Шум источники шума на производстве. Производственный шум. Его виды и источники. Основные характеристики

шум - один из наиболее распространенных неблагоприятных физических факторов окружающей среды, приобретающих важное социально-гигиеническое значение, в связи с урбанизацией, а также механизацией и автоматизацией технологических процессов, дальнейшим развитием авиации, транспорта. Шум - сочетание различных по частоте и силе звуков.

Звук - колебания частиц воздушной среды, которые воспринимаются органами слуха человека, в направлении их распространения. Производственный шум характеризуется спектром, который состоит из звуковых волн разных частот. обычно слышимый диапазон 16 Гц - 20 кГц.

ультразвуковой диапазон - свыше 20 кГц, инфразвук - меньше 20 Гц,устойчивый слышимый звук - 1000 Гц - 3000 Гц

Вредное воздействие шума :

сердечно-сосудистая система;

неравная система;

органы слуха (барабанная перепонка)

Физические характеристики шума

интенсивность звука J, [Вт/м2];

звуковое давление Р, [Па];

частота f, [Гц]

Интенсивность - кол-во энергии, переносимое звуковой волной за 1 с через площадь в 1м2, перпендикулярно распространению звуковой волны.

Звуковое давление - дополнительное давление воздуха, которое возникает при прохождении через него звуковой волны.

Длительное воздействие шума на организм человека приводит к развитию утомления, нередко переходящего в переутомление, к снижению производительности и качества труда. Особенно неблагоприятно шум действует на орган слуха, вызывая поражение слухового нерва с постепенным развитием тугоухости. Как правило, оба уха страдают в одинаковой степени. Начальные проявления профессиональной тугоухости чаще всего встречаются у лиц со стажем работы в условиях шума около 5 лет.

25 Классификация производственного шума и вибрации.

Шум классифицируется по частоте, спектральным и временным характеристикам, природе его возникновения.

Классификация производственного шума приведена в таблице 37.

По характеру спектра шумы подразделяются на широкополосные (с непрерывным спектром шириной более одной октавы) и тональные, в спектре которого имеются дискретные тона.

В практических оценках шума пользуются стандартным рядом из 8 октавных полос, среднегеометрическое значение которых составляет 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц.

По спек тральному составу шумы подразделяются на низкочастотные (максимум звуковой энергии приходится на частоты ниже 400 Гц); средне-частотные (максимум звуковой энергии на частотах от 400 до 1000 Гц) и высокочастотные (максимум звуковой энергии на частотах выше 1000 Гц).

По временным характеристикам шумы подразделяются на постоянные (уровень звука за 8-ми часовой рабочий день изменяется во времени менее чем на 5 дБ) и непостоянные (уровни которого за 8-ми часовой рабочий день изменяются более чем на 5 дБА). К непостоянному шуму относится колеблющийся шум, при котором уровень звука непрерывно изменяется во времени; прерывистый шум (уровень звука остается постоянным в течение интервала длительностью 1 сек. и более); импульсный шум, состоящий из одного или нескольких звуковых сигналов длительностью менее 1 сек.

По среде распространения р азличают шум воздушный и структурный.

Воздушный шум излучается в окружающее пространство и распространяется в воздушной среде при движении транспортных средств на открытых участках, эстакадах и мостах, а также от звуковых сигнальных устройств, стационарного оборудования, при производстве работ по ремонту и содержанию путей и дорог, перегрузочных работах, техническом обслуживании и ремонте подвижного состава на территории транспортных предприятий.

Структурный шум возбуждается динамическими силами в точке контакта колеса с дорогой или рельсом при движении. Он распространяется по верхнему строению пути, несущим конструкциям дорожного полотна и передается через грунт близлежащим строениям. Особенно сильно структурный шум проявляется при движении транспорта в тоннелях, под землей.

Воздействие вибрации на человека классифицируется:

по способу передачи вибрации на человека;

по источнику возникновения;

по направлению действия вибрации;

по характеру спектра;

по частотному составу;

по временной характеристике вибрации .

По способу передачи на человека различают:

общую вибрацию , передающуюся через опорные поверхности на тело сидящего или стоящего человека;

локальную вибрацию , передающуюся через руки человека.

Примечание. Вибрация, передающаяся на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов, относится к локальной вибрации.

По направлению действия вибрацию подразделяют в соответствии с направлением осей ортогональной системы координат.

Для общей вибрации направление осей X о , Y о , Z о и их связь с телом человека следующая: ось X о – горизонтальная от спины к груди; ось Y о – горизонтальная от правого плеча к левому); Z л – вертикальная ось, перпендикулярная опорным поверхностям тела в местах его контакта с сиденьем, полом и т.п.

Для локальной вибрации направление осей X л , Y л , Z л и их связь с рукой человека следующая: ось X л – совпадает или параллельна оси места охвата источника вибрации (рукоятки, ложемента, рулевого колеса, рычага управления, удерживаемого в руках обрабатываемого изделия и т.п.); ось Y л – перпендикулярна ладони, а ось Z л – лежит в плоскости, образованной осью X л и направлением подачи или приложения силы, и направлена вдоль оси предплечья.

По источнику возникновения вибрацию различают:

локальную вибрацию, передающуюся человеку от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием;

локальную вибрацию , передающуюся человеку от ручного немеханизированного инструмента (без двигателей), например, рихтовочных молотков разных моделей и обрабатываемых деталей, шпалоподбоек;

общую вибрацию 1 категории транспортную вибрацию ;

общую вибрацию 2 категории транспортно-технологическую вибрацию ;

общую вибрацию 3 категории технологическую вибрацию .

на постоянных рабочих местах производственных помещений предприятий;

на рабочих местах на складах, в столовых, бытовых, дежурных и других производственных помещений, где нет машин, генерирующих вибрацию;

на рабочих местах в помещениях заводоуправления, конструкторских бюро, лабораторий, учебных пунктов, вычислительных центров, здравпунктов, конторских помещениях, рабочих комнатах и других помещениях для работников умственного труда;

общую вибрацию в жилых помещениях и общественных зданиях от внешних источников: городского рельсового транспорта (мелкого залегания и открытые линии Метрополитена, трамвай, железнодорожный транспорт) и автотранспорта; промышленных предприятий и передвижных промышленных установок (при эксплуатации гидравлических и меха-нических прессов, строгальных, вырубных и других металлообрабатывающих механизмов, поршневых компрессоров, бетономешалок, дробилок, строительных машин и др.);

общую вибрацию в жилых помещениях и общественных зданиях от внутренних источников: инженерно-технического оборудования зданий и бытовых приборов (лифты, вентиляционные системы, насосные, пылесосы, холодильники, стиральные машины и т.п.), а также встроенных предприятий торговли (холодильное оборудование), предприятий коммунально-бытового обслуживания, котельных и т.д.

По характеру спектра вибрации различают:

узкополосную вибрацию, у которой контролируемые параметры в одной 1/3 октавной полосе частот более чем на 15 дБ превышают значения в соседних 1/3 октавных полосах;

широкополосную вибрацию – с непрерывным спектром шириной более одной октавы.

По частотному составу вибрации различают:

низкочастотную вибрацию (с преобладанием максимальных уровней в октавных полосах частот 1÷4 Гц для общих вибраций, 8÷16 Гц – для локальных вибраций);

среднечастотную вибрацию (8÷16 Гц – для общей вибрации, 31,5÷63 Гц – для локальной вибрации);

высокочастотную вибрацию (31,5÷63 Гц – для общей вибрации, 125÷1000 Гц – для локальной вибрации).

По временной характеристике вибрации различают:

постоянную вибрацию , для которой величина нормируемых параметров изменяется не более чем в 2 раза (на 6 дБ) за время наблюдения;

непостоянную вибрацию , для которой величина нормируемых параметров изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения не менее 10 мин при измерении с постоянной времени 1 с, в том числе:

колеблющуюся во времени вибрацию , для которой величина нормируемых параметров непрерывно изменяется во времени;

прерывистую вибрацию , когда контакт человека с вибрацией прерывается, причем длительность интервалов, в течение которых имеет место контакт, составляет более 1 с;

импульсную вибрацию , состоящую из одного или нескольких вибрационных воздействий (например, ударов), каждый длительностью менее 1 с.

Шум - это совокупность звуков разной интенсивности и частоты, беспорядочно изменяющихся во времени, возникающих в производственных условиях и вызывающих у работающих неприятные ощущения и объективные изменения органов и систем.

Для гигиенической оценки шумов практический интерес представляет звуковой диапазон частот от 45 до 11 000 Гц.

При акустических измерениях определяют уровни звукового давления [единица измерения - паскаль (Па)] в пределах частотных полос, равных октаве, полуоктаве или трети октавы. За октаву принимается диапазон частот, в котором верхняя граница частоты вдвое больше нижней (например, 40-80, 80-160 Гц и т.д.).

Для обозначения октавы обычно указывается не диапазон частот, а так называемые среднегеометрические частоты. Так, для октавы 40-80 Гц среднегеометрическая частота - 62 Гц, для октавы 80- 160 Гц - 125 Гц и т.д.

Для характеристики интенсивности звуков или шума принята измерительная система, учитывающая приближенную логарифмическую зависимость между раздражением и слуховым восприятием - шкала бел (или децибел). По этой шкале каждая последующая ступень интенсивности звука больше предыдущей в 10 раз. Например, если интенсивность одного звука выше уровня другого в 10, 100, 1000 раз, то по логарифмической шкале она увеличивается соответственно на 1, 2, 3 единицы. Логарифмическая единица, отражающая десятикратную степень увеличения интенсивности одного звука над уровнем другого, называется в акустике белом (Б).

При построении этой шкалы за исходную цифру 0 Б принята пороговая для слуха величина звукового давления - 2?10-5 Па. При возрастании ее в 10 раз звук воспринимается как вдвое более громкий, и его звуковое давление составляет 1 Б. При увеличении интенсивности в 100 раз в сравнении с пороговой звук оказывается вдвое громче предыдущего и звуковое давление будет равно 2 Б. Иными словами, при измерении звукового давления пользуются не абсолют-

ными величинами звукового давления, а относительными, выражающими отношение величины и давления данного звука к величинам давления, являющимся пороговыми для слуха. Пользование этой шкалой очень удобно: весь диапазон человеческого слуха укладывается в 13-14 Б.

В гигиенических исследованиях обычно используют децибел - единицу, в 10 раз меньшую бела, а шкалу называют шкалой децибел

Характеристика шума в децибелах не дает полного представления о его громкости, так как звуки, имеющие одну и ту же интенсивность, но разную частоту, на слух воспринимаются как неодинаково гром- кие: имеющие низкую или очень большую частоту (вблизи верхней границы воспринимаемых частот) ощущаются как более тихие в сравнении со звуками, находящимися в средней зоне.

Классификация шумов

По характеру спектра выделяют следующие шумы:

Широкополосные, с непрерывным спектром шириной более одной октавы;

Тональные, в спектре которых имеются выраженные тоны. Тональный характер шума устанавливают путем измерения в треть- октавных полосах частот по превышению уровня в одной полосе по сравнению с соседними не менее чем на 10 дБ.

По временным характеристикам различают шумы:

Постоянные, уровень звуков которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБА;

Непостоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не менее чем на 5 дБА.

Непостоянные шумы можно подразделить на следующие виды:

Колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;

Прерывистые, уровень звука которых ступенчато изменяется (на 5 и более дБА), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 и более с;

Импульсные, состоящие из одного или нескольких звуковых сигналов, каждый из которых имеет длительность менее 1 с; при этом уровни звука, измеренные соответственно на временных характеристиках «импульс» и «медленно» шумомера, различаются не менее чем на 7 дБ.

Можно также классифицировать шумы по частотному составу:

Низкочастотные с преобладанием максимальных уровней звукового давления (в сравнении с ПДУ) в октавных полосах до 400 Гц;

Среднечастотные - от 400 до 1000 Гц;

Высокочастотные - свыше 1000 Гц. По происхождению:

Механические (ударные шумы, шумы трения и др.);

Аэро- и гидродинамические (работа вентиляторов, форсунок и

Регламентация параметров шума на рабочих местах. Характеристикой постоянного шума являются уровни звуковых давлений (в дБ) в октавных полосах со среднегеометрическими частотами 31,5, 63, 125, 250, 500, 1000, 2000, 4000, 8000; в ряде случаев для ориентировочной оценки шума допускается измерение уровня в дБА.

Характеристикой непостоянного шума является интегральный параметр, эквивалентный (по энергии) уровень звука в дБА.

Измерение шума на рабочих местах проводится согласно методическим указаниям по проведению измерений и гигиенической оценке шумов на рабочих местах (МУ 1844-78) и ГОСТу «Методы измерения шума на рабочих местах» (ГОСТ 12.1.050-86).

Уровни шума измеряют шумомерами 1-го или 2-го класса точности по ГОСТу 17187-81 «Шумомеры. Общие технические требования и методы испытаний» (табл. 5.1).

Таблица 5.1. Основные характеристики некоторых приборов для

измерения физических параметров

Рис. 5.1. Шумомер интегрирующий - виброметр ШИ-01В

Универсальный прибор первого класса точности для измерения параметров шума, инфразвука и вибрации.

Измерение параметров шума дополнено режимами измерения параметров вибрации:

уровни виброускорения на частотной характеристике ЛИН с временами усреднения 1; 5; 10 с и эквивалентные уровни виброускорения;

для локальной вибрации - уровни виброускорения с временами усреднения 1; 5; 10 с и эквивалентные уровни виброускорения в октавных полосах со средними геометрическими частотами 8; 16; 31,5; 63; 125; 250; 500; 1000 Гц. Корректированный (Wh) уровень виброускорения с временами усреднения 1; 5; 10 с и эквивалентный корректированный уровень;

для общей вибрации - уровни виброускорения с временами усреднения 1; 5; 10 с и эквивалентные уровни виброускорения в третьоктавных полосах со средними геометрическими частотами 0,8: 1; 1.25; 1.6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80 Гц. Корректированные (Wd, Wk) уровни виброускорения с временами усреднения 1; 5; 10 с и эквивалентные корректированные уровни.

Технические характеристики: частотный диапазон измерений, Гц: шумомера...от 2 Гц до 20 кГц; анализатора...от 0,8 до 10000; виброметра, ЛИН..от 10 до 1250. Масса: не более 0,8 кг; диапазон измерений уровней виброускорения: 70-180 дБ; диапазон частот: 0,5-1250 Гц (производитель: Приборостроительная компания «НТМ-Защита»).

Измерения шума для контроля соответствия фактических уровней шума на рабочих местах допустимым уровням по действующим нормам должны производиться при работе не менее 2/3 установленных в данном помещении единиц технологического оборудования в наиболее часто реализуемом (характерном) режиме его работы.

Во время проведения измерений должно быть включено оборудование вентиляции, кондиционирования воздуха и другие обычно используемые в помещении устройства, являющиеся источником шума.

Определение шума проводится на постоянных рабочих местах, при отсутствии фиксированного рабочего места - в рабочей зоне, в точках наиболее частого пребывания работающих.

Следует подчеркнуть, что измерение шума должно выполняться в каждой точке не менее трех раз.

Микрофон располагается на высоте 1,5 м от пола или на уровне головы, если работа выполняется сидя или в других положениях; он должен быть направлен в сторону источника шума и удален не менее чем на 0,5 м от оператора, проводящего измерения. Перед проведением исследования осуществляют электрическую калибровку прибора.

Продолжительность измерения должна составлять для прерывистого шума полный технологический цикл; для колеблющегося во времени - 30 мин, разбитых на 3 цикла по 10 мин; для импульсного - 30 мин при общем числе отсчетов 360.

Для оценки шума на постоянных рабочих местах измерения следует проводить в точках, соответствующих установленным постоян- ным местам.

Для оценки шума на непостоянных рабочих местах измерения следует проводить в рабочей зоне в точке наиболее частого пребывания работающего

Результаты измерений необходимо представить в форме протокола. Средний уровень звука, средние октавные уровни звукового давления постоянного шума, эквивалентные уровни звука непостоянного шума рассчитывают следующим образом.

Определение среднего уровня звука. Для установления среднего значения уровней используют формулу:

Суммирование измеренных уровней L1 , L2, L3 ... Ln проводится попарно и последовательно. Сначала по разности двух уровней L1 и L2 по табл. 5.2. определяют величину добавки AL, которую прибавляют к большему уровню, в результате чего получают уровень L1 2 = L1 + AL. Уровень L1 2 суммируют таким же образом с уровнем L3 и получают уровень L13 и т.д. Результат округляют до целого числа.

Окончательный результат определяют с помощью табл. 5.2.

Пример 1. Определить среднее значение для измеренных уровней звука 84, 90 и 92 дБ А.

Определяем разность первых двух уровней - она равна 6 дБ.

По табл. 5.2 добавка для значения разности 6 равна 1 дБ, т.е. их сумма равна 90 + 1 = 91 дБ. Далее полученный уровень 91 дБ вычитаем из третьей величины - 92 дБ: их разность равна 1 дБ; величина добавки будет равна 2,5 дБ. Таким образом, суммарный уровень равен: 92 + 2,5 = 94,5 дБ, или округленно 95 дБ.

По табл. 5.3 величина 10 ? lg n для трех измеренных уровней равна 5 дБ. Окончательный результат для среднего значения равен: 95 - 5 = 90 дБ А.

Определение эквивалентного уровня звука. Эквивалентный по энергии уровень, являющийся однозначной характеристикой непостоянного шума, можно определить в результате усреднения фактических уровней с учетом времени действия каждого.

Расчет проводится следующим образом: к каждому измеренному уровню добавляется (с учетом знака) поправка по табл. 5.4, соответствующая его времени действия (в часах или процентах от общего времени действия), затем полученные уровни складываются в соответствии с табл. 5.2.

Таблица 5.2. Величина добавки

Таблица 5.4. Величины поправок в зависимости от времени воздействия

Пример 2. Уровни шума за 8-часовую рабочую смену составляли 80, 86, 94 дБ в течение 5, 2 и 1 ч соответственно. Этим срокам соответствуют поп- равки по табл. 5.4, равные -2, -6, -9 дБ.

Складывая их с уровнями шума, получаем 78, 80, 85 дБ. Затем, используя табл. 5.2, складываем эти уровни попарно: сумма первого и второго равна 82,2 дБ, а их сумма с третьим - 86,8 дБ. Округляя эту цифру, получаем окончательное значение эквивалентного уровня шума - 87 дБ. Таким образом, воздействие этих шумов равносильно действию шума с постоянным уровнем 87 дБ в течение 8 ч.

Пример 3. Прерывистый шум 119 дБА действовал в течение 6-часовой смены суммарно в течение 45 мин (т.е. 11% времени смены), уровень фонового шума в паузах (т.е. 11% времени смены) составлял 73 дБА.

По табл. 5.4. поправки равны -9 и -0,6 дБ; складывая их с соответствующими уровнями шума, получаем 110 и 72,4 дБ. Второй уровень значительно ниже первого, поэтому им можно пренебречь. Окончательно получаем эквивалентный уровень шума за смену 110 дБА, что превышает допустимый уровень 85 дБА на 25 дБ.

Гигиеническое нормирование. Основой всех правовых, организационных и технических мер по снижению производственного шума являются допустимые уровни шума на рабочих местах, в основу которых положено ограничение давления звука с учетом характера шума и особенностей труда.

При разработке новых технологических процессов, при проектировании, изготовлении, эксплуатации оборудования используются такие документы, как ГОСТ 12.1.003-83 «ССБТ. Шум, общие требо- вания безопасности» и санитарные нормы СН 2.24/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки». Извлечения из этого документа представлены в табл. 5.5.

Указанные уровни относятся к широкополосному постоянному и непостоянному шумам (кроме импульсного); для тонального и импульсного шумов величины должны быть снижены на 5 дБА. Для колеблющегося во времени и прерывистого шума максимальный уровень звука не должен превышать 110 дБА, а для импульсного шума - 125 дБА.

Неблагоприятное влияние шума на работающего находится в зависимости от характера его трудовой деятельности, а именно - от тяжести и напряженности выполняемой работы. Исходя из этого, в

Таблица 5.5. Предельно допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука на рабочих местах (экспликация)

Таблица 5.6. Предельно допустимые уровни звука и эквивалентные уровни звука для трудовой деятельности

Примечание. Количественную оценку тяжести и напряженности труда можно провести в соответствии с «Руководством по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» (Р 2.2.2006-05).

дополнение к используемым санитарным нормам (СН 2.24/2.1.8.562- 96) необходимо также пользоваться руководством, в котором указаны корректированные предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом категории тяжести и напряженности труда - табл. 5.6 («Руководство 2.2.013- 94 «Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса»).

Определение результатов измерения шума и сравнение их с предельно допустимыми уровнями позволяют установить степень отклонения полученных показателей от гигиенических нормативов и класс условий труда по степени вредности и опасности при воздействии шума на работающих (табл. 5.7 ).

Исследование влияния шума на организм. Для оценки воздействия на здоровье рабочих производственного шума используются материалы изучения функционального состояния организма, медицинских осмотров, заболеваемости с временной утратой трудоспособности и др.

Для характеристики функционального состояния нервной системы используют хронорефлексометрию, треморометрию, тесты на внимание и др.

Состояние сердечно-сосудистой системы характеризуют частота пульса, артериальное давление, ЭКГ и др.

Состояние слухового анализатора исследуют с помощью камертона, шепотной, разговорной речи и тональной пороговой аудиометрии.

При камертональном исследовании определяется острота слуха при воздушной и костной звукопроводимости.

Оценку слуховой функции камертонами проводят путем количественного определения времени (в секундах), в течение которого максимально звучащий камертон воспринимается обследуемым через воздух или кость. В практических целях используют набор из четырех камертонов (С128, С1024, С2048, С4096). Полученные данные оценивают путем сравнения с паспортными данными применяемого для исследования набора камертонов. Этот метод прост в эксплуатации. Недостатком его является то, что он не дает представления о степени потери слуха, на основании которой решается вопрос о трудоспособности работающего.

Для ориентировочной оценки состояния слуха используют шепотную и разговорную речь как наиболее естественный критерий состо-

Таблица 5.7. Классы условий труда в зависимости от уровней шума, локальной и общей вибрации, инфра- и ультразвука на рабочем месте

яния слуха. Расстояние, на котором исследуемый разборчиво понимает речь, служит ориентировочным показателем остроты слуха. Шепотная речь исследуется с помощью акуметрической таблицы: слух считается нормальным при восприятии шепотной речи на расстоянии 6 м.

Разговорную речь человек с нормальным слухом воспринимает на расстоянии до 60-80 м. В обычных помещениях на таком расстоянии исследование маловероятно, поэтому слух оценивают шепотной речью и лишь при значительно ослабленной слуховой функции исследуется разговорная речь на расстоянии 6 м.

Одним из основных и широко распространенных методов исследования остроты слуха является тональная аудиометрия. С помощью этого метода определяются следующие показатели.

1. Постоянные смещения порогов слуха (ПСП), возникающие вследствие систематического длительного воздействия шума.

2. Временные смещения порогов слуха (ВСП), отражающие тот временной сдвиг слуховой чувствительности, который зависит от шумовой нагрузки за рабочую смену.

Тональная пороговая аудиометрия дает качественную и количественную характеристику слуховой функции, выраженную в сравниваемых величинах (в децибелах - дБ) над нормальным порогом слышимости (2?10-5 Па), заложенным в прибор в виде нулевого уровня.

Исследование осуществляется с помощью электроакустической аппаратуры - аудиометра, эквивалентные пороговые уровни которого должны соответствовать ГОСТу 13655-75. Применяемые аудиометры генерируют чистые тоны: 125, 250, 500, 1000, 1500, 2000, 3000, 4000, 6000, 8000 Гц с интенсивностью до 100 дБ при скачкообразной регулировке интенсивности до 5 дБ.

Результаты исследования порогов слухового восприятия чистых тонов переносят на аудиограмму, где на оси абсцисс указана частота в Гц, а на оси ординат - порог слухового восприятия в дБ (т.е. мини- мальное звуковое давление, которое воспринимается ухом обследуемого).

Аудиометрические исследования с целью установления потерь слуха (постоянное смещение порога слышимости - ПСП) проводятся не менее чем через 14 ч после того, как на исследуемого воздействовал производственный шум с уровнем более 80 дБ.

Аудиометрические исследования с целью определения временных смещений порогов слышимости - ВСП (обратимое функциональное

изменение слуховой чувствительности от воздействия шума) необходимо выполнять на 5-й минуте после прекращения шумового воздействия на исследуемого. Изучение состояния слухового анализа- тора проводится согласно ГОСТ 12.4.062-78 «Методика определения потерь слуха человека».

Потери слуха оцениваются для хуже слышащего уха в соответствии с табл. 5.8. Степень потери слуха устанавливают по величине потери на речевых частотах с учетом потери слуха на частоте 4000 Гц как признака профессионального воздействия шума.

Таблица 5.8. Величины потери слуха, дБ

Профилактические мероприятия. Борьба с вредным воздействием производственного шума включает целый комплекс мероприятий, состоящих из технических, организационных, архитектурно-планировочных, медицинских методов и мер профилактики.

К наиболее эффективным относятся технические способы защиты: уменьшение шума в источнике его образования, снижение по пути распространения (звукоизоляция и звукопоглощение), использование средств индивидуальной защиты, замена оборудования менее шумным, рациональное его размещение.

Для улучшения условий труда важное значение имеет предупредительный санитарный надзор по разработке шумобезопасной тех- ники. Шумовые характеристики машин должны быть указаны в их паспорте, они должны отвечать требованиям и рекомендациям соот-

ветствующих ГОСТов, обеспечивающих выполнение установленных ПДУ шума на рабочих местах. К нормативно-техническим документам на оборудование и машины относятся «ССБТ. Шум. Методы установления шумовых характеристик стационарных машин», ГОСТ 23941-79 «Шум. Методы определения шумовых характеристик. Общие требования», а также ГОСТы на машины конкретных типов: ГОСТ 12.4.095-80 «Машины сельскохозяйственные самоходные. Методы определения вибрационных и шумовых характеристик», СН 2498-81 «Санитарные нормы шума на морских судах» и др.

Одной из важнейших мер медицинской профилактики вредного влияния шума является проведение предварительных и периодических медицинских осмотров: лица, подвергающиеся воздействию этого производственного фактора, подлежат предварительным и периодическим медицинским осмотрам при поступлении на работу в соответствии с приказом Минздрава РФ «О порядке проведения предварительных и периодических медицинских осмотров работ- ников и медицинских регламентах допуска к профессии» ? 90 от 14.03.1996 г. При поступлении на работу противопоказаниями к приему являются стойкое понижение слуха хотя бы на одно ухо любой этиологии, отосклероз и другие хронические заболевания уха с неблагоприятным прогнозом, нарушение функции вестибулярного аппарата, в том числе болезнь Меньера.

Периодические осмотры рабочих шумных цехов проводят отоларинголог, невропатолог, терапевт (с обязательным исследованием слуха - аудиометрией). Частота осмотров находится в зависимости от уровней шума на рабочих местах (от 81 до 99 дБА - раз в 2 года, от 100 дБА и выше - раз в год).

Весьма эффективным способом защиты от шума является рационализация режимов труда путем использования регламентирован- ных перерывов (табл. 5.9). Длительность дополнительных перерывов устанавливается с учетом уровня шума, его спектра и наличия или отсутствия средств индивидуальной защиты (противошумов). Для тех же групп работников, где по характеру работы (прослушивание сигналов и т.п.) не допускается применение противошумов, учитывается только уровень шума и его спектр («Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» Р 2.2.2006-05).

Отдых в период регламентированных перерывов следует проводить в специально оборудованных помещениях. Во время обеденного

Примечание. Длительность перерыва в случае воздействия импульсного шума должна быть такой же, как для постоянного шума с уровнем на 10 дБА выше импульсного. Например, для импульсного шума 105 дБА длительность перерывов должна быть такой же, как при постоянном шуме в 115 дБА.

перерыва работающие при воздействии повышенных уровней шума должны находиться в оптимальных акустических условиях (при уровне звука не выше 50 дБА).

На сегодняшний день используется просто огромное количество спец-технологических установок на производстве, а также различных энергетических приспособлений, которые непроизвольно издают шум и вибрации разных частот. Разная интенсивность звуков пагубно влияет на организм человека. Стоит отметить, что продолжительное воздействие шума и вибрации на работника производства уменьшает его трудоспособность, а также становится причиной возникновения профессиональных болезней.

Шум и вибрация как факторы производственной среды

Шумом можно назвать совокупность нежелательных звуков, которые оказывают пагубное действие на живые организмы, а также мешают полноценной работе и отдыху. Источником звука является любое колеблющееся тело, вследствие его прикосновения с окружающей средой образуются звуковые волны.

Итак, производственный шум – это комплекс звуков разных частот и насыщенности. Они хаотично преображаются во времени, и вызывают у работников нежелательные субъективные чувства.

Производственный шум отличается огромным спектром, составляющие которого это звуковые волны разных частот. При изучении производственного шума и вибрации привычным ощутимым диапазоном является 16гц-20 гц. Этот отрезок частот разбивают на полосы частот, а после оценивают звуковое давление. Также насыщенность и мощность, которая приходиться на все полосы частот. Если Вы хотите обследовать свое помещение на различные факторы можно обратиться в нашу лабораторию, где сможете провести ряд исследований, начиная от и заканчивая .

Что касается вибрации то ее понимание и ощущение напрямую зависит от частоты колебаний, а также их силы и диапазона амплитуды. Исследование вибрации так же, как и исследование частоты звука описывается в герцах. В ходе недавних экспериментов было исследовано, что вибрация так же, как и шум оказывает свое действие на организм человека, причем довольно активно. Стоит отметить, что вибрация будет ощущаться лишь при взаимосвязи с вибрирующим телом или же через инородные твердые тела, которые будут иметь связь с вибрирующим телом.

Вибрация на производстве считается угрожающим для здоровья фактором, ведь такие поверхности, касающиеся к телу человека, вызывают возбуждение многочисленных нервных окончаний в стенках кровеносных сосудов, и вызывают нарушения работы внутренних органов и разных систем. Все это представляется в виде немотивированных болей в руках, преимущественно по ночам, онемения, чувство "ползания мурашек", неожиданного побеления пальцев, снижения всех видов кожной чувствительности (болевой, температурной, касательной). Весь этот набор симптомов, типичный для воздействия вибрации, унаследовал название вибрационной болезни.

Шум на рабочих местах

В зависимости от рода деятельности к каждой профессии будут свои требования по соблюдению тишины. Если вы работаете в офисе нормы шума на рабочем месте будут ниже, чем у работающих в шумных цехах. Итак, норма шума при работе в офисе достигает всего 75 дБ, а вот норма шума на производстве 100 дБ.


Шум как вредный производственный фактор

К сожалению, на производстве больше подвергаться влиянию шума женщины и люди старших возрастных категорий. Повышение звукового давления может негативно сказаться на органе слуха. Поэтому, стоит отметить, что на производстве обязательно должны происходить замеры шума двушкальным шумомером. В цехах разрешен шум громкостью до 100 дБ. Что касается кузнечных цехов, то там норма шума может достигать отметки 140 дБ. Громкость, которая будет превышать этот порог у рабочих, вызовет болевой эффект. Также стоит отметить, что учеными обоснована теория о пагубном действии инфразвука и ультразвука на организм человека. Чтобы обезопасить своих рабочих стоит провести .

Эти колебания не могу вызывать болевых ощущений, но будут производить специфическое физиологическое воздействие на человеческий организм. Уровень производственного шума не должен быть выше 140 дБ, после преодоления этого порога уже будут возникать болевые ощущения, и шум несет неисправимый вред на здоровье человека. Если на производстве повышенный уровень шума, то у работника будет всегда повышенное кровеносное давление, учащённый пульс и дыхание, нарушения координации движения, а также ухудшение слуха.

Защита от производственного шума может быть в виде специальных глушителей аэродинамического шума, также возможно использовать индивидуальные средства защиты, также можно применить технические тонкости звукоизоляции и звукопоглощения.


Классификация производственного шума

Итак, шум систематизируется по четырём основным критериям. По спектральным и временным характеристикам, по частоте, а также по природе возникновения.

По спектральным характеристикам выделяют широкополосный шум с непрерывным спектром больше одной октавы, а также тональный или, как еще его называют, дискретный. В его спектре содержится выражение дискретного тона.

По временным характеристикам есть постоянный шум, он длится больше восьми часов, и непостоянный. Стоит отметить, что непостоянные шумы еще разделяют на колеблющиеся, уровень звука у которых постоянно изменяется, а также прерывистые, уровень звука у таких изменяется ступенчато. Есть еще импульсные, они представляют собой простые звуковые импульсы, которые длятся не больше одной секунды.

По частоте выделяют акустические колебания, которые распределяют на инфразвук, ультразвук и просто звук. Что касается акустических колебаний звукового диапазона, то они подразделяются на низкочастотные, среднечастотные и высокочастотные. Низкочастотные звуки воспроизводят меньше 350 гц, среднечастотные же от 350 гц до 800гц, а высокочастотные выдают свыше 800 гц.

По природе возникновения шумы делятся на электромагнитные, аэродинамические, механические, гидравлические.


Производственный шум и вибрация пагубно влияют на человеческий организм. Из-за этого у людей, работающих на производстве, уменьшается работоспособность.

Шум на производстве является одним из неблагоприятных факторов для физического и психического здоровья индивида. Если вам кажется, что уровень шума превышает нормы или хотите провести другое лабораторное исследование () всегда можно обратиться в лабораторию "ЭкоТестЭкспресс", ее специалисты сделают все необходимые исследование и дадут заключение об уровне шума на рабочем месте.

Уровень шума на рабочем месте определяется в зависимости рода деятельности

Для человека, который работает на руководящей должности, имеет творческую профессию, или же просто работает в офисе, то разрешенный придел шума в этих случаях должен быть 50 дБ. А в лаборатории, или административном здании, где находятся кабинеты, уровень шума не может быть выше предела в 60 дБ.

Если рабочие места находятся в диспетчерской службе, машинописном бюро, в залах обработки информации на вычислительных машинах, уровень шума тут не может быть выше 65 дБ. В зданиях лабораторий с громким оборудованием, или же кабинетах с пультами управления шум должен быть не выше 75 дБ. В производственных зданиях на территории предприятия недопустимый уровень шума свыше 80 дБ.


На рабочем месте машиниста тепловоза или поезда уровень шума допускается до 80 дБ. В кабине же машиниста пригородного электропоезда придел шума должен быть 75 дБ. В комнатах для персонала вагонов и поездов шум может находиться в пределе 60 дБ. Что касается речного и морского транспорта, то у таких работников уровень шума колеблется от 80 дБ до 55 дБ в зависимости от места работы на корабле.

Вот уровень шума в производственных помещениях, где работают инженерно-технические работники, не должен превышать 60т дБ. В помещениях у операторов ЭВМ звуковой не допустимый диапазон свыше 65дб. А вот в помещениях, где находятся вычислительные агрегаты, уровень шума не должен быть больше 75 дБ. Человек, постоянно работающий в шумном помещении, привыкает к шуму, но продолжительное его воздействие вызывает частое утомление и ухудшение здоровья.

Нормирование производственного шума на рабочем месте осуществляется с учетом факторов человеческого организма. Стоит отметить, что в зависимости от частотной характеристики шума организм по-разному откликается на шум одинаковой интенсивности. Итак, при повышении частоты звука его влияние на нервную систему индивида будет сильнее, а степень вредоносности шума напрямую зависит от его спектрального состава.

Нормирование шума на рабочих местах осуществляют, принимая во внимание тот факт, что организм индивида, в зависимости от частотной характеристики, по-разному реагирует на шум одинаковой интенсивности. Чем выше частота звука, тем сильнее его действие на нервную систему человека, т. е. степень вредности шума, зависит от его спектрального состава. Влияние производственного шума на организм человека является пагубным. Спектр шума указывает, на какую область частот припадает самая большая доля всей звуковой энергии, что содержится в данном шуме.

Вы всегда можете обратиться в нашу лабораторию "ЭкоТестЭкспресс" для того, чтобы провести различные исследования, включая .

Производственные шумы и их влияние на организм животных

Животные обладают более острым слухом, поэтому более восприимчивы ко всем производственным шумам. Стоит отметить, что у кроликов шум реактивного самолета вызывает гибель. А кроты под воздействием производственного шума ощущают учащение пульса и дыхания. Производственные шумы угнетают условно рефлекторную деятельность организма животных.

Нормы шума на производстве, во всяком случае, никогда не должны превышаться, чтобы не наносить еще больший вред организму человека. Если же это случается, то необходимо проводить мероприятия по удалению повышенного шума.

Защита от производственного шума и вибрации заключается в установке различных шумопоглащающих приспособлений. Также стоит улучшить шумоизоляцию.

Шумом называют любой нежелательный звук или совокупность таких звуков. Звук представляет собой волнообразно распространяющийся в упругой среде колебательный процесс в виде чередующихся волн сгущения и разряжения частиц этой среды - звуковые волны.

Источником звука может являться любое колеблющееся тело. При соприкосновении этого тела с окружающей средой образуются звуковые волны. Волны сгущения вызывают повышение давления в упругой среде, а волны разряжения - понижение. Отсюда возникает понятие звукового давления - это переменное давление, возникающее при прохождении звуковых волн дополнительно к атмосферному давлению.

Звуковое давление измеряется в Паскалях (1 Па = 1 Н/м 2). Ухо человека ощущает звуковое давление от 2-10 -5 до 2-10 2 Н/м 2 .

Звуковые волны являются носителями энергии. Звуковая энергия, которая приходится на 1 м 2 площади поверхности, расположенной перпендикулярно к распространяющимся звуковым волнам, называется силой звука и выражается в Вт/м 2 . Так как звуковая волна представляет собой колебательный процесс, то он характеризуется такими понятиями, как период колебания (Т) - время, в течение которого совершается одно полное колебание, и частота колебаний (Гц) - число полных колебаний за 1 с. Совокупность частот дает спектр шума.

Шумы содержат звуки разных частот и различаются между собой распределением уровней по отдельным частотам и характером изменения общего уровня во времени. Для гигиенической оценки шума используют звуковой диапазон частот от 45 до 11 000 Гц, включающий 9 октавных полос со среднегеометрическими частотами в 31,5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц.

Орган слуха различает не разность, а кратность изменения звуковых давлений, поэтому интенсивность звука принято оценивать не абсолютной величиной звукового давления, а его уровнем, т.е. отношением создаваемого давления к давлению, принятому за единицу

сравнения. В диапазоне от порога слышимости до болевого порога отношение звуковых давлений изменяется в миллион раз, поэтому для уменьшения шкалы измерения звуковое давление выражают через его уровень в логарифмических единицах - децибелах (дБ).

Ноль децибел соответствует звуковому давлению 2-10 -5 Па, что приблизительно соответствует порогу слышимости тона с частотой 1000 Гц.

Шум классифицируют по следующим признакам:

В зависимости от характера спектра выделяют следующие шумы:

широкополосные, с непрерывным спектром шириной более одной октавы;

тональные, в спектре которых имеются выраженные тоны. Тональный характер шума устанавливают путем измерения в третьоктавных полосах частот по превышению уровня в одной полосе по сравнению с соседними не менее чем на 10 дБ.

По временным характеристикам различают шумы:

постоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБА;

непостоянные, уровень шума которых за 8-часовой рабочий день изменяется во времени не менее чем на 5 дБА. Непостоянные шумы можно подразделить на следующие виды:

- колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;

- прерывистые, уровень звука которых ступенчато изменяется (на 5 дБ-А и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;

- импульсные, состоящие из одного или нескольких звуковых сигналов, каждый из которых имеет длительность менее 1 с; при этом уровни звука, измеренные соответственно на временных характе- ристиках «импульс» и «медленно» шумомера, различаются не менее чем на 7 дБ.

11.1. источники ШУМА

Шум является одним из наиболее распространенных неблагоприятных факторов производственной среды, воздействие которого на работающих сопровождается развитием у них преждевременного утомления, снижением производительности труда, ростом общей и профессиональной заболеваемости, а также травматизма.

В настоящее время трудно назвать производство, на котором не встречаются повышенные уровни шума на рабочих местах. К наиболее шумным относятся горнорудная и угольная, машино- строительная, металлургическая, нефтехимическая, лесная и цел- люлозно-бумажная, радиотехническая, легкая и пищевая, мясомолочная промышленности и др.

Так, в цехах холодной высадки шум достигает 101-105 дБА, в гвоздильных цехах - 104-110 дБА, в оплеточных - 97-100 дБА, в отделениях полировки швов - 115-117 дБА. На рабочих местах токарей, фрезеровщиков, мотористов, кузнецов-штамповщиков уровень шума колеблется в пределах от 80 до 115 дБА.

На заводах железобетонных конструкций шум достигает 105- 120 дБА. Шум является одной из ведущих профессиональных вредностей в деревообрабатывающей и лесозаготовительной промышленностях. Так, на рабочем месте рамщика и обрезчика уровень шума колеблется от 93 до 100 дБА с максимумом звуковой энергии в области средних и высоких частот. В этих же пределах колеблется шум в столярных цехах, а лесозаготовительные работы (валка, трелевка леса) сопровождаются уровнем шума от 85 до 108 дБА за счет работы трелевочных лебедок, тракторов и других механизмов.

Подавляющее большинство производственных процессов в прядильных и ткацких цехах также сопровождается образованием шума, источником которого является бойковый механизм ткацкого станка, удары погонялки челнока. Наиболее высокий уровень шума наблюдается в ткацких цехах - 94-110 дБА.

Изучение условий труда на современных швейных фабриках показало, что уровень шума на рабочих местах швей-мотористок составляет 90-95 дБА с максимумом звуковой энергии на высоких частотах.

Наиболее шумными операциями в машиностроении, в том числе, авиастроении, автомобилестроении, вагоностроении и др. следует считать обрубные и клепальные работы с использованием пневматических инструментов, режимные испытания двигателей и их агрегатов различных систем, стендовые испытания на вибропрочность изделий, барабанную готовку, шлифовку и полировку деталей, штампопрессовую заготовку.

Для нефтехимической отрасли характерными являются высокочастотные шумы различных уровней за счет сброса сжатого воздуха из замкнутого технологического цикла химических производств или

от оборудования, работающего на сжатом воздухе, например, сборочных станков и вулканизационных линий шинных заводов.

Вместе с тем в машиностроении, как ни в одной другой отрасли, наибольший объем работ приходится на станочную металлообработ- ку, где занято около 50% всех рабочих отрасли.

Металлургическую промышленность в целом можно отнести к отрасли с выраженным шумовым фактором. Так, интенсивный шум характерен для плавильных, прокатных и трубопрокатных производств. Из производств, относящихся к этой отрасли, шумными условиями характеризуются метизные заводы, оснащенные холодновысадочными автоматами.

К наиболее шумным процессам следует отнести шум от открытой воздушной струи (обдув), вырывающейся из отверстий малого диаметра, шум от газовых горелок и шум, образующийся при напылении металлов на различные поверхности. Спектры от всех этих источников очень схожие, типично высокочастотные, без заметного спада энергии до 8-10 кГц.

В лесной и целлюлозно-бумажной отраслях наиболее шумными являются деревообрабатывающие цеха.

Промышленность строительных материалов включает ряд шумных производств: машины и механизмы по дроблению и размолу сырья и производству сборного железобетона.

В горнорудной и угольной промышленностях наиболее шумными являются операции механизированной добычи полезных ископа- емых как с использованием ручных машин (пневмоперфораторы, отбойные молотки), так и с помощью современных стационарных и самоходных машин (комбайны, буровые станки и пр.).

Радиотехническая промышленность в целом сравнительно менее шумная. Лишь подготовительные и заготовительные цеха ее имеют оборудование, характерное для машиностроительной промышленности, но в значительно меньшем количестве.

В легкой промышленности как по шумности, так и по числу занятых рабочих наиболее неблагоприятными являются прядильные и ткацкие производства.

Пищевая промышленность - наименее шумная из всех. Характерные для нее шумы генерируют поточные агрегаты кондитерских и табачных фабрик. Однако отдельные машины этих производств создают значительный шум, например, мельницы зерен какао, некоторые сортировочные машины.

В каждой отрасли промышленности имеются цеха или отдельные компрессорные станции, снабжающие производство сжатым воздухом или перекачивающие жидкости или газообразные продукты. Последние имеют большое распространение в газовой промышленности как большие самостоятельные хозяйства. Компрессорные установки создают интенсивный шум.

Примеры шумов, характерных для различных отраслей промышленности, в абсолютном большинстве случаев имеют общую форму спектров: все они широкополосные, с некоторым спадом звуковой энергии в области низких (до 250 Гц) и высоких (выше 4000 Гц) частот с уровнями 85-120 дБА. Исключением являются шумы аэродинамического происхождения, где уровни звукового давления растут от низких к высоким частотам, а также низкочастотные шумы, которых в промышленности по сравнению с описанными выше значительно меньше.

Все описанные шумы характеризуют наиболее шумные производства и участки, где в основном преобладает физический труд. Вместе с тем широко распространены и шумы менее интенсивные (60-80 дБА), которые, однако, гигиенически значимы при работах, связанных с нервной нагрузкой, например, на пультах управления, при машинной обработке информации и других работах, получающих все большее распространение.

Шум является также наиболее характерным неблагоприятным фактором производственной среды на рабочих местах пассажирских, транспортных самолетов и вертолетов; подвижного состава железнодорожного транспорта; морских, речных, рыбопромысловых и других судов; автобусов, грузовых, легковых и специальных автомобилей; сельскохозяйственных машин и оборудования; строительнодорожных, мелиоративных и других машин.

Уровни шума в кабинах современных самолетов колеблются в широком диапазоне - 69-85 дБА (магистральные самолеты для авиалиний со средней и большой дальностью полета). В кабинах автомобилей средней грузоподъемности при различных режимах и условиях эксплуатации уровни звука составляют 80-102 дБА, в кабинах большегрузных автомобилей - до 101 дБА, в легковых автомобилях - 75-85 дБА.

Таким образом, для гигиенической оценки шума важно знать не только его физические параметры, но и характер трудовой деятель- ности человека-оператора, и, прежде всего, степень его физической или нервной нагрузки.

11.2. биологическое действие шума

Большой вклад в изучение проблемы шума внесла профессор Е.Ц. Андреева-Галанина. Она показала, что шум является обще- биологическим раздражителем и оказывает влияние не только на слуховой анализатор, но, в первую очередь, действует на структуры головного мозга, вызывая сдвиги в различных системах организма. Проявления шумового воздействия на организм человека могут быть условно подразделены на специфические изменения, наступающие в органе слуха, и неспецифические, возникающие в других органах и системах.

Ауральные эффекты. Изменения звукового анализатора под влиянием шума составляют специфическую реакцию организма на акустическое воздействие.

Общепризнано, что ведущим признаком неблагоприятного влияния шума на организм человека является медленно прогрессирующее понижение слуха по типу кохлеарного неврита (при этом, как правило, страдают оба уха в одинаковой степени).

Профессиональное снижение слуха относится к сенсоневральной (перцепционной) тугоухости. Под этим термином подразумевают нарушение слуха звуковоспринимающего характера.

Снижение слуха под влиянием достаточно интенсивных и длительно действующих шумов связано с дегенеративными измене- ниями как в волосковых клетках кортиева органа, так и в первом нейроне слухового пути - спиральном ганглии, а также в волокнах кохлеарного нерва. Однако единого мнения о патогенезе стойких и необратимых изменений в рецепторном отделе анализатора не существует.

Профессиональная тугоухость развивается обычно после более или менее длительного периода работы в шуме. Сроки ее возникновения зависят от интенсивности и частотно-временных параметров шума, длительности его воздействия и индивидуальной чувствительности органа слуха к шуму.

Жалобы на головную боль, повышенную утомляемость, шум в ушах, которые могут возникать в первые годы работы в условиях шума, не являются специфическими для поражения слухового анализатора, а скорее характеризуют реакцию ЦНС на действие шумового фактора. Ощущение понижения слуха возникает обычно значительно позже появления первых аудиологических признаков поражения слухового анализатора.

С целью обнаружения наиболее ранних признаков действия шума на организм и, в частности, на звуковой анализатор, наиболее широко используется метод определения временного смещения порогов слуха (ВСП) при различной длительности экспозиции и характере шума.

Кроме того, этот показатель применяется для прогнозирования потерь слуха на основании соотношения между постоянными сме- щениями порогов (потерями) слуха (ПСП) от шума, действующего в течение всего времени работы в шуме, и временными смещениями порогов (ВСП) за время дневной экспозиции тем же шумом, измеренными спустя две минуты после экспозиции шумом. Например, у ткачей временные смещения порогов слуха на частоте 4000 Гц за дневную экспозицию шумом численно равны постоянным потерям слуха на этой частоте за 10 лет работы в этом же шуме. Исходя из этого, можно прогнозировать возникающие потери слуха, определив лишь сдвиг порога за дневную экспозицию шумом.

Шум, сопровождающийся вибрацией, более вреден для органа слуха, чем изолированный.

Экстраауральное влияние шума. Представление о шумовой болезни сложилось в 1960-70 гг. на основании работ по влиянию шума на сердечно-сосудистую, нервную и др. системы. В настоящее время ее заменила концепция экстраауральных эффектов как неспецифических проявлений действия шума.

Рабочие, подвергающиеся воздействию шума, предъявляют жалобы на головные боли различной интенсивности, нередко с локализацией в области лба (чаще они возникают к концу работы и после нее), головокружение, связанное с переменой положения тела, зависящее от влияния шума на вестибулярный аппарат, снижение памяти, сонливость, повышенную утомляемость, эмоциональную неустойчивость, нарушение сна (прерывистый сон, бессонница, реже сонливость), боли в области сердца, снижение аппетита, повышенную потливость и др. Частота жалоб и степень их выраженности зависят от стажа работы, интенсивности шума и его характера.

Шум может нарушать функцию сердечно-сосудистой системы. Отмечены изменения в электрокардиограмме в виде укорочения интервала Q-T, удлинения интервала P-Q, увеличения длительности и деформации зубцов Р и S, смещения интервала T-S, изменение вольтажа зубца Т.

Наиболее неблагоприятным с точки зрения развития гипертензивных состояний является широкополосный шум с преобладанием высокочастотных составляющих и уровнем свыше 90 дБА, особенно импульсный шум. Широкополосный шум вызывает максимальные сдвиги в периферическом кровообращении. Следует иметь в виду, что если к субъективному восприятию шума имеется привыкание (адаптация), то в отношении развивающихся вегетативных реакций адаптации не наблюдается.

По данным эпидемиологического изучения распространенности основных сердечно-сосудистых заболеваний и некоторых факторов риска (избыточная масса, отягощенный анамнез и др.) у женщин, работающих в условиях воздействия постоянного производственного шума в диапазоне от 90 до 110 дБА, показано, что шум, как отдельно взятый фактор (без учета общих факторов риска), может увеличивать частоту артериальной гипертонии (АГ) у женщин в возрасте до 39 лет (при стаже меньше 19 лет) лишь на 1,1%, а у женщин старше 40 лет - на 1,9%. Однако при сочетании шума хотя бы с одним из «общих» факторов риска можно ожидать учащения АГ уже на 15%.

При воздействии интенсивного шума 95 дБА и выше может иметь место нарушение витаминного, углеводного, белкового, холестерино- вого и водно-солевого обменов.

Несмотря на то что шум оказывает влияние на организм в целом, основные изменения отмечаются со стороны органа слуха, цент- ральной нервной и сердечно-сосудистой систем, причем изменения нервной системы могут предшествовать нарушениям в органе слуха.

Шум является одним из наиболее сильных стрессорных производственных факторов. В результате воздействия шума высокой интенсивности одновременно возникают изменения как в нейроэндокринной, так и в иммунной системах. При этом происходит стимуляция передней доли гипофиза и увеличение секреции надпочечниками стероидных гормонов, а как следствие этого - развитие приобретенного (вторичного) иммунодефицита с инволюцией лимфоидных органов и значительными изменениями содержания и функционального состояния Т- и В-лимфоцитов в крови и костном мозге. Возникающие дефекты иммунной системы касаются, в основном, трех основных биологических эффектов:

Снижение антиинфекционного иммунитета;

Создание благоприятных условий для развития аутоиммунных и аллергических процессов;

Снижение противоопухолевого иммунитета.

Доказана зависимость между заболеваемостью и величиной потерь слуха на речевых частотах 500-2000 Гц, свидетельствующая о том, что одновременно со снижением слуха наступают изменения, способствующие снижению резистентности организма. При увеличении производственного шума на 10 дБА показатели общей заболеваемости работающих (как в случаях, так и в днях) возрастают в 1,2-1,3 раза.

Анализ динамики специфических и неспецифических нарушений с возрастанием стажа работы при шумовом воздействии на примере ткачей показал, что с увеличением стажа у ткачей формируется полиморфный симптомокомплекс, включающий патологические изменения органа слуха в сочетании с вегетососудистой дисфункцией. При этом темп прироста потерь слуха в 3,5 раза выше, чем прирост функциональных нарушений нервной системы. При стаже до 5 лет преобладают преходящие вегетососудистые нарушения, при стаже свыше 10 лет - потери слуха. Выявлена также взаимосвязь частоты вегетососудистой дисфункции и величины потери слуха, проявляющаяся в их росте при снижении слуха до 10дБ и в стабилизации при прогрессировании тугоухости.

Установлено, что в производствах с уровнями шума до 90-95 дБА вегетативно-сосудистые расстройства появляются раньше и пре- валируют над частотой кохлеарных невритов. Максимальное их развитие наблюдается при 10-летнем стаже работы в условиях шума. Только при уровнях шума, превышающих 95 дБА, к 15 годам работы в «шумной» профессии экстраауральные эффекты стабилизируются, и начинают преобладать явления тугоухости.

Сравнение частоты потерь слуха и нервно-сосудистых нарушений в зависимости от уровня шума показало, что темп роста потерь слуха почти в 3 раза выше темпа роста нервно-сосудистых нарушений (соответственно около 1,5 и 0,5% на 1 дБА), то есть с увеличением уровня шума на 1 дБА потери слуха будут возрастать на 1,5%, а нервно-сосудистые нарушения - на 0,5%. При уровнях 85 дБА и выше на каждый децибел шума нервно-сосудистые нарушения наступают на полгода раньше, чем при более низких уровнях.

На фоне происходящей интеллектуализации труда, роста удельного веса операторских профессий отмечается повышение значения шумов средних уровней (ниже 80 дБА). Указанные уровни не вызывают потерь слуха, но, как правило, оказывают мешающее, раздражающее и утомляющее действия, которые суммируются с

таковым от напряженного труда и при возрастании стажа работы в профессии могут привести к развитию экстраауральных эффектов, проявляющихся в общесоматических нарушениях и заболеваниях. В связи с этим был обоснован биологический эквивалент действия на организм шума и нервно-напряженного труда, равный 10 дБА шума на одну категорию напряженности трудового процесса (Суворов Г.А. и др., 1981). Этот принцип положен в основу действующих санитарных норм по шуму, дифференцированных с учетом напряженности и тяжести трудового процесса.

В настоящее время большое внимание уделяется оценке профессиональных рисков нарушения здоровья работающих, в том числе обусловленных неблагоприятным воздействием производственного шума.

В соответствии со стандартом ИСО 1999.2 «Акустика. Определение профессионального воздействия шума и оценка нарушений слуха, вызванного шумом» можно оценивать риск нарушений слуха в зависимости от экспозиции и прогнозировать вероятность возникновения профзаболеваний. На основе математической модели стандарта ИСО определены риски развития профессиональной тугоухости в процентах с учетом отечественных критериев профессиональной тугоухости (табл. 11.1 ). В России степень профессиональной тугоухости оценивается по средней величине потерь слуха на трех речевых частотах (0,5-1-2 кГц); величины более 10, 20, 30 дБ соответствуют 1-й, II-й, III-й степени снижения слуха.

Учитывая, что снижение слуха I-й степени с довольно большой вероятностью может развиться и без шумового воздействия в результате возрастных изменений, представляется нецелесообразным использовать I-ую степень снижения слуха для оценки безопасного стажа работы. В связи с этим в таблице представлены вычисленные значения рабочего стажа, в течение которого могут развиться потери слуха II-й и III-й степени в зависимости от уровня шума на рабочих местах. Данные даются для разных вероятностей (в %).

В табл. 11.1 приведены данные для мужчин. У женщин из-за более медленного, чем у мужчин, нарастания возрастных изменений слуха данные слегка отличаются: для стажа более 20 лет у женщин безо- пасный стаж на 1 год больше, чем у мужчин, а для стажа более 40 лет - на 2 года.

Таблица 11.1. Стаж работы до развития потерь слуха, превышающих

критериальные значения, в зависимости от уровня шума на рабочем месте (при 8-часовом воздействии)

Примечание. прочерк означает, что стаж работы составляет более 45 лет.

Вместе с тем следует отметить, что стандарт не учитывает характер трудовой деятельности, как это предусмотрено в санитарных нормах по шуму, где предельно допустимые уровни шума дифференцированы по категориям тяжести и напряженности труда и тем самым охватывают неспецифическое действие шума, что важно для сохранения здоровья и работоспособности лиц операторских профессий.

11.3. нормирование шума на рабочих местах

Профилактика неблагоприятного влияния шума на организм работающих основана на его гигиеническом нормировании, целью которого является обоснование допустимых уровней и комплекса гигиенических требований, обеспечивающих предупреждение функциональных расстройств или заболеваний. В гигиенической практике в качестве критерия нормирования используют предельно допустимые уровни (ПДУ) для рабочих мест, допускающие ухудшение и изменение внешних показателей деятельности (эффективности

и производительности) при обязательном возврате к прежней системе гомеостатического регулирования исходного функционального состояния с учетом адаптационных изменений.

Нормирование шума проводится по комплексу показателей с учетом их гигиенической значимости. Действие шума на организм оценивают по обратимым и необратимым, специфическим и неспецифическим реакциям, снижению работоспособности или дискомфорта. Для сохранения здоровья, работоспособности и самочувствия человека оптимальное гигиеническое нормирование должно учитывать вид трудовой деятельности, в частности, физический и нервноэмоциональный компоненты труда.

Воздействие шумового фактора на человека состоит из двух составляющих: нагрузки на орган слуха как систему, воспринимаю- щую звуковую энергию, - ауральный эффект, и воздействие на центральные звенья звукового анализатора как систему приема информации - экстраауральный эффект. Для оценки первой составляющей есть специфический критерий - «утомление органа слуха», выражающийся в смещении порогов восприятия тонов, которое пропорционально величине звукового давления и времени экспозиции. Вторая составляющая получила название неспецифического влияния, кото- рое можно объективно оценить по интегральным физиологическим показателям.

Шум может рассматриваться как фактор, участвующий в эфферентном синтезе. На этой стадии в нервной системе происходит сопоставление всех возможных эфферентных влияний (обстановочных, обратных и поисковых) с тем, чтобы выработать наиболее адекватную ответную реакцию. Действие сильного производственного шума является таким фактором внешней среды, который по своей природе тоже влияет на эфферентную систему, т.е. воздействует на процесс формирования рефлекторной реакции в стадии эфферентного синтеза, но как обстановочный фактор. При этом результат воз- действия обстановочного и пускового влияний зависит от их силы.

В случаях установки на деятельность обстановочная информация должна являться элементом стереотипа и, следовательно, не вызывать неблагоприятных изменений в организме. Вместе с тем привыкание к шуму в физиологическом смысле не наблюдается, выраженность утомления и частота неспецифических нарушений нарастают с увеличением стажа работы в условиях шума. Следовательно, механизм действия шума нельзя ограничивать фактором участия его в

обстановочной афферентации. В обоих случаях (шум и напряжение) речь идет о нагрузке на функциональные системы высшей нервной деятельности, и, следовательно, генез утомления при таком воздействии будет носить сходный характер.

Критерием нормирования по оптимальному уровню для многих факторов, в том числе для шума, можно рассматривать такое состоя- ние физиологических функций, при котором данный уровень шума не вносит своей доли в их напряжение, и последнее целиком определяется выполняемой работой.

Напряженность труда складывается из элементов, входящих в биологическую систему рефлекторной деятельности. Анализ информации, объем оперативной памяти, эмоциональное напряжение, функциональное напряжение анализаторов - все эти элементы оказываются загруженными в процессе трудовой деятельности, и естественно, что их активная нагрузка вызывает развитие утомления.

Как и в любом случае, ответ на воздействие состоит из компонентов специфического и неспецифического характеров. Какова доля каждого из этих элементов в процессе утомления - вопрос нерешенный. Однако нет никаких сомнений в том, что воздействие шума и напряженности труда нельзя рассматривать одно без учета другого. В связи с этим эффекты, опосредованные через нервную систему (утомление, снижение работоспособности), как для шума, так и для напряженности труда имеют качественное сходство. Производственные и экспериментальные исследования с использованием социально-гигиенических, физиологических и клинических методов и показателей подтвердили указанные теоретические положения. На примере изучения разных профессий была установлена величина физиолого-гигиенического эквивалента шума и напряжен- ности нервно-эмоционального труда, которая находилась в пределах 7-13 дБА, т.е. в среднем 10 дБА на одну категорию напряженности. Следовательно, оценка напряженности трудового процесса оператора является необходимой для полноценной гигиенической оценки шумового фактора на рабочих местах.

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудовой деятельности представлены в табл. 11.2.

Количественную оценку тяжести и напряженности трудового процесса следует проводить в соответствии с критериями Руководства 2.2.2006-05.

Таблица 11.2. Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности, дБА

Примечание.

Для тонального и импульсного шумов ПДУ на 5 дБА меньше значений, указанных в таблице;

Для шума, создаваемого в помещениях установками кондиционирования воздуха, вентиляции и воздушного отопления, ПДУ на 5 дБА меньше фактических уровней шума в помещениях (измеренных или рассчитанных), если последние не превышают значений табл. 11.1 (поправка для тонального и импульсного шумов при этом не учитывается), в противном случае - на 5 дБА меньше значений, указанных в таблице;

Дополнительно для колеблющегося во времени и прерывистого шумов максимальный уровень звука не должен превышать 110 дБА, а для импульсного шума - 125 дБА.

Поскольку целью дифференцированного нормирования шума является оптимизация условий труда, встречающиеся сочетания напряженного и очень напряженного с тяжелым и очень тяжелым физическим трудом не нормируются исходя из необходимости их ликвидации как недопустимых. Однако для практического использования новых дифференцированных норм как при проектировании предприятий, так и при текущем контроле за уровнями шума на действующих предприятиях серьезной проблемой является приведение в соответствие категорий тяжести и напряженности труда с видами трудовой деятельности и рабочих помещений.

Импульсный шум и его оценка. Понятие импульсного шума не является строго определенным. Так, в действующих санитарных нормах к импульсному шуму относят шумы, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБА, измеренные по характеристикам «импульс» и «медленно», различаются не менее чем на 7 дБ.

Одним из важных факторов, определяющих различие реакций на постоянный и импульсный шумы, является пиковый уровень. В соответствии с концепцией «критического уровня» шумы с уровнями выше определенного, даже очень кратковременные, могут вызывать прямую травматизацию органа слуха, что подтверждается морфологическими данными. Многие авторы указывают разные значения критического уровня: от 100-105 дБА до 145 дБА. Такие уровни шума встречаются на производстве, например, в кузнечных цехах шум от молотов достигает 146 и даже 160 дБА.

По-видимому, опасность импульсного шума определяется не только высокими эквивалентными уровнями, но и дополнительным вкладом временных характеристик, вероятно, за счет травмирующего эффекта высоких пиковых уровней. Исследования распределения уровней импульсного шума показали, что, несмотря на малое суммарное время действия пиков с уровнями выше 110 дБА, их вклад в общую дозу может достигать 50%, и это значение 110 дБА было рекомендовано как дополнительный критерий при оценке непостоянных шумов к ПДУ по действующим санитарным нормам.

Приведенные нормы устанавливают ПДУ для импульсного шума на 5 дБ ниже, чем для постоянных шумов (т.е. вносят поправку минус 5 дБА по эквивалентному уровню), и дополнительно ограничивают максимальный уровень звука 125 дБА «импульс», но не регламентируют пиковые значения. Тем самым действующие нормы

ориентируются на громкостные эффекты шума, поскольку характеристика «импульс» с t = 40 мс адекватна верхним отделам звукового анализатора, а не возможному травматическому действию его пиков, являющемуся общепризнанным в настоящее время.

Шумовое воздействие на работающих, как правило, является непостоянным по уровню шума и (или) времени его действия. В связи с этим для оценки непостоянных шумов введено понятие эквивалентного уровня звука. С эквивалентным уровнем связана доза шума, которая отражает количество переданной энергии и поэтому может служить мерой шумовой нагрузки.

Наличие в действующих санитарных нормах шума на рабочих местах, в помещениях жилых и общественных зданий и на территории жилых застроек в качестве нормируемого параметра эквивалентного уровня и отсутствие такового в качестве дозы шума объясняются рядом факторов. Во-первых, отсутствием в стране отечественных дозиметров; во-вторых, при нормировании шума для жилых помещений и для некоторых профессий (работников, у которых орган слуха является рабочим органом) энергетическая концепция требует поправок, вносимых в измерительные приборы, для выражения шума не в уровнях звукового давления, а в величинах субъективной громкости.

Учитывая появление в последние годы нового направления в гигиенической науке по установлению степени профессионального риска от различных факторов производственной среды, в том числе и от шума, следует учитывать в перспективе величину дозы шума с различными категориями риска не столько по специфическому влиянию (слуховому), сколько по неспецифическим проявлениям (нарушениям) со стороны других органов и систем организма.

До настоящего времени влияние шума на человека изучалось изолированно: в частности, промышленного шума - на рабочих различных производств, служащих административно-управленческого аппарата; городского и жилищно-бытового шума - на население различных категорий в условиях проживания. Эти исследования позволяли обосновать нормативы для постоянного и непостоянного, производственного и бытового шумов в различных местах и условиях пребывания человека.

Однако для гигиенической оценки влияния шумов на человека в производственных и внепроизводственных условиях целесообразно учитывать суммарное шумовое воздействие на организм, что

возможно на основе концепции суточной дозы шума с учетом видов жизнедеятельности человека (работа, отдых, сон), исходя из возможности кумуляции их эффектов.

11.4. профилактика неблагоприятного действия шума

Мероприятия по борьбе с шумом могут быть техническими, архитектурно-планировочными, организационными и медико-профи- лактическими.

Технические средства борьбы с шумом:

Устранение причин возникновения шума или снижение его в источнике;

Ослабление шума на путях передачи;

Непосредственная защита работающего или группы рабочих от воздействия шума.

Наиболее эффективным средством снижения шума является замена шумных технологических операций на малошумные или полностью бесшумные. Большое значение имеет снижение шума в источнике. Этого можно добиться усовершенствованием конструкции или схемы установки, производящей шум, изменением режима ее работы, оборудованием источника шума дополнительными звукоизолирующими устройствами или ограждениями, расположенными по возможности ближе к источнику (в пределах его ближнего поля). Одним из наиболее простых технических средств борьбы с шумом на путях передачи является звукоизолирующий кожух, который может закрывать отдельный шумный узел машины (например, коробку передач) или весь агрегат в целом. Кожухи из листового металла с внутренней облицовкой звукопоглощающим материалом могут снижать шум на 20-30 дБ. Увеличение звукоизоляции кожуха достигается за счет нанесения на его поверхность вибродемпфирующей мастики, обеспечивающей снижение уровней вибрации кожуха на резонансных частотах и быстрое затухание звуковых волн.

Для ослабления аэродинамического шума, создаваемого компрессорами, вентиляционными установками, системами пневмотранспорта и др., применяются глушители активного и реактивного типов. Наиболее шумное оборудование размещают в звукоизолирующих камерах. При больших габаритах машин или значительной зоне обслуживания оборудуют специальные кабины для операторов.

Акустическая отделка помещений с шумным оборудованием может обеспечить снижение шума в зоне отраженного звукового поля на 10-12 дБ и в зоне прямого звука до 4-5 дБ в октавных полосах частот. Применение звукопоглощающих облицовок для потолка и стен приводит к изменению спектра шума в сторону более низких частот, что даже при относительно небольшом снижении уровня существенно улучшает условия труда.

В многоэтажных промышленных зданиях особенно важна защита помещений от структурного шума (распространяющегося по конструкциям здания). Его источником может быть производственное оборудование, которое имеет жесткую связь с ограждающими конструкциями. Ослабление передачи структурного шума достигается виброизоляцией и вибропоглощением.

Хорошей защитой от ударного шума в зданиях является устройство «плавающих» полов. Архитектурно-планировочные решения во многих случаях предопределяют акустический режим производственных помещений, облегчая или затрудняя решение задач по их акустическому благоустройству.

Шумовой режим производственных помещений обусловлен размерами, формой, плотностью и видами расстановки машин и обору- дования, наличием звукопоглощающего фона и т.д. Планировочные мероприятия должны быть направлены на локализацию звука и уменьшение его распространения. Помещения с источниками высокого уровня шума по возможности следует группировать в одной зоне здания, примыкающей к складским и вспомогательным помещениям, и отделять коридорами пли подсобными помещениями.

Учитывая, что с помощью технических средств не всегда удается снижать уровни шума на рабочих местах до нормативных значений, необходимо применять средства индивидуальной защиты органа слуха от шума (антифоны, заглушки). Эффективность средств индивидуальной защиты может быть обеспечена правильным подбором в зависимости от уровней и спектра шума, а также контролем за условиями их эксплуатации.

В комплексе мероприятий по защите человека от неблагоприятного действия шума определенное место занимают медицинские средства профилактики. Важнейшее значение имеет проведение предварительных и периодических медицинских осмотров.

Противопоказаниями к приему на работу, сопровождаемую шумовым воздействием, служат:

Стойкое понижение слуха (хотя бы на одно ухо) любой этиологии;

Отосклероз и другие хронические заболевания уха с неблагоприятным прогнозом;

Нарушение функции вестибулярного аппарата любой этиологии, в том числе, болезнь Меньера.

Принимая во внимание значение индивидуальной чувствительности организма к шуму, исключительно важным является дис- пансерное наблюдение за рабочими первого года работы в условиях шума.

Одним из направлений индивидуальной профилактики шумовой патологии является повышение сопротивляемости организма рабочих к неблагоприятному действию шума. С этой целью рабочим шумных профессий рекомендуется ежедневный прием витаминов группы В в количестве 2 мг и витамина С в количестве 50 мг (продолжительность курса 2 недели с перерывом в неделю). Следует также рекомендовать введение регламентированных дополнительных перерывов с учетом уровня шума, его спектра и наличия средств индивидуальной защиты.



Понравилась статья? Поделитесь ей
Наверх