Жиры и масла. Свойства жиров и масел. Химические свойства жиров Жиры в природе. Физические свойства

В группу важных органических веществ - липидов - наряду со стероидами и восками входят жиры. Их содержание в живых клетках колеблется от 5 до 10% от сухой массы клетки. Эти вещества изучают, исходя из особенностей их которые и обуславливают химические свойства жиров. Химия рассматривает эти вещества как продукт реакции этерификации между трехатомным спиртом глицерином и высшими предельными или непредельными карбоновыми кислотами.

В данной статье мы изучим не только их применение в промышленности и значение, но также получение жиров и химические свойства, характерные для данного класса соединений.

История открытия

Строение было изучено в середине 19 столетия. Французский химик Э. Шеврель нагревал их с водой в присутствии щелочи и нашел в продуктах реакции молекулы жирных карбоновых кислот и глицерола. М. Бертло провел при нагревании глицерина со смесью стеориновой и пальметиновой кислот он получил триглицерид - жир. На основании этих экспериментов было сделано заключение, что изучаемые вещества относятся к классу эстеров. Химические свойства жиров подтвердили этот вывод.

Жиры - сложные эфиры

Как было доказано опытами М. Бертло и Э. Шевреля, триглицериды представляют собой эстеры трехатомного спирта глицерина и высших одноосновных карбоновых кислот. Жир, содержащий стеориновую или пальметиновую кислоты, является твердым, например, говяжий, свиной, бараний. Если в состав триглицеридов входят ненасыщенные жирные кислоты - олеиновая, линолевая, линоленовая - такие жиры жидкие и называются маслами (подсолнечное, арахисовое, льняное).

Химические свойства жиров отличаются от других эстеров еще и тем, что в состав их молекул могут входить сразу нескольких различных карбоновых кислот.

Физические свойства

Как натуральные, так и синтетические, например, маргарин, триглицериды имеют общие признаки. Главный из них - гидрофобность, невысокая температура плавления и низкая удельная плотность. Они хорошо растворяются в органических растворителях, например, в бензоле, тетрахлорметане. Все жиры легко впитываются пористыми или волокнистыми материалами. Согласно теории органических веществ М. Бутлерова, физические и химические свойства жиров взаимосвязаны между собой. Подтверждение этому факту будет приведено ниже.

Химические реакции триглицеридов

Количественный и качественный состав молекулы жира, а также ее пространственная конфигурация подтверждает факт принадлежности триглицеридов классу эстеров. Их главное химическое свойство - это реакция с водой (гидролиз). Она легко происходит в присутствие катализаторов - щелочей, оксидов магния, цинка или кальция. В продуктах реакции обнаруживается смесь карбоновых кислот и глицерина. Так как реакция жиров с водой обратима, в промышленности создают условия, при которых она проходит до конца - в сторону образования глицерола и высших одноосновных карбоновых кислот. Для этого в реактивную смесь постоянно подают раствор щелочи, а продукты сразу выводят из сферы реакции. Эти приемы предотвращают возможность протекания обратного процесса, приводящего к образованию жира. Гидролиз широко используется в химии органического синтеза для получения вышеназванных веществ.

Реакция щелочного омыления

Продолжим изучать органические вещества - сложные эфиры. Жиры, химические свойства которых представлены реакцией гидролиза, способны также вступать во взаимодействие с щелочами. Эта реакция называется омылением и она противоположна процессу эстерификации. Полученные в результате щелочного омыления глицерол и жирные кислоты обрабатывают содой или едким натром. В результате образуется мыло.

Оно твердое, имеет формулу C 17 H 35 COONa и называется хозяйственным. Если добавить к нему красители, глицерин, косметические отдушки, получим туалетное мыло. Жидкое мыло, в отличие от твёрдых видов, получают в том случае, если жиры в реакции омыления смешивают не с гидроксидом натрия, а с едким калием. Например, пальмитат калия C 15 H 31 COOK - жидкое калиевое мыло. Исходным сырьем для реакции омыления служат дешевые жиры животного или растительного происхождения.

Жидкие жиры - масла

В их состав входят молекулы непредельных карбоновых кислот, имеющих двойные связи. синтезируются в каналах эндоплазматической сети под действием ферментов из глицерина и жирных кислот. А они, в свою очередь, образуются в реакциях цикла Кальвина, происходящих вследствие фотосинтеза. Капли масла накапливаются в семенах, плодах, реже в вегетативных частях растений и служат запасом питательных веществ. Физико-химические свойства жиров, образуемых растениями, обусловлены наличием в их молекулах двойной пи-связи. По месту ее разрыва происходят реакции присоединения, например, атомов водорода. Это приводит к образованию твердых гидрогенизированных триглицеридов.

Химические свойства растительных жиров

Как было сказано ранее, триглицериды растительного происхождения содержат в своем составе высшие ненасыщенные карбоновые кислоты. Масла можно перерабатывать благодаря гидрогенизации. Этот процесс проводят при нагревании и в присутствии катализатора - порошкообразного никеля.

Продукт реакции - твердый жир (саломас). Его используют в производстве стеорина, глицерола и в мыловарении. Если в саломас добавляют сахар, соль, молоко и пищевые красители, то получают пищевой жир - маргарин. При добавлении к нему витаминов и натурального сливочного масла получают так называемое легкое масло - спред.

Синтетические жиры

Они являются более дешевыми, чем натуральные, и отличаются от природных триглицеридов своим составом. Один из главных источников получения синтетических жиров - это природные и попутные нефтяные газы, а также сама нефть. Высшие парафины, содержащиеся в этих природных ископаемых, подвергают окислению. В результате получают синтетические жирные кислоты. Их взаимодействие с этиленгликолем приводит к получению синтетического жира. Он используется в кожевенной промышленности (для жирования меховых шкурок и кож). В косметической промышленности синтетические триглицериды применяются в производстве туалетного мыла, кремов, лосьонов. В промышленности строительных материалов искусственные жиры идут на производство лаков, мастик, краски.

Химические свойства жиров, полученных искусственным способом, не отличаются от природных. Они также вступают в в присутствии кислоты и подвергаются действию щелочей (реакция омыления).

Как образуются триглицериды в организме человека

Вследствие метаболических реакций жиры в клетках тела могут синтезироваться из избытка углеводов. Это объясняет тот факт, что неконтролируемое потребление пищи, богатой крахмалом и сахарозой (мучные изделия, рис, картофель, сладости), приводит к избыточному весу. В процессе пищеварения продукты, содержащие жиры, расщепляются в двенадцатиперстной кишке до глицерина и жирных кислот. Их гидролиз происходит при обязательном участии липазы - фермента поджелудочной железы и желчи, выделяемой печенью. Являясь детергентом, желчь эмульгирует жиры, то есть разбивает крупные молекулы на мелкодисперсные капли, легко расщепляемые липазой.

В ворсинках тонкого кишечника из них синтезируются молекулы жира, характерные для организма человека, а затем они всасываются в лимфу. По лимфатическим сосудам жиры поступают в клетки, а их избыток откладывается в подкожную жировую клетчатку или сальник.

Биологическая роль липидов

Изучая химические свойства жиров, остановимся на их способности выделять большое количество энергии: один грамм жира дает 37,8 кДж энергии при полном окислении. Поэтому триглицериды - ее универсальные поставщики. Таким образом, жиры — это ценные продукты питания. Известно, что при неправильном и длительном их хранении триглицериды «стареют» и прогоркают, приобретая неприятный запах. Это происходит вследствие контакта жира с кислородом воздуха. Начавшее портиться масло легко определить, если добавить к нему иодид калия. Пероксиды, содержащиеся в продукте, окисляют это соединение до свободного йода, вызывающего синее окрашивание при контакте с крахмалсодержащими веществами.

Жиры являются также важнейшим строительным материалом и входят в состав клеточных мембран и органоидов. Велика их роль и в теплорегуляции организмов. Например, животные, обитающие на больших глубинах, где температура воды очень низка, имеют хорошо развитый слой подкожного жира, например, у китов он может достигать толщины 1,5 м. Животные степей, пустынь и полупустынь также накапливают в своем организме достаточное количество жира. Он необходим для них как источник эндогенной воды, так как при окислении жира кроме энергии выделяется большое количество жидкости. К таким животным относятся верблюды, тушканчики, землеройки.

Липиды играют важную роль в защите внутренних органов. У человека хорошо развит сальник, защищающий желудок, пищеварительные железы от внутренних повреждений. Такие жизненно важные органы, как почки, обязательно должны находится в слое жира. При резкой потере веса у человека вследствие истончения этого слоя может наблюдаться опущение почек, что является серьёзной патологией, нарушающей работу выделительной системы.

Велико значение липидов в образовании клеточных мембран. Наряду с углеводами и белками они формируют два слоя, имеющих мозаичное строение. Соединения жиров с белками называются липопротеидами. Они обуславливают клеточных мембран.

В данной статье были рассмотрены химический состав и свойства жиров, а также их применение в промышленности.

    Химический состав и пищевая ценность жиров.

    Классификация пищевых жиров.

    Физические свойства и показатели жиров.

    Химические свойства и показатели жиров.

    Количественный анализ жиров.

1Вопрос. Химический состав и пищевая ценность жиров

В большинстве случаев в быту под термином «жиры» понимают группу пищевых продуктов: растительные масла, животные топленые жиры, маргарин, кондитерские, кулинарные, хлебопекарные жиры, сли­вочное масло.

Натуральные жиры: животные (по большей части твер­дые при комнатной температуре) и растительные - масла, как правило, жидкие при комнатной температуре.

С точки зрения органической химии жирами называют сложные эфиры глицерина и жирных кислот - глицериды, а точнее - триглицериды (триацилглицерины) (R 1 , R 2 и R 3 - углеводородные остатки высших карбоновых кислот):

Липиды (от греч. lipos - жир) - это группа веществ, различных по химическому составу и структуре, общими свойствами которых являют­ся гидрофобность (нерастворимость в воде) и способность растворяться в малополярных органических растворителях .

Согласно классификации проф. Б. Н. Тютюнникова липиды де­лятся на простые (глицериды, церины - основа восков, церолы, углево­дороды жирного ряда), сложные (фосфатиды, гликозидолипиды, липопротеиды) и циклические (стеролы и их эфиры с высокомолекулярными жирными кислотами).

Ниже приведены две из применяемых классификаций липидов (рис. 1).

Рис. 1. Схемы, классификации липидов по химической структуре и полярности

Всего в жирах обнаружено свыше четырехсот карбоновых ки­слот различного строения. Наиболее распространенные в жирах кисло­ты содержат от 12 до 18 атомов углерода. В состав пищевых жиров входят жирные кислоты с четным числом атомов углерода в углеводородной цепи, от 4 до 26 (табл. 1). Сами жирные кислоты делятся на: насыщенные (пре­дельные) и ненасыщенные (непредельные), содержащие двойные связи.

Табл 1. Основные карбоновые кислоты, входящие в состав природных жиров и масел

Свойства ненасыщенных жирных кислот зависят от степени ненасыщенности, т. е. количества двойных связей в молекуле. Мононенасы­щенные (например, олеиновая) имеют одну двойную связь, полиненасыщенные - от двух до шести двойных связей (линоле­вая, линоленовая, арахидоновая и др.). Ненасыщенные жирные кислоты составляют до 80-90% жидких жиров (масел) и жиров гидробионтов (организмов, живущих в воде). Важнейшее значение для организма че­ловека имеют ПНЖК : линолевая (2 двойные связи), линоленовая (3 двойные связи) и арахидоновая (4 двойные связи). Линолевая и линоленовая кислоты - «эссенциальные» (незаменимые ). Комплекс незаменимых полиненасыщенных жирных кислот рассматривается как комплекс F , биологическое значе­ние которого приравнивается к витаминам.

ПНЖК подразделяют на различные семейств в зависимости от положения первой = связи от метильного конца. Если = связь на 6-м месте – ω 6 (линолевая, γ- линоленовая, арахидоновая), на 3-м- ω 3 (α-линоленовая, эйкозапентаеновая, докозагексаеновая). ω 3 жирные кислоты содержатся в липидах рыб. Рекомендуемое соотношение ω 6: ω 3 = 10:1, для лечебного питания от 3:1 до 5:1.

Биологическая эффективность жиров – показатель качества жиров ПП, отражающий содержание в них незаменимых (эссенциальных) ПНЖК и жирорастворимых витаминов.

Все пищевые жиры в зависимости от со­держания полиненасыщенных жирных кислот делятся на три группы:

1. рыбий жир и растительные масла (до 60-70%);

2. свиной и птичий жиры (до 50%);

3. бараний и говяжий жиры (не более 5-6%).

Нормальное содержание жиров в организме человека составляет 10-20%, при патологии оно возрастает до 50%.

Функции жиров в организме чело­века:

1. являются поставщиками энергии - окисление жира 1 г жира в ор­ганизме дает 38,9 кДж (9 ккал), в то время как окисление 1 г белка или углеводов - только 17,2 кДж (4 ккал);

2. выполняют структурно-пластическую функцию - входят в состав мембран и внутриклеточных образований;

3. способствуют нормальному обмену веществ как носители жирора­створимых витаминов А, D, К и Е;

4. выполняют защитную функцию - создают термоизоляционные и водоотталкивающие покровы в организме; находясь в соедини­тельных тканях организма, предохраняют его от механических по­вреждений;

5. являются смазочным материалом кожи;

6. выполняют функцию регуляторов жизнедеятельности - оказывают влияние на проницаемость клеток, активность многих ферментов, участвуют в создании межклеточных контактов, мышечном сокращении и иммунохимических процессах.

В организме человека жир находится в двух видах: структурный (протоплазматический) и резервный (в жировых депо).

Важной составной частью жиров являются фосфолипиды, которые принимают активное участие в обмене веществ - входят в состав погра­ничного слоя клеток и являются одним из регуляторов проницаемости их стенок (группы: глицерофосфолипиды, диольные фосфолипиды и сфинголипиды). Глицеро­фосфолипиды:

Фосфатидилхолин составляет около 50% липидов клеточных мем­бран, входит в состав липопротеидов крови. Это одно из наиболее важ­ных питательных веществ для поддержания активного состояния печени, является универсальным строительным блоком для клеточных мембран.

Фосфолипиды принимают участие в формировании клеточных и внутриклеточных мембран, определяют степень их проницаемости, уча­ствуют в процессе свертывания крови, способствуют утилизации белка и жира в тканях, предупреждают жировую инфильтрацию печени. Из фосфолипидов наиболее распространены лецитины (соотношение фос­фора и азота 1:1). Благодаря содержанию фосфора и холина лецитин является биологическим антагонистом холестерина, кроме того, он сти­мулирует развитие растущего организма, благоприятно влияет на дея­тельность нервной системы, печени, способствует кроветворению, по­вышает сопротивляемость организма токсическим веществам, улучшает усвоение жиров, препятствует развитию атеросклероза.

Жиры являются носителями жирорастворимых витаминов А, Д, Е, К.

В соответ­ствии с данными Института питания РАМН суточная потребность взрослого человека в жирах составляет 95-100г, в том числе сливочно­го масла - 20, растительного масла - 25, животных жиров - 20, марга­рина - 30 г.

Оптимальное соотношение полиненасыщенных, мононенасыщенных и насыщен­ных жирных кислот: 10:60:30 .

ЛИПИДЫ

Биологические функции липидов

ЛИПИДЫ - это разнородная группа природных соединений, полностью или почти полностью нерастворимых в воде, но растворимых в органических растворителях и друг в друге, дающих при гидролизе высокомолекулярные жирные кислоты.

В живом организме липиды выполняют разнообразные функции.

Биологические функции липидов:

Структурная

Структурные липиды образуют сложные комплексы с белками и углеводами, из которых построены мембраны клетки и кле­точных структур, участвуют в разнообразных процессах, протекаю­щих в клетке.

Запасная (энергетическая)

Запасные липиды (в основном жиры) являются энергетическим резервом организма и участвуют в обменных процессах. В растениях они накапливаются главным образом в плодах и семенах, у животных и рыб - в подкожных жировых тканях и тканях, окру­жающих внутренние органы, а также печени, мозговой и нервной тка­нях. Содержание их зависит от многих факторов (вида, возраста, питания и т. д.) и в отдельных случаях составляет 95-97% всех вы­деляемых липидов.

Калорийность углеводов и белков: ~ 4 ккал/грамм.

Калорийность жира: ~ 9 ккал/грамм.

Преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность – он не связан с водой. Это обеспечивает компактность жировых запасов - они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме – примерно 400 гр.; при голодании этого количества не хватает даже на одни сутки.

Защитная

Подкожные жировые ткани предо­храняют животных от охлаждения, а внутренние органы - от меха­нических повреждений.

Образование запасов жира в организме человека и некоторых животных рассматривается как приспособление к нерегулярному питанию и к обитанию в холодной среде. Особенно большой запас жира у животных, впадающих в длительную спячку (медведи, сурки) и приспособленных к обитанию в условиях холода (моржи, тюлени). У плода жир практически отсутствует, и появляется только перед рождением.

Особую группу по своим функциям в живом организме составляют защитные липиды растений - воски и их производные, покрывающие поверхность листьев, семян и плодов.

Важный компонент пищевого сырья

Липиды являются важным компонентом пищи, во многом опреде­ляя ее пищевую ценность и вкусовое достоинство. Исключительно велика роль липидов в разнообразных процессах пищевой техноло­гии. Порча зерна и продуктов его переработки при хранении (прогоркание) в первую очередь связана с изменением его липидного комп­лекса. Липиды, выделенные из ряда растений и животных, - основное сырье для получения важнейших пищевых и технических про­дуктов (растительного масла, животных жиров, в том числе сливоч­ного масла, маргарина, глицерина, жирных кислот и др.).

Классификация липидов

Общепринятой классификации липидов не существует.

Наибо­лее целесообразно классифицировать липиды в зависимости от их хи­мической природы, биологических функций, а также по отношению к некоторым реагентам, например, к щелочам.

По химическому составу липиды обычно делят на две группы: простые и сложные.

Простые липиды – сложные эфиры жирных кислот и спиртов. К ним относятся жиры , воски и стероиды .

Жиры – эфиры глицерина и высших жирных кислот.

Воски – эфиры высших спиртов алифатического ряда (с длинной углеводной цепью 16-30 атомов С) и высших жирных кислот.

Стероиды – эфиры полициклических спиртов и высших жирных кислот.

Сложные липиды – помимо жирных кислот и спиртов содержат другие компоненты различной химической природы. К ним относятся фосфолипиды и гликолипиды .

Фосфолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с фосфорной кислотой (фосфорная кислота может быть соединена с дополнительным соединением). В зависимости от того, какой спирт входит в состав фосфолипидов, они подразделяются на глицерофосфолипиды (содержат спирт глицерин) и сфингофосфолипиды (содержат спирт сфингозин).

Гликолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с углеводным компонентом. В зависимости от того, какой углеводный компонент входит в состав гликолипидов, они подразделяются на цереброзиды (в качестве углеводного компонента содержат какой-либо моносахарид, дисахарид или небольшой нейтральный гомоолигосахарид) и ганглиозиды (в качестве углеводного компонента содержат кислый гетероолигосахарид).

Иногда в самостоятельную группу липидов (минорные липиды ) выделяют жирораство­римые пигменты, стерины, жирорастворимые витамины. Некоторые из этих соединений могут быть отнесены к группе простых (нейтраль­ных) липидов, другие - сложных.

По другой классификации липиды в зависимости от их отношения к щелочам делят на две большие группы: омыляемые и неомыляемые . К группе омыляемых липидов относятся простые и сложные липиды, которые при взаимодействии со щелочами гидролизуются с образова­нием солей высокомолекулярных кислот, получивших название «мы­ла». К группе неомыляемых липидов относятся соединения, не подвергающиеся щелочному гидролизу (стерины, жирорастворимые витамины, простые эфиры и т. д.).

По своим функциям в живом организме липиды делятся на струк­турные, запасные и защитные.

Структурные липиды - главным образом фосфоли­пиды.

Запасные липиды - в основном жиры.

Защитные липиды растений - воски и их производные, покрывающие поверхность листьев, семян и плодов, животных – жиры.


ЖИРЫ

Химическое название жиров - ацилглицерины. Это сложные эфиры глицерина и высших жирных кислот. "Ацил-" - это означает "остаток жирных кислот".

В зависимости от количества ацильных радикалов жиры разделяются на моно-, ди- и триглицериды. Если в составе молекулы 1 радикал жирных кислот, то жир называется МОНОАЦИЛГЛИЦЕРИНОМ. Если в составе молекулы 2 радикала жирных кислот, то жир называется ДИАЦИЛГЛИЦЕРИНОМ. В организме человека и животных преобладают ТРИАЦИЛГЛИЦЕРИНЫ (содержат три радикала жирных кислот).


Три гидроксила глицерина могут быть этерифицированы либо только одной кислотой, например пальмитиновой или олеиновой, либо двумя или тремя различными кислотами:



Природные жиры содержат главным образом смешанные триглице-риды, включающие остатки различных кислот.

Так как спирт во всех природных жирах один и тот же - глицерин, наблюдаемые между жирами раз­личия обусловлены исключительно составом жирных кислот.

В жирах обнаружено свыше четырехсот карбоновых кислот раз­личного строения. Однако большинство из них присутствует лишь в незначительном количестве.

Кислоты, содержащиеся в природных жирах, являются монокарбоновыми, постро­ены из неразветвленных углеродных цепей, содержащих чет­ное число углеродных атомов. Кислоты, содержащие нечетное число атомов углерода, имеющие разветвленную углеродную цепочку или содержащие циклические фрагменты, присутствуют в незначительных количествах. Исключение составляют изовалериановая кислота и ряд циклических кислот, содержащихся в не­которых весьма редко встречающихся жирах.

Наиболее распространенные в жирах кислоты содержат от 12 до 18 атомов угле­рода, они часто называются жирными кислотами. В состав многих жиров входят в небольшом количестве низкомолекулярные кислоты (С 2 -С 10). Кислоты с числом атомов углерода выше 24 присут­ствуют в восках.

В состав глицеридов наиболее распространенных жиров в значительном количестве входят ненасыщенные кислоты, содержащие 1-3 двойные связи: олеиновая, линолевая и линоленовая. В жирах животных присутствует арахидоновая кислота, содержащая четыре двойные связи, в жирах рыб и морских животных обнаружены кислоты с пятью, шестью и более двойными связями. Большинство ненасыщенных кислот липидов имеет цис-конфигурацию, двойные связи у них изолированы или разделены метиленовой (-СН 2 -) груп­пой.

Из всех непредельных кислот, содержащихся в природных жирах, наиболее распространена олеиновая кислота. В очень многих жирах олеиновая кислота составляет больше полови­ны от общей массы кислот, и лишь в немногих жирах ее содер­жится меньше 10%. Две другие непредельные кислоты - линолевая и линоленовая - также очень широко распростра­нены, хотя они присутствуют в значительно меньшем количестве, чем олеиновая кислота. В заметных количествах линолевая и линоленовая кислоты содержатся в растительных мас­лах; для животных организмов они являются незаменимыми кислотами.

Из предельных кислот пальмитиновая кислота почти так же широко распространена, как и олеиновая. Она присутству­ет во всех жирах, причем некоторые содержат ее 15-50% от общего содержания кислот. Широко распространены стеари­новая и миристиновая кислоты. Стеариновая кислота содер­жится в большом количестве (25% и более) только в запасных жирах некоторых млекопитающих (например, в овечьем жи­ре) и в жирах некоторых тропических растений, например в масле какао.

Целесообразно разделять кислоты, содержащиеся в жи­рах, на две категории: главные и второстепенные кислоты. Главными кислотами жира считаются кислоты, содержание которых в жире превышает 10%.


Физические свойства жиров

Как правило, жиры не выдерживают перегонки и разлага­ются, даже если их перегоняют при пониженном давлении.

Температура плавления, а соответственно и консистенция жиров зависят от строения кислот, входящих в их состав. Твердые жиры, т. е. жиры, плавящиеся при сравнительно вы­сокой температуре, состоят преимущественно из глицеридов предельных кислот (стеариновая, пальмитиновая), а в маслах, плавящихся при более низкой температуре и представляющих собой густые жидкости, содержатся значительные количества глицеридов непредельных кислот (олеиновая, линолевая, ли-ноленовая).

Так как природные жиры представляют собой сложные смеси смешанных глицеридов, они плавятся не при определен­ной температуре, а в определенном температурном интервале, причем предварительно они размягчаются. Для характеристи­ки жиров применяется, как правило, температура затверде­вания, которая не совпадает с температурой плавления - она несколько ниже. Некоторые природные жиры - твердые ве­щества; другие же - жидкости (масла). Температура затверде­вания изменяется в широких пределах: -27 °С у льняного мас­ла, -18 °С у подсолнечного, 19-24 °С у коровьего и 30-38 °С у говяжьего сала.

Температура затвердевания жира обусловлена характером составляющих его кислот: она тем выше, чем больше содержа­ние предельных кислот.

Жиры растворяются в эфире, полигалогенопроизводных, в сероуглероде, в ароматических углеводородах (бензоле, толу­оле) и в бензине. Твердые жиры трудно растворимы в петролейном эфире; нерастворимы в холодном спирте. Жиры нера­створимы в воде, однако они могут образовывать эмульсии, ко­торые стабилизируются в присутствии таких поверхностно-ак­тивных веществ (эмульгаторов), как белки, мыла и некоторые сульфокислоты, главным образом в слабощелочной среде. При­родной эмульсией жира, стабилизированной белками, являет­ся молоко.

Вступление

Жиры - органические соединения, полные сложные эфиры глицерина (триглицериды) и одноосновных жирных кислот; входят в класс липидов. Наряду с углеводами и белками, жиры -- один из главных компонентов клеток животных, растений и микроорганизмов. Все известные природные жиры содержат в своём составе три различных кислотных радикала, имеющих неразветвленную структуру и, как правило, чётное число атомов углерода. Из насыщенных жирных кислот в молекуле жира чаще всего встречаются стеариновая и пальмитиновая кислоты, ненасыщенные жирные кислоты представлены в основном олеиновой, линолевой и линоленовой кислотами.

жир консистенция гидрирование мыло

Строение, физические, химические свойства жиров

Строение:

Строение жиров отвечает общей формуле:

Жиры состоят почти исключительно из триглицеридов жирных кислот, то есть это сложные эфиры глицерина и высокомолекулярных жирных кислот. В природных жирах обнаружено более 200 различных жирных кислот. Этим объясняется разнообразие и химическая специфичность природных жиров. Жиры являются смесью триглицеридов, и характерно, что в природе не обнаружено жира, состоящего только из одного триглицерида. Преобладающими являются жирные кислоты с четным числом углеродных атомов от 8 до 24. 75% жиров составляют триглицериды всего трех кислот - пальмитиновой (CH 3 (CH 2) 14 COOH), олеиновой (СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН) и линолевой (СН 3 (СН 2) 3 -(СН 2 -СН=СН) 2 -(СН 2) 7 -СООН). Встречающиеся в природе жирные кислоты можно разделить на три группы : насыщенные, мононенасыщенные (с одной двойной связью- моноевые), полиненасыщенные (с двумя или более двойными связями).

Физические свойства жиров:

При комнатной температуре жиры- это твердые, мазеобразные или жидкие вещества. Как любая смесь веществ, они не имеют четкой температуры плавления (т.е. плавятся в некотором диапазоне температур). Определенной температурой плавления характеризуются лишь индивидуальные триглицериды.

Консистенция жиров зависит от их состава:

В твердых жирах преобладают триглицериды с остатками насыщенных кислот, имеющие относительно высокие температуры плавления.

Для жидких жиров (масел), напротив, характерно высокое содержание триглицеридов ненасыщенных кислот с низкими температурами плавления.

Жиры практически не растворимы в воде, но при добавлении мыла или других поверхностно-активных веществ (эмульгаторов), они способны образовывать стойкие водные эмульсии. Так же жиры ограниченно растворимы в спирте и хорошо растворимы во многих неполярных и малополярных растворителях - эфире, бензоле, хлороформе, бензине.

Химические свойства

1. Гидролиз жиров. Жиры гидролизуются с образованием глицерина и карбоновых кислот:

2. Гидрирование масел . Жидкие растительные масла превращаются в твёрдые


3. Получение мыла . Мыла - соли щелочных металлов высших карбоновых кислот.

Состав и строение молекул жиров.

Сложные эфиры могут образовываться разнообразными карбоновыми кислотами и спиртами. Наибольшее значение имеют те, которые образованы трёхатомным спиртом глицерином и высшими карбоновыми кислотами. К последним относятся, например, стеариновая кислота состава С 17 Н 35 СООН и олеиновая кислота состава С 17 Н 33 СООН.

Первая – предельная кислота, вторая – непредельная. В её углеводородном радикале имеется двойная связь между углеродными атомами, поэтому в молекуле олеиновой кислоты на два водородных атома меньше:

Стеариновая кислота Олеиновая кислота

Сложные эфиры карбоновых кислот и глицерина называются жирами. Если формулу

карбоновой кислоты записать в общем виде , то образование жира

можно представить уравнением реакции этерификации:

Глицерин Карбоновая кислота Жир

Химическую природу жиров начали изучать в первой половине XIX в. Синтез жира тристеарина впервые осуществил французский химик М. Бертло в 1854 г.

Физические свойства жиров. Состав и строение углеводородных радикалов влияют на свойства жиров. Вот как, например, изменяются их температуры плавления:

Как видим, жир, образованный предельной кислотой, в обычных условиях твёрдый, непредельной – жидкий. В состав жидких растительных масел (подсолнечного, кукурузного, оливкового и др.) входят остатки преимущественно непредельных кислот, в состав твёрдых животных жиров (говяжьего, бараньего и др.) – остатки предельных кислот.

Жиры легче воды и нерастворимы в ней, но растворяются в органических растворителях.

Жиры наряду с белками и углеводами принадлежат к биологически активным веществам. Они входят в состав клеток растительных и животных организмов и являются для них источником энергии. В результате окисления 1 г жира выделяется

37,7 кДж энергии, вдвое больше, чем при окислении 1 г белка или углевода.

Основное количество жиров, употребляемых человеком, содержится в мясе, рыбе, молочных и зерновых продуктах. В случае когда в организм человека с едой поступает больше энергии, чем используется им, образуются жирообразные вещества, отлагающиеся в тканях организма. Таким образом он аккумулирует энергию.

В соответствии с данными современной медицины чрезмерное употребление жиров, образованных предельными кислотами, то есть животных жиров, может привести к накоплению веществ, затрудняющих ток крови в артериях, в частности тех, которые поставляют кровь в мозг. Более полезными для употребления признаются жиры, образованные непредельными кислотами, то есть растительные масла. В составе, например, подсолнечного масла содержится 91% непредельных карбоновых кислот.

Химические свойства жиров.

В молекулах жидких жиров в отличие от твёрдых имеются двойные углерод – углеродные связи. Как вам уже известно, по месту двойной связи возможна реакция присоединения, в частности водорода. В результате этой реакции непредельное соединение превращается в предельное, а жидкий жир – в твёрдый.

Триолеин Тристеарин

Процесс отвердевания (гидрирования) жиров лежит в основе производства маргарина (от греч. слова, означающего жемчужина). Негидрированные жиры прогоркают, окисляясь по двойным связям, у них появляются неприятные запах и вкус. Гидрирование жиров замедляет эти процессы, кроме того, позволяет из более дешёвых растительных масел получать более ценные твёрдые жиры.

Жиры как сложные эфиры подвергаются гидролизу.

Жиры гидролизируют с образованием трёхатомного спирта глицерина и карбоновых кислот.

Если проводить гидролиз тристеарина в присутствии щёлочи, образуется соль стеариновой кислоты, известная как основа мыла:

Поскольку в результате щёлочного гидролиза жира образуется мыло, то реакция называется омылением жира.

Натриевые соли высших карбоновых кислот – основная составная часть твёрдого мыла, соли калия – жидкого мыла.

Для получения мыла из жира в промышленности вместо щёлочи используют соду Na 2 CO 3 . Мыло, полученное непосредственно в результате этой реакции, называется ядровым и известно как хозяйственное. Туалетное мыло отличается от хозяйственного наличием добавок: красителей, ароматизаторов, антисептиков и др.

Основным компонентом твёрдого мыла является смесь растворимых солей высших жирных кислот. Обычно это натриевые, реже - калиевые и аммониевые соли таких кислот, как стеариновая, пальмитиновая, миристиновая, лауриновая и олеиновая.

Один из вариантов химического состава твёрдого мыла - C17H35COONa (жидкого - C17H35COOK).

Моющее действие мыла – сложный физико-химический процесс. Мыло является посредником между полярными молекулами воды и неполярными частицами загрязнений, нерастворимыми в воде. Если обозначить углеводородный радикал буквой R, то состав мыла можно выразить формулой R – COONa. По химической природе мыло – это соль, ионное соединение. Кроме полярной группы –COONa в его составе имеется неполярный радикал R, в состав которого могут входить 12-17 атомов углерода. Во время мытья молекулы ориентируются на загрязнённой поверхности таким образом, что полярные группы обращены к полярным молекулам воды, а неполярные углеводородные радикалы – к неполярным частицам загрязнения. Последние как бы попадают в окружение молекул мыла и легко смываются с поверхности водой.

В жёсткой воде образуются нерастворимые магниевые и кальциевые соли карбоновых кислот, поэтому мыло теряет своё моющее действие, а соли оседают на поверхности изделия:

2C 17 H 35 COONa + MgSO 4 → (C 17 H 35 COO) 2 Mg↓ + Na 2 SO 4

Синтетические моющие средства, при всём разнообразии их химического состава, имеют подобное мылу строение молекул, в которых есть растворимая в воде полярная часть и нерастворимый углеводородный радикал. Но они, в отличие от мыла, являются солями другой химической природы и в жёсткой воде не образуют нерастворимых соединений. В этом состоит преимущество синтетических моющих средств перед обыкновенным мылом.

Мыло и синтетические моющие средства принадлежат к так называемым поверхностно-активным веществам (ПАВ). Их широкое применение часто связывают с загрязнением окружающей среды, в частности водоёмов. Дело в том, что к синтетическим моющим средствам добавляют фосфаты, которые в водоёмах превращаются в вещества, питающие микроорганизмы, бурное размножение которых может привести к заболачиванию водоёмов. Поэтому современные ПАВ должны химически или биологически разлагаться после использования на безопасные вещества, не загрязняющие стоки.



Понравилась статья? Поделитесь ей
Наверх