде разряженных газовых полостей, последующее сжатие которых резко увеличивает шумность).

В итоге, первичное гидроакустическое поле корабля(ГАПК) представляет собой совокупность наложенных друг на друга полей, создаваемых различными источниками, основные из которых являются:

1. Шумы, создаваемые движителями (винтами) при их вращении. Подводный шум корабля от работ гребных винтов разделяется на сле­дующие составляющие:

Шум вращение гребного винта,

Вихревой шум,

Шум вибрации кромок лопастей винтов («пение»),

Кавитационный шум.

2. Шумы, излучаемые корпусом корабля на ходу и на стоянке как результат его вибрации от работы механизмов.

3. Шумы, создаваемые обтеканием корпуса корабля водой при его движении.

Уровень подводного шума зависит еще от скорости хода корабля, а также от глубины погружения (для ПЛ). Если корабль движется со скоростью выше критической. то в этом случае начинается процесс интенсивного шумообразования.

В процессе эксплуатации корабля, по мере износа основных узлов, шумность его может меняться. При выработке технического ресурса корабельных механизмов, происходит их расцентровка, расбалансировка и увеличение вибрации. Колебательная энергия изношенных механизмов провоцирует. в свою очередь, вибрации корпуса, что приводит к возмущениям в прилегающей водной поверхности.

Индикаторные картины ГАК МГК-400ЭМ. Режим шумопеленгования

Вибрации механизмов передаются на корпус в основном через: опорные связи механизмов с корпусом (фундаменты); неопорные связи механизмов с корпусом (трубопроводы, во­допроводы, кабели); через воздух в отсеках и помещениях НК.

Корпус корабля, сам по себе, способен отражать акустические волны, которые излучает какой-либо другой источник. Это излучение при отражении от корпуса, превращается во вторичное акустическое поле корабля и, может быть обнаружено приемным устройством. Использование вторичного акустического поля позволяет не только определить направление нахождения корабля, но также позволяет вычислить дистанцию до него путем замера времени прохождения сигнала (скорость звука в воде составляет 1500 м/с). Дополнительно на скорость распространения звука в воде влияет ее физическое состояние(соленость, которая повышается с увеличением температуры, и гидростатическое давление).

Атака подводной лодки на основании ложного акустического поля корабля

Главными направлениями уменьшения акустического поля корабля являются: снижение шума гребных винтов (подбором форм лопастей, частоты вращения винта, увеличением числа лопастей), снижение шумности механизмов и корпуса (звукоизолирующая амортизация, акустические покрытия, звукопоглощающие фундаменты).

Индикаторные картины ГАК МГК-400ЭМ. Режим LOFAR

Гидроакустический комплекс «Скат» атомной подводной лодки «Щука»

Шумность корабля влияет не только на его скрытность от различных средств обнаружения и степень защищенности от минно-торпедного вооружения вероятного противника, но также и влияет на условия работы собственных гидроакустических средств обнаружения и целеуказания, создавая помехи в работе этих приборов.

Шумность имеет колоссальное значение для незаметности подводных лодок (ПЛ) так как именно она во многом определяет этот параметр выживания. По этому на подводных лодках контроль за шумностью и ее снижение - одна из главных задач всего личного состава.

Основные мероприятиям обеспечения акустической защиты корабля:

Улучшение виброакустических характеристик механизмов;

Удаление механизмов от конструкций наружного корпуса, излучающего подводный шум, путём их установки на палубы, платформы и переборки;

Виброизоляция механизмов и систем от основного корпуса с помощью звукоизолирующих амортизаторов, гибких вставок, муфт, амортизи­рующих подвесок трубопроводов и специальных шумозащищающих фундаментов;

Вибропоглащение и звукоизоляция звуковых вибраций фундаментных и корпусных конструкций, систем трубопроводов с помощью звукоизолирую­щих и вибродемфирующих покрытий;

Звукоизоляция и звукопоглащение воздушного шума механизмов за счет применения покрытий, кожухов, экранов, глушителей в воздуховодах;

Применение в системах забортной воды глушителей гидродинамичес­кого шума.

Отдельно кавитационный шум понижается за счет следующих работ:

Использование малошумных гребных винтов;

Использование низкооборотных винтов;

Повышение числа лопастей;

Балансировка гребного винта и линии вала.

Совокупность инженерных разработок, а также соответствующих действий личного состава, позволяют серьезно снизить уровень гидроакустического поля корабля.

Тепловое (инфракрасное) поле корабля

Тепловое поле корабля

Тепловое поле - поле, которое появляется при излучении кораблем инфракрасных лучей. Самыми мощными источниками излучения тепловых полей являются: дымовые трубы и газовые факелы от корабельной энергетической установки; корпус и надстройки в районе машинного отделения; факелы огня при артиллерийской стрельбе и запуске ракет. При использовании инфракрасной аппаратуры тепловое поле позволяет обнаружить корабль на достаточно большом расстоянии.

Главными источниками теплового поля корабля (инфракрасного излучения) являются:

Поверхности надводной части корпуса, надстроек, палуб, кожухов дымовых труб;

Поверхности газоходов и газовыхлопных устройств отработавших газов;

Газовый факел;

Поверхности корабельных конструкций (мачт, антенн, палуб и т. д.), находящихся в зоне действия газового факела, газовых струй ракет и летательных аппаратов при запуске;

Бурун и кильваторный след корабля.

Корабль в объективе тепловизора

Обнаружение надводных кораблей и подводных лодок по их тепловому полю и выдача целеуказания оружию производится с помощью специальной теплопеленгаторной аппаратуры. Такая аппаратура обычно устанавливается на надводных кораблях и подводных лодках, самолетах, спутниках, береговых постах.

Дополнительно тепловыми (инфракрасными) устройствами самонаведения снабжаются также различные типы ракет и торпеды. Современные тепловые устройства самонаведения позволяют осуществить захват цели на расстоянии до 30 км.

Основные технические средства тепловой защиты кораблей:

Охладители отработавших газов корабельной энергетической установки (камера смешения, внешний кожух, жалюзийные окна приёма воздуха, насадки, системы водовпрыска и т. д.);

Теплоутилизационные контуры (ТУК) корабельной энергетической установки;

Бортовые (надводные и подводные) и кормовые газовыхлопные устройства;

Экраны инфракрасного излучения от внутренних и наружных поверхностей газоходов (двухслойные экраны, профильные экраны с водяным или воздушным охлаждением, экранирующие тела и т. д.);

Система универсальной водяной защиты;

Покрытия для корпуса и надстроек корабля, в том числе и лакок­расочные, с пониженной излучающей способностью;

Тепловая изоляция высокотемпературных корабельных помещений.

Тепловую заметность надводного корабля можно также уменьшить применением следующих тактических приемов:

Применение маскирующего воздействия тумана, дождя и снега;

Применение в качестве фона предметов и явлений с мощным инфракрасным излучением;

Применение носовых курсовых углов по отношению к носителю теплопеленгаторной аппаратуры.

Для подводных лодок тепловая заметность снижается при увеличении глубины их погружения.

Гидродинамическое поле корабля

Гидродинамическое поле корабля
В районе оконечностей образуются зоны повышенного давления, а в средней части по длине корпуса - область пониженного давления.

Гидродинамического поле - поле возникающее в следствии движения корабля, за счет изменения гидростатического давления воды под корпусом корабля. По физической сущности гидродинамического поле - это возмущение движущимся кораблем естественного гидродинамического поля Мирового океана.

Если в каждом месте Мирового океана параметры его гидродинамического поля обусловлены, главным образом, случайными явлениями, учесть которые заранее очень трудно, то движущийся корабль вносит не случайные, а вполне закономерные изменения в эти параметры, учесть которые можно с необходимой для практики точностью.

При движении корабля в воде частицы жидкости, находящиеся на определенных расстояниях от его корпуса, приходят в состояние возмущенного движения. При движении этих частиц изменяется величина гидростатического давления в месте движения корабля, т.е. образуется гидродинамическое поле корабля определенных параметров.

При движении подводной лодки под водой область изменения давления распространяется на поверхность воды так же, как и на грунт. Если подводная лодка движется на небольшой глубине, то на поверхности воды можно визуально фиксировать хорошо заметный волновой гидродинамический след.

Свойства гидродинамического поля корабля часто используются при разработке неконтактных гидродинамических взрывателей донных мин.

До настоящего времени значимых эффективных средств гидродинамической защиты корабля не разработано. Частичное снижение гидродинамического поля достигается за счет расчета баланса между оптимальным водоизмещением корабля и формы его корпуса. Основным тактическим приемом гидродинамической защиты корабля является выбор безопасной скорости хода. Безопасной считается такая скорость, при которой либо величина понижения давления под кораблём не превысит установленного порога срабатывания взрывателя мины, либо время воздействия на взрыватель области пониженного давления окажется меньше, чем установлено во взрывателе.

Существуют специальные графики безопасных скоростей корабля и правила пользования, которые даются в специальной инструкции по выбору безопасных скоростей корабля при плавании в районах возможной постановки гидродинамических мин.

Электромагнитное поле корабля - поле переменных по времени электрических токов, создаваемых кораблем в окружающем пространстве. Главными излучателями электромагнитного поля корабля являются: переменные гальванические токи в цепи «гребной винт - корпус», вибрация ферромагнитных масс корпуса в магнитном поле Земли, работа корабельного электрооборудования. Электромагнитное поле имеет ярко выраженный максимум в районе гребных винтов, а на расстоянии в несколько десятков метров от корпуса практически затухает.

Электромагнитная защита корабля осуществляется за счет выбора не­металлического материала для гребных винтов:

Применения для них не электропроводных покрытий, применения на валопроводе контактно-щёточных устройств;

Шунтирующих переменное сопротивление масляного зазора в подшипниках;

Поддержания сопротивления изоляции вала от корпуса в пределах установленных норм.

На кораблях с немагнитными и маломагнитными корпусами главное внимание уделяется вопросам снижения электромагнитного поля элементов электрооборудования.

Магнитное поле корабля

Магнитное поле корабля

Магнитное поле корабля - область пространства, в пределах которой обнаруживаются изменения магнитного поля Земли, обусловленные присутствием или движением намагниченного корабля.

Магнитное поле корабля представляет собой результирующую величину наложения нескольких полей: постоянного (статического) и индуктивного (динамического) намагничивания.

Постоянное намагничивание формируется у корабля в основном в период постройки под воздействием земного магнитного поля, и зависит от:

Расположения корабля относительно направления и величины линий напряженности магнитного поля Земли в месте постройки;

Магнитных свойств самих материалов, из которых строится корабль (остаточная намагниченность);

Соотношения главных размерений корабля, распределения и форм железных масс на корабле;

Технологий, с помощью которых осуществлялась постройка корабля (числа клепаных и сварных соединений).

Для количественной характеристики магнитного поля используется специальная физическая величина - напряженность магнитного поля Н.

Другой физической величиной, определяющей в первую очередь магнитные свойства материала является интенсивность намагничивания I. Кроме того существуют понятия остаточного намагничивания и индуктивного намагничивания.

Применения маломагнитных и немагнитных материалов при строительстве корабля позволяет в значительной степени снизить его магнитное поле. Поэтому при строительстве специальных кораблей (тральщиков, минных заградителей) широко используются такие материалы как стеклопластик, пластмассы, алюминиевые сплавы и т. д., а при строительстве некоторых проектов атомных подводных лодок применяется титан и его сплавы, который наряду с высокой прочностью является маломагнитным материалом. Однако прочность и другие механические и экономические показатели маломагнитных материалов позволяют применять их при строительстве боевых кораблей в ограниченных пределах. Существуют также и сильномагнитные материалы, к ним относятся: железо, никель, кобальт и некоторые сплавы. Вещества, способные сильно намагничиваться, получили название ферромагнетиков.

Принцип работы магнитной мины

Кроме того, если даже корпусные конструкции кораблей выполнять из маломагнитных материалов, то целый ряд корабельных механизмов остается выполненным из ферромагнитных металлов, которые также создают магнитное поле. Поэтому для кораблей, периодически осуществляется контроль уровня их магнитного поля и, при превышении допустимого значения, проводится размагничивание корпуса. Существует безобмоточное и обмоточное размагничивание. Первое осуществляется при помощи специальных кораблей или на станциях безобмоточного размагничивания, второе предусматривает наличие на самом корабле стационарных обметок (кабелей) и специальных генераторов постоянного Тока, которые вместе с аппаратурой управления и контроля составляют размагничивающее устройство корабля.

Магнитное поле корабля (МПК) широко используется в неконтактных взрывателях минно-торпедного оружия, а также в стационарных и авиационных системах магнитометрического обнаружения ПЛ.

Примером экспериментов по снижению магнитного поля, является так называемый Филадельфийский эксперимент , который и по сей день остается предметом многих домыслов, поскольку документальных подтверждений результатом эксперимента, публично так и не было обнародовано.

Электрическое поле корабля

Электрическое поле корабля

Электрическое поле корабля (ЭПК) - область пространства, в которой протекают постоянные электрические токи.

Основными причинами образования электрического поля корабля являются:

Электрохимические процессы протекающие между деталями корабля, изготовленными из разнородных металлов и находящимися в подводной части корпуса(гребные винты и валы, рулевые устройства, донно-забортная арматура, системы протекторной и катодной защиты корпуса и т. д.).

Процессы, порождаемые явлением электромагнитной индукции, суть которых заключаются в том, что корпус корабля во время своего движения пересекает силовые линии магнитного поля Земли, в результате чего в корпусе и прилегающих к нему массах воды возникают электрические токи. Аналогичные токи формируются в корабельных винтах при их вращении. Как правило корпус корабля изготавливается из стали, винты и донная арматура из бронзы или латуни, обтекатели гидроакустических станций из нержавеющей стали, а протекторы коррозии из цинка. В результате в подводной части корабля образуются гальванические пары и в морской воде, как в электролите, возникают стационарные электрические токи.

Процессы, связанные с утечкой токов корабельного электрообору­дования на корпус корабля и в воду.

Главной причиной формирования ЭПК являются электрохимические процессы между разнородными металлами. Около 99 % от максимальной величины ЭПК приходится именно на электрохимические процессы. Поэтому для снижения уровня ЭПК стремятся устранить эту причину.

Электрическое поле корабля серьезно превосходит естественное электрическое поле Мирового океана, это позволяет его использовать при разработке неконтактного морского оружия и средств обнаружения подводных лодок.

Снижение уровня электрического поля достигается: - путем применения неметаллических материалов при изготовления корпуса и деталей, соприкасающихся с морской водой;

Путем подбора металлов по близости значений их электродных потенциалов для корпуса и деталей, соприкасающихся с морской водой;

При помощи экранирования источников ЭПК;

Путем разъединение внутренней электрической цепи источников ЭПК;

С помощью применения специальных покрытий источников ЭПК электроизолирующими материалами.

Области применения

Физические поля корабля в настоящее время широко используются по трем направлениям:

В неконтактных системах различных видов оружия;

В системах обнаружения и классификации;

В системах самонаведения.

Ссылки и источники

Литература

1. Свердлин Г. М. Гидроакустические преобразователи и антенны. . - Ленинград: Судостроение, 1980.

2. Урик Р.Дж.(Robert J. Urick). Основы гидроакустики (Principles of Underwater Sound). . - Ленинград: Судостроение, 1978.

3. Яковлев А.Н Гидролокаторы ближнего действия. . - Ленинград: Судостроение, 1983.

В дальнейшем мы всегда стремились к тому, чтобы все СБР были самоходными, но судьбе было угодно иногда… по воле старшего начальства подбрасывать нам несамоходные баржи водоизмещением до 450 т. Слов нет, на такой барже можно было установить мощную аккумуляторную батарею, зарядный агрегат, оборудовать специальные помещения для работы и с комфортом разместить команду. Однако все эти прелести меркли перед недостатками, связанными с отсутствием своего собственного хода.

По роду деятельности СБР являлась оперативным техническим средством обеспечения деятельности боевых кораблей флота. Опыт военных лет и более позднего времени показал, что СБР должны без помощи буксиров, своим ходом, совершать переходы не только в пределах одного порта, но и между различными портами или местами постоянного или временного базирования соединений кораблей, районами траления, учений и подготовки операций. Так, например, во время траления магнитных и индукционных мин на Азовском море, где одновременно работало более 100 катерных электромагнитных тральщиков, у всей армады необходимо было систематически измерять магнитные поля, а в случае сильных сотрясений корпусов от взрывов вытравливаемых мин производить безобмоточное размагничивание. В связи с большим объемом работ тральщики работали почти круглосуточно, «не вынимая трала из воды». Перерывы для перехода в порт базирования СБР и измерения магнитных полей были крайне нежелательны. Поэтому для сбережения моторесурсов тральщиков и их более эффективного использования бригаде или отряду траления придавалась СБР, которая их обслуживала и кочевала вместе с ними из одного района траления в другой. Были и другие случаи, когда необходимо было осуществить маневр техническими средствами для выполнения большого объема работ в короткие сроки, например при подготовке к десантным операциям или к учениям.

В основе принципа безобмоточного размагничивания кораблей лежат следующие положения ферромагнетизма.

Известно, что всякое ферромагнитное тело, помещенное во внешнее магнитное поле, получает индуктивное и постоянное или остаточное намагничивания. Магнитное поле вблизи тела от индуктивного намагничивания в слабом внешнем поле, каким является земное магнитное поле, зависит от его величины и направления, т. е. от геомагнитной широты плавания и курса корабля. Магнитное поле от постоянного намагничивания возникает в результате явления гистерезиса. Величина остаточного намагничивания сильно возрастает, если на ферромагнитное тело действуют одновременно постоянное магнитное поле и упругие напряжения (вибрации, удары и др.) или постоянное и переменное магнитные поля.

В естественных земных условиях направления (знаки) магнитных полей индуктивного и постоянного намагничиваний совпадают и общее магнитное поле, в том числе и его вертикальная составляющая, суммируется.

Для того чтобы уменьшить вертикальную составляющую напряженности магнитного поля корабля, необходимо, очевидно, намагнитить корабль таким образом, чтобы вертикальная составляющая напряженности постоянного намагничивания была равна по величине и противоположна по знаку вертикальной составляющей индуктивного намагничивания корабля. Строго говоря, производилось не размагничивание, а намагничивание безобмоточным методом ферромагнитных масс корабля.

Для этого по обводу корабля, примерно на уровне ватерлинии, на пеньковых концах подвешивали толстый гибкий кабель. При пропускании по нему тока борта корабля намагничиваются. Часто для усиления эффекта намагничивали широкие пояса бортов корабля путем перемещения (натирания) кабеля в вертикальном направлении в момент пропускания тока. Если сила тока очень большая, то кабель настолько сильно притягивается к борту, что переместить его вручную не хватает сил. На больших торговых судах для перемещения кабеля в момент пропускания тока использовали краны, лебедки и т. п.

Устранение постоянного продольного и поперечного намагничиваний корабля безобмоточным методом производили в прямом смысле этого слова, т. е. размагничиванием.

Метод безобмоточного размагничивания кораблей с его модификациями при должном опыте работы оказался достаточно гибким и позволил с небольшими затратами технических средств защитить подводные лодки, вспомогательные суда и малые корабли от магнитных и индукционных мин противника. Однако он обеспечивал удовлетворительную защиту лишь в той геомагнитной зоне, в которой производилось размагничивание. В других зонах индуктивное намагничивание изменяется пропорционально изменению вертикальной составляющей магнитного поля Земли, а постоянное намагничивание изменяется медленно, в течение многих месяцев. Под влиянием различных внешних факторов, упругих напряжений, штормовой погоды, глубоководных погружений (для подводных лодок), а также при близких взрывах авиабомб и других сотрясениях постоянное намагничивание во много раз возрастает.

Кроме того, оно зависит и от предыстории, т. е. от того, насколько и каким образом ранее был намагничен корабль. Поэтому результаты изучения влияния этих явлений на изменение магнитных полей кораблей необходимо было строго систематизировать.

Для этой цели в УК ВМФ были разработаны специальные формы протоколов безобмоточного размагничивания и контрольных измерений магнитных полей кораблей, оборудованных размагничивающими устройствами и аппаратурой для их регулировки. Кроме того, были разработаны формы паспортов, выдаваемых кораблям и заполняемых на СБР при проведении каждого очередного размагничивания. Такие документы мы получили от флагманского механика штаба ЧФ 7 октября 1941 г.

Введение протоколов и паспортов размагничивания кораблей существенно облегчало выполнение этого процесса. Оно позволило накопить опыт проведения работ, изучить влияние различных факторов на изменение магнитных полей кораблей и, наконец, имело огромное организующее значение. Кораблям, не прошедшим в установленный срок очередного размагничивания, выход в море не разрешался. И никто на Черноморском флоте не нарушал это положение.

Операция по размагничиванию кораблей, согласно положению, выполнялась тогда, когда корабль уже принял боезапас и все грузы, с которыми он будет плавать, т. е. она была предпоследней (последней было устранение девиации магнитных компасов) при подготовке корабля к походу, и, как правило, на ее выполнение оставалось совсем мало времени. Это приводило к тому, что размагничивание корабля часто приходилось проводить по ночам, при полном затемнении.

В конце сентября 1941 г. по решению штаба ЧФ в районе Троицкой бухты Минно-торпедным отделом ЧФ был оборудован испытательный полигон, где наряду с другими приборами был установлен замыкатель от разоруженной немецкой магнитной мины. Провода от него были выведены на берег, в лабораторию. Появилась возможность не только проверить качество размагничивания кораблей на этом полигоне, но и продемонстрировать это публично. Если корабль был размагничен хорошо, то при прохождении его по стенду над замыкателем никаких сигналов на берегу не возникало, а при неудовлетворительном размагничивании срабатывал замыкатель и на берегу загоралась красная лампа, которая была видна с проверяемого корабля.

Военные моряки вообще, а экипажи кораблей в особенности знали, что магнитные мины для неразмагниченных кораблей представляют страшную угрозу. Свидетельством этому являлись не только сообщения в печати или в соответствующих документах, но и подрывы неразмагниченных кораблей на Черном и Балтийском морях. Поэтому моряки очень серьезно относились к размагничиванию кораблей. Положение обострялось еще и тем, что сами экипажи кораблей внешне не ощущали, насколько качественно размагничен их корабль. Иногда действия «размагнитчиков» моряки называли черной магией. Для экипажа качество размагничивания корабля - это не отвлеченный, абстрактный интерес, а вопрос жизни. Возможно, что определенное влияние на повышение интереса к размагничиванию кораблей оказало и то, что непосредственными руководителями и участниками работ были не привычные заводские инженеры и мастера, а «чистые ученые», физики. Сейчас никого не удивляют совместные работы ученых и инженеров, это считается не только нормальным, но в ряде случаев и наиболее эффективным, а тогда это было еще непривычно.

Размагничивание - это процесс уменьшения намагниченности различных металлических предметов.
Размагничивание требуется в различных областях техники.

__
На производстве при работе с инструментами неудобно пользоваться намагниченными отвёрткой или пинцетом, маленькие гайки и шайбы "прилипают" к инструменту.

При обработке изделий на станках необходимо, чтобы металлическая деталь не перемещалась вслед за движущимися устройствами станков и агрегатов.

Основным способом размагничивания является воздействие на намагниченный предмет переменным магнитным полем с уменьшающейся амплитудой. Иногда размагничивают материалы и с помощью нагрева до определенной высокой температуры.

Корпуса кораблей, технические средства, вооружение, построенные из ферромагнитных материалов, находясь в магнитном поле Земли, намагничиваются.

Намагничивание корабля складывается из:
1) намагничивания , которое приобретается кораблем во время его постройки или длительной стоянки, корабль становится « постоянным магнитом »;
2) намагничивания, которое приобретается кораблем в данный момент времени в зависимости отвеличины и направления магнитного поля Земли. Оно непрерывно изменяется с изменением магнитного поля Земли и исчезает, если магнитное поле Земли в точке нахождения корабля становится равным нулю. Так корабли приобретают собственные магнитные поля.

Постоянное намагничивание снимается на специальных береговых или других мобильных стендах, а намагничивание, полученное же в результате действия магнитного поля Земли компенсируется с помощью размагничивающего устройства, установленного на самом корабле.
___

Корабли с намагниченным корпусом притягивают плавающие металлические предметы, а ими могут стать и морские мины. Компас корабля начинает давать ошибочные показания, принимая магнитное поле корабля за магнитное поле Земли. Поэтому с целью защиты от морских мин и для увеличения точности показаний магнитного компаса как надводные, так и подводные корабли подвергают размагничиванию.
___

Первые неконтактные магнитные мины появились еще в 1919 г. В таких минах железная стрелка поворачивалась под влиянием магнитного поля плывущего неподалеку корабля и замыкала контакты взрывателя. Для таких мин даже не нужно было касания корпуса корабля!
___

В 30-х годах 20-го века наши ученые предложили «размагничивать» корабли.
В 1937 г. в России были проведены первые удачные опыты по размагничиванию судов в Кронштадте.
В 1939 г. осуществлено успешное плавание размагниченного корабля «Выборного» над магнитными минами в Онежском озере.
В 1941 г. произошел переход к стационарному оснащению кораблей размагничивающими установками (токонесущими обмотками, нивелирующими намагниченность корпуса).
___

Во время Великой Отечественной войны большое значение имело размагничивание подводных лодок, которое в обязательном порядке проводилось перед выходом их в море. Каждая лодка имела специальный паспорт, в котором отмечалось состояние ее магнитного поля. Размагничивание спасло от гибели не одну подводную лодку

Принцип размагничивания подводной лодки состоит в следующем. Размагничивающее устройство состоит из нескольких (3 или 4-х) обмоток.




По каждой обмотке пропускается постоянный ток такого направления и такой величины, чтобы создаваемое им магнитное поле было равно и противоположно направлено одной из составляющих магнитного поля лодки.



Знаете ли вы?

Магниты и головной мозг

Физиологи обнаружили, что использование магнитного поля способствует развитию головного мозга у взрослых, стариков и у детей.
Исследователь Фортунато Батталья из университета Нью-Йорка, проведя опыты, обнаружил, что воздействие магнитных полей приводит к росту новых нейронов в областях головного мозга, отведённых под память и обучение. Магнитная стимуляция мозга уже давно используется для лечения депрессии, шизофрении и последствий инсультов, когда магнитные поля возвращают пострадавшим речь. Если новые исследования подтвердятся, то перед врачами откроются новые перспективы лечения различных болезней (например, болезни Альцгеймера, которая сопровождаются массовой гибелью нейронов мозга) и корректировки возрастных изменений памяти.


Любознательным

Белые облака

Почему облака в основном белые, а не голубые, как небо? Почему грозовые тучи черные?

Оказывается...
Рассеяние света на объектах, много меньших длины волны видимого света, описывается рэлеевской моделью рассеяния. Размеры водяных капель в облаке обычно больше, и свет просто отражается от их внешней поверхности. При таком отражении свет не разлагается на составляющие цвета, а остается белым. Очень плотные облака кажутся черными потому, что они пропускают мало солнечного света - он либо поглощается каплями воды в облаке, либо отражается вверх.

Появление неконтактного минного и торпедного оружия, а затем магнитных обнаружителей (магнитометров) подводных лодок в подводном положении, реагирующих на магнитное поле корабля, привело к разработке и созданию методов и средств как активной, так и пассивной защиты кораблей.

К методам активной защиты относят:

Уничтожение мин с помощью тралов;

Создание проходов в минных полях с помощью подрывов глубинных и авиационных бомб;

Поиск с помощью специальных электромагнитных и телевизионных искателей с последующим уничтожением.

Основным методом пассивной защиты является размагничивание кораблей. Суть его заключается в уменьшении магнитного поля на определенной глубине, называемой глубиной защиты. Глубиной защиты называют такую наименьшую глубину под килем, на которой после размагничивания корабля напряженность его магнитного поля практически равна нулю. В этом случае обеспечивается несрабатывание неконтактных мин и торпед,

Другой путь в обеспечении защищенности корабля по магнитному полю заключается в применении маломагнитных и немагнитных материалов в конструкциях корпуса и механизмов корабля.

Понятие о размагничивании.

Размагничиванием корабля называется процесс искусственного уменьшения его магнитного поля. Размагничивание производят с помощью обмоток контуров, питаемых током, и называют электромагнитной обработкой (ЭМО). Суть ЭМО заключается в создании определенным образом магнитного поля, обратного по знаку полю корабля, о чем будет сказано ниже.

На рис. 8 представлен плоский контур, по которому пропускается постоянный ток. Зависимость направления поля, т.е. положения его полюсов от направления тока определяется известным правилом буравчика .

Размагничивание производится двумя различными методами - безобмоточным и обмоточным. Названия эти следует понимать как условные, так как размагничивание кораблей как одним, так и другим методом выполняют с помощью обмоток, питаемых током. Но в первом случае, обмотки накладывают на корпус судна временно, лишь на период размагничивания, или же вообще располагают вне судна, на фунте. Применяя же второй метод, обмотки монтируют на судне стационарно и включают их на время следования по опасным районам.

Безобмоточное размагничивание (БР).

Безобмоточное размагничивание осуществляется путем воздействия на корабль временно создаваемых магнитных полей двумя способами:

С помощью временно накладываемых на корабль электрических обмоток;

С помощью контуров, обтекаемых током, уложенных на грунте.

При безобмоточном размагничивании (БР) корпус корабля подвергается воздействию затухающего переменного и постоянного магнитных полей, либо кратковременному воздействию только постоянного магнитного поля. В первом случае размагничивание основано на намагничивании корпуса по безгистерезисной кривой, во втором - по гистерезисной (рис. 4).


Размагничивание с помощью временно накладываемых на корабль обмоток.

После постройки корабля его корпус намагничивается в вертикальном, продольном и поперечном направлении.

Рассмотрим сущность размагничивания в вертикальном направлении (рис. 9, а).

а) вертикальное размагничивание;

б) продольное размагничивание;

в) поперечное размагничивание.

Вокруг корпуса заводится кабель в плоскости, параллельной ватерлинии. В зависимости от намагничивания корпуса, величина которого определяется при предварительном измерении, по кабелю пропускается ток такой величины (рис, 10), чтобы созданное поле обратного знака (при включенном токе) в точке превышало в раза исходное (точка ).

Через несколько секунд ток в обмотке выключается, и магнитное состояние переходит в точку . Эта операция называется «опрокидыванием» поля. Действительно, поле в точке оказалось другого знака, «опрокинутым». Заметим, что процесс идет по гистерезисной кривой.

Вторая операция называется «компенсацией». Во время этой операции в обмотку включается ток, величина и направление которого выбираются так, чтобы после выключения его поле корабля возможно больше приближалось к нулю.

Вертикальное намагничивание корабля;

Напряженность вертикального внешнего магнитного поля.

Ток, включенный в обмотку при первой и второй операциях, называется соответственно током опрокидывания и током компенсации .

Из кривых видно, что в результате электромагнитной обработки имевшееся у корабля намагничивание компенсируется, а создаваемое новое намагничивание таково, что вертикальные составляющие индуктивного намагничивания и постоянного намагничивания , в районе экватора оказываются близкими или равными по абсолютной величине, но противоположными по знаку.

При размагничивании по безгистерезионой кривой достигается тот же результат, только процесс компенсации старого созданием нового постоянного намагничивания происходит при циклическом перемагничивании в переменном магнитном поле, убывающем по амплитуде от некоторого максимума до нуля. Для создания как постоянного, так и переменного магнитных полей на корабль накладываются временно один или несколько витков, подключаемых к источникам питания судов размагничивания. Для случая продольного размагничивания на корабль накладывается несколько витков (рис. 9, б) так, что корабль оказывается заключенным внутри огромного соленоида. Возникающее при включении обмотки магнитное поле, действующее по оси соленоида, размагничивает корабль.

При поперечном размагничивании на корабль накладываются в вертикальной плоскости два последовательно соединенных витка по бортам.

Эффективность размагничивания проверяют измерениями магнитного поля под днищем.

Заводка вокруг корпуса тяжелых многожильных кабелей связана с большими затратами времени и физического труда. Поэтому наравне с этим способом используют также специальные станции безобмоточного размагничивания, на которых обмотки (кабель) уложены определенным образом на грунте. Безобмоточное размагничивание с помощью контуров, уложенных на грунте. Контуры, уложенные на грунте, имеют форму петли. Поэтому станции получили название - петлевые станции безобмоточного размагничивания (ПСБР) рис. 11. Акватория ограждается буями или вехами. На ней имеются бочки для швартовки судов.

Через контур 1 пропускают постоянный ток , через контур 2 - переменный ток частотой около . Переменное магнитное поле позволяет устранить все необратимые явления, возникающие при намагничивании в постоянном магнитном поле контура постоянного тока 2. Процесс размагничивания заключается в пропускании соответствующих токов по контурам (донным кабелям) в тот момент, когда корабль проходит или стоит над ними. Управление режимом тока и снятие показаний магнитометрической аппаратуры осуществляется дистанционно с берегового пульта. Процесс размагничивания основан на принципе полугистерезисного перемагничивания (рис. 12).

При подходе к стенду ПСБР магнитное состояние корабля характеризуется точкой , где корабль обладает определенным постоянным и индуктивным намагничиванием. В момент прохождения над стендом корабль подвергается перемагничиванию по полугистерезисной кривой . В этот момент корабль находится над серединой контура. Далее при удалении корабля его магнитное состояние изменяется по кривой. При удачном сочетании магнитных полей на стенде магнитное состояние корабля может прийти в близкое к нейтральному магнитное состояние (точка ).

1 - контур постоянного тока;

2 - контур переменного тока;

3 - ограждающий буй

Как правило, при электромагнитной обработке на таких станциях одновременно компенсируется постоянное вертикальное и постоянное продольное намагничивание, Другие виды намагничивания не устраняются.

Итак, положительной стороной безобмоточного размагничивания является то, что корабль не несет никаких обмоток, для которых потребовались бы источники питания и щиты управления. Однако, этот метод не универсален.

Основными недостатками без обмоточного размагничивания корабля является:

1. Невозможность компенсации курсовых и широтных изменений поля корабля.

2. Необходимость периодически повторять магнитную обработку ввиду недостаточной стабильности результирующего поля.

3. Необходимость после каждой обработки производить определение и устранение девиации магнитных компасов.

Обмоточное размагничивание

Обмоточное размагничивание предусматривает компенсацию магнитных полей корабля полями от стационарных обмоток, питаемых током от специальных источников. Совокупность системы обмоток, источников питания, а также аппаратуры управления и контроля составляет размагничивающее устройство (РУ).

РУ рассчитывается так, чтобы магнитное поле, создаваемое током, протекающим по обмотке, представляло в любой момент времени зеркальное отображение собственного магнитного поля корабля, т. е. в каждой точке под кораблем было равно полю корабля по величине и противоположно по знаку.

РУ впервые разработаны группой сотрудников ЛФТИ АН СССР во главе с академиком А. П. Александровым (И. В. Курчатов, Л. Р. Степанов К. К. Щербо и др.). Размагничивающее устройство позволяет компенсировать магнитное поле корабля с учетом курсовых и широтных изменений.

Размагничивающее устройство состоит из нескольких самостоятельных обмоток различного назначения.

1. Для компенсации напряженности поля от вертикального постоянного намагничивания служит основная горизонтальная обмотка. Направление тока в этой обмотке подбирают так, чтобы ее магнитное поле было противоположно полю от вертикального постоянного намагничивания (рис. 13).

На рис. 13 показано, что магнитное поле обмотки (кривая ) равно по напряженности, но противоположно по знаку собственному полю (). Эта обмотка называется главной потому, что с её помощью компенсируется самая значительная (вертикальная) составляющая. Подобранный для этой обмотки режим тока в дальнейшем не изменяется, а остается постоянным на всех курсах и на любой широте.

Для компенсации вертикальной составляющей продольного намагничивания применяют носовую и кормовую обмотки (рис. 14,а).

2. Вместо указанных обмоток можно применить шпангоутную обмотку (рис. 14, б), Действие этой обмотки более эффективно по сравнению с носовой и кормовой постоянными обмотками. Однако установка ее связана с большими трудностями.

3. Поле от поперечного постоянного намагничивания компенсируется полем батоксовых постоянных обмоток, которые соединяются последовательно и крепятся на правом и левом бортах судна (рис. 15). Для компенсации этого поля достаточно задать в обмотках определенный и одинаковый режим тока.

Сложнее компенсировать индуктивные составляющие намагничивания. Для этой цели в размагничивающее устройство входят регулируемые обмотки: широтная, курсовые шпангоутные обмотки и батоксовые курсовые обмотки.

4. Широтная обмотка предназначена для компенсации поля от вертикального индуктивного намагничивания. Расположение этой обмотки и распределение составляющих напряженности ее магнитного поля такие же, как у основной горизонтальной. Поэтому отдельную широтную обмотку можно не устанавливать, а использовать несколько секций основной горизонтальной обмотки, вводя в цепь их питания приспособления для регулировки тока.

Ток в широтной обмотке регулируется пропорционально синусу магнитного наклонения (магнитной широты).

Курсовые шпангоутные обмотки служат для компенсации поля от продольного индуктивного намагничивания и размещаются аналогично обмоткам для постоянного продольного размагничивания. Поскольку напряженность поля от продольного индуктивного намагничивания корабля изменяется пропорционально косинусу магнитного поля, то для компенсации этого поля необходимо изменять режим тока в обмотке также по закону косинуса. Поэтому эти обмотки называют шпангоутными курсовыми (рис. 14, б).

Батоксовые курсовые обмотки используются для компенсации поля от поперечного индуктивного намагничивания, их располагают последовательно по обоим бортам судна, параллельно постоянным обмоткам. Регулировка силы и направления тока производится пропорционально синусу угла магнитного курса.

Дополнительные обмотки устанавливаются как для компенсации корабля на отдельных участках его, так и для компенсации магнитных полей мощных корабельных электроэнергетических и других установок.

Основным достоинством обмоточного размагничивания является возможность компенсации курсовых и широтных изменений магнитного поля корабля, что обеспечивает большую степень защиты кораблей от неконтактного магнитного оружия и большую их скрытность.

Недостатками РУ являются: большая стоимость, расход дополнительных материалов, утяжеление корабля и значительный расход энергии.

Военные моряки смогут одним нажатием кнопки менять индивидуальные электромагнитные портреты кораблей, по которым наводятся современные торпеды и донные мины. Эту возможность им обеспечат суперконденсаторы - устройства, представляющие собой промежуточное звено между аккумуляторными батареями и конденсаторами. Они способны мгновенно накапливать электрический ток и так же быстро его расходовать. Экипажи смогут самостоятельно проводить размагничивание корабля в море в случае опасности и тем самым вводить в заблуждение противника.

Как сообщили «Известиям» в главкомате ВМФ, в России налажено серийное производство суперконденсаторов, которые будут применяться для быстрого размагничивания боевых кораблей, а также для искажения и маскировки их электромагнитного портрета. Новейший комплекс размагничивания уже прошел испытания на большом десантном корабле (БДК) «Иван Грен».

Стандартные накопители энергии, применяемые в ВМФ, имеют высокие удельные мощностные, но низкие удельные энергетические параметры. Системы размагничивания на их основе имеют большую массу, поэтому устанавливаются лишь на специальных судах размагничивания. В отличие от накопителей предыдущего поколения суперконденсаторы - компактные устройства размером с обычный автомобильный аккумулятор, но с их помощью процесс размагничивания можно сделать непрерывным, интегрировав устройство в состав бортового оборудования.

Суперконденсаторы для ВМФ разработаны компанией ТЭЭМП. Изделия имеют удельную мощность в 100 кВт/кг и могут работать даже при экстремальных температурах. Суперконденсатор обладает миллионным числом циклов заряд–разряд, что позволяет интегрировать его в состав любого бортового оборудования автомобиля, самолета или корабля.

Эксперт в области военно-морских вооружений Александр Мозговой рассказал «Известиям», что стандартные процедуры размагничивания корабля долгие и утомительные. Сейчас их проводят исключительно на территории военно-морских баз.

У корабля есть не только свой уникальный акустический портрет, но и электромагнитный. Существуют магнитные мины, торпеды и даже ракеты с магнитными головками наведения, - пояснил эксперт. - Размагничивание необходимо, но это большая проблема. Помнится, на БДК «Иван Грен» пришлось из-за этого даже всю проводку менять.

По словам эксперта, новые технологии сильно упрощают процесс размагничивания, поскольку всё делается одним нажатием на кнопку. Морякам будет меньше работы, а процесс подготовки к выходу на боевую службу значительно ускорится. Такая система также постоянно контролирует состояние электромагнитного поля корабля во время плавания.

Американцы уже установили похожую систему на свои новейшие эсминцы типа «Зумвальт», - отметил Александр Мозговой.

Размагничивание корабля - обязательная процедура перед каждым выходом в море. Она включает в себя обмотку корпуса электрическим кабелем. По нему в течение нескольких суток подается ток, генерирующийся через электролитические конденсаторы, которые выдают переменные магнитные импульсы. Они снимают собственное электромагнитное поле корабля. Тем самым улучшается работа навигационных комплексов, а заодно повышается защищенность корабля от высокоточных систем оружия.

ПОДРОБНЕЕ ПО ТЕМЕ



Понравилась статья? Поделитесь ей
Наверх