Что такое стволовые клетки. Стволовые клетки - свойства, классификация, получение, выращивание и использование. Общие принципы лечения стволовыми клетками

ольга лукинская

О стволовых клетках в последние годы приходится слышать в самом разном контексте: их предлагают использовать в косметических процедурах и даже добавляют в кремы, учатся добывать из молочных зубов и пуповины, используют в лечении самых разных заболеваний. Часто в новостях сообщают о новых возможностях их использования, которые ещё долго предстоит изучать в лаборатории; в итоге одним стволовые клетки представляются чем-то из будущего, а другим кажется, что они уже стали обыденностью и используются в любом салоне красоты. Разбираемся, что вообще представляют собой стволовые клетки, для чего они часто применяются уже сейчас и какая польза возможна пока только в теории.


Откуда добывают
стволовые клетки

Стволовые клетки - это так называемые недифференцированные клетки, которые могут превращаться в разные клетки организма - а у человека их более двухсот - с различными свойственными им функциями. Например, у нервных клеток или клеток крови есть узкие, специфические задачи - и всю энергию они тратят на выполнение этих задач, не растрачиваясь на размножение. А новые эритроциты или нейроны возникают из стволовых клеток, которые есть у каждого человека в любом возрасте. Они бывают разных видов : одни способны дифференцироваться только в один тип клеток, другие - в несколько; стволовые клетки эмбриона на раннем сроке беременности могут преобразоваться в любой тип клеток организма.

Среди учёных ведутся терминологические споры о том, можно ли все эти клетки называть стволовыми и синонимичны ли термины «стволовая клетка» и «клетка-предшественник», но в целом оба термина могут использоваться равноценно. Речь идёт о базовых клетках, способных превращаться в любые другие - а значит, если научиться правильно с ними обращаться, потенциально могут позволить вырастить новую кожу на месте ожога или заменить пострадавшую в результате гепатита ткань печени. К сожалению, использовать стволовые клетки в таких целях пока не получается - но всё же есть ряд серьёзных проблем, которые они помогают решить. Получать стволовые клетки можно из эмбрионов (например, для исследовательских целей могут использоваться абортивные материалы), а у взрослых людей их основной источник - костный мозг. Стволовые клетки также активно выделяют из пульпы зубов и из пуповины новорождённых.

Для чего их используют

Стволовые клетки уже несколько десятилетий используют в лечении тяжёлых заболеваний крови и костного мозга, например лейкозов. Костный мозг - это орган кроветворения; по сути, он и состоит из стволовых клеток. Когда он не функционирует или производит «дефектные» клетки крови, один из вариантов лечения - трансплантация, то есть «замена» стволовых клеток костного мозга здоровыми. Для этого могут использоваться как донорские клетки, так и собственные, если они прошли определённую обработку.

Стволовыми клетками называют клетки-предшественники, из которых образуются при необходимости все другие типы клеток, составляющие различные органы и ткани человека. Термин "стволовая клетка" впервые ввел в 1908 году русский гематолог из Санкт-Петербурга А. Максимов. Значительный объем исследований стволовых клеток проведен биологами А. Фриденштейном и И. Чертковым в России, в 60-х годах прошлого века. Именно они открыли мезенхимальные стволовые клетки (МСК) в костном мозге, обладающие уникальной регенерационной способностью. Отличие эмбриональных и мезенхимальных стволовых клеток заключается в том, что первые могут быть получены на ранней стадии развития эмбриона человека (из внутренней массы бластоцисты - оплодотворенной яйцеклетки - или из зачатков половых органов на самых ранних этапах развития, буквально в первые дни), а вторые встречаются в течение всей жизни человека во всех его органах и тканях. Эмбриональные СК значительно активнее мезенхимальных, обладают более высокой способностью размножения, большим потенциалом дифференцировки. Помимо мезенхимальных СК выделяют еще гемопоэтические клетки - предшественники клеток крови. Они встречаются в кровеносном русле в отличие от мезенхимальных, которые в крови циркулируют только при серьезных повреждениях организма.

Стволовые клетки способны восстанавливать кроветворение у облученных животных (радиозащитное действие), длительно поддерживать кроветворение и образовывать колониеобразующие единицы селезенки (двенадцатидневные селезеночные колонии), дающие начало гранулоцитарным, моноцитарным, эритроидным, мегакариоцитарным и лимфоидным колониям. Все клетки гемопоэтического происхождения образуются из примитивных стволовая кроветворная клеток (пСКК), локализованных в костном мозге и дающих начало клеткам четырех основных направлений дифференцировки:

эритроидного (эритроциты),

мегакариоцитарного (тромбоциты),

миелоидного (гранулоциты и моноядерные фагоциты)

лимфоидного (лимфоциты).

Дивергенция общего стволового элемента происходит на самом раннем этапе костномозговой дифференцировки.

Антигенпрезентирующие клетки в основном, но не исключительно, развиваются из миелоидных клеток-предшественников.

Клетки миелоидного и лимфоидного ряда наиболее важны для функционирования иммунной системы.

Лимфопоэтическая своловая клетка определяет две самостоятельные линии развития, приводящие к образованию Т-клеток и В-клеток.

Первая образующаяся из ГСК клетка-предшественник представляет собой колониеобразующуюся единицу (КОЕ) , которая определяет линии развития, приводящие к образованию гранулоцитов, эритроцитов, моноцитов и мегакариоцитов. Созревание этих клеток происходит под влиянием колониестимулирующих факторов (КСФ) и ряда интерлейкинов, в том числе ИЛ-1, ИЛ-3, ИЛ-4, ИЛ-5 и ИЛ-6. Все они играют важную роль в положительной регуляции (стимуляции) гемопоэза и продуцируются, главным образом, стромальными клетками костного мозга, но также и зрелыми формами дифференцированных миелоидных и лимфоидных клеток. Другие цитокины (например, ТРФ-бета) могут осуществлять понижающую регуляцию (подавление) гемопоэза).

У всех клеток как лимфоидного, так и миелоидного ряда время жизни ограничено, и все они непрерывно образуются.

У млекопитающих в период внутриутробного развития ГСК присутствуют в желточном мешке, печени, селезенке и костном мозге. Во взрослом организме гемопоэтические стволовые клетки находятся в основном в костном мозге, где они в норме довольно редко делятся, производя новые стволовые клетки (самообновление). Животное можно спасти от последствий облучения в летальных дозах введением клеток костного мозга, которые заселяют его лимфоидную и миелоидную ткани.

Плюрипотентные стволовые клетки дают начало коммитированным клеткам-предшественницам, которые уже необратимо определились как предки кровяных клеток одного или нескольких типов. Полагают, что коммитированные клетки делятся быстро, но ограниченное число раз, при этом делятся они под воздействием факторов микроокружения: соседних клеток и растворимых или мембраносвязанных цитокинов. В конце такой серии делений клетки эти становятся терминально дифференцированными, обычно больше не делятся и погибают через несколько дней или недель. Плюрипотентные стволовые клетки малочисленны, их трудно распознавать, и все еще неясно, как они выбирают свой путь среди разных вариантов развития. Программирование клеточных делений и выведение клеток на определенный путь дифференцировки (коммитирование), видимо, включают в себя и случайные события. Стволовая клетка плюрипотентна, т.к. дает начало многим видам терминально дифференцированных клеток. Что касается клеток крови, то эксперименты показывают, что все классы клеток крови - и миелоидных и лимфоидных - происходят от общей гемопоэтической стволовой клетки.

Гемопоэтическая стволовая клетка развивается следующим образом. У эмбриона гемопоэз начинается в желточном мешке, но по мере развития эта функция переходит к печени плода и, наконец, к костному мозгу, где и продолжается в течение всей жизни. Гемопоэтическая стволовая клетка, дающая начало всем элементам крови, плюрипотентна и заселяет другие гемо - и лимфопоэтические органы и самовоспроизводится, превращаясь в новые стволовые клетки. Животное можно спасти от последствий облучения в летальных дозах введением клеток костного мозга, которые заселяют его лимфоидную и миелоидную ткани.

Во взрослом организме гемопоэтические стволовые клетки находятся главным образом в костном мозге, где они в норме довольно редко делятся, производя новые стволовые клетки (самообновление).

Клетку-предшественницу, дающую в культуре клеток начало колонии эритроцитов, называют колониеобразующей единицей эритроидного ряда, или КОЕ-Э, и она дает начало зрелым эритроцитам после шести или даже меньшего числа циклов деления. КОЕ-Э еще не содержит гемоглобин.

Гемопоэзом (haemopoesis) называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период

и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови. Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов - гранулоцитопоэзом, тромбоцитов - тромбоцитопоэзом, развитие моноцитов - моноцитопоэзом, развитие лимфоцитов и иммуноцитов - лимфоцито - и иммуноцитопоэзом.

Эмбриональный гемопоэз.

В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа, последовательно сменяющих друг друга:

1) мезобластический, когда начинается развитие клеток крови во внезародышевых органах - мезенхиме стенки желточного мешка, хориона и стебля (с 3-й по 9-ю неделю развития зародыша человека) и появляется первая генерация стволовых клеток крови (СКК);

2) печеночный, который начинается в печени с 5-6-й недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК.

Кроветворение в печени достигает максимума через 5 месяцев и завершается перед рождением. СКК печени заселяют тимус (здесь, начиная с 7-8-й недели, развиваются Т-лимфоциты), селезенку (гемопоэз начинается с 12-й недели) и лимфатические узлы (гемопоэз отмечается с 10-й недели);

3) медуллярный (костномозговой) - появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению, а после рождения костный мозг становится центральным органом гемопоэза.

Кроветворение в стенке желточного мешка. У человека оно начинается в конце 2-й - начале 3-й недели эмбрионального развития. В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или кровяные островки. В них мезенхимные клетки округляются, теряют отростки и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть СКК дифференцируется в первичные клетки крови (бласты), крупные клетки с базофильной цитоплазмой и ядром, в котором хорошо заметны крупные ядрышки. Большинство первичных кровяных клеток митотически делится и превращается в первичные эритробласты, характеризующиеся крупным размером (мегалобласты). Это превращение совершается в связи с накоплением эмбрионального гемоглобина в цитоплазме бластов, при этом сначала образуются полихроматофильные эритробласты, а затем оксифилъные эритробласты с большим содержанием гемоглобина. В некоторых первичных эритробластах ядро подвергается кариорексису и удаляется из клеток, в других ядро сохраняется. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером по сравнению с нормоцитами и поэтому получившие название мегалоцитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях (злокачественное малокровие). Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты; сначала они превращаются в полихроматофильные эритробласты, далее в нормобласты, из которых образуются вторичные эритроциты (нормоциты); размеры последних соответствуют эритроцитам (нормоцитам) взрослого человека. Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т.е. интраваскулярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудистых стенок, дифференцируется небольшое количество гранулоцитов - нейтрофилов и эозинофилов. Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.

Кроветворение в печени. Печень закладывается примерно на 3-4-й неделе эмбриональной жизни, а с 5-й недели она становится центром кроветворения. Кроветворение в печени происходит экстраваскулярно, по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени являются стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты. Процесс их образования повторяет описанные выше этапы образования вторичных эритроцитов. Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и эозинофильные. В цитоплазме бласта, становящейся более светлой и менее базофильной, появляется специфическая зернистость, после чего ядро приобретает неправильную форму. Кроме гранулоцитов, в печени формируются гигантские клетки - мегакариоциты. К концу внутриутробного периода кроветворение в печени прекращается.

Кроветворение в тимусе . Тимус закладывается в конце 1-го месяца внутриутробного развития, и на 1-8-й неделе его эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тимуса. Увеличивающееся число лимфоцитов тимуса дает начало Т-лимфоцитам, заселяющим Т-зоны периферических органов иммунопоэза.

Кроветворение в селезенке. Закладка селезенки происходит в конце 1-го месяца эмбриогенеза. Из вселяющихся сюда стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т.е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоцитов в селезенке достигает максимума на 5-м месяце эмбриогенеза. После этого в ней начинает преобладать лимфоцитопоэз.

Кроветворение в лимфатических узлах . Первые закладки лимфатических узлов человека появляются на 7-8-й неделе эмбрионального развития. Большинство лимфатических узлов развивается на 9-10-й неделе. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых на ранних стадиях дифференцируются эритроциты, гранулоциты и мегакариоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть лимфатических узлов. Появление единичных лимфоцитов происходит уже в течение 8-15-й недели развития, однако массовое "заселение" лимфатических узлов предшественниками Т - и В-лимфоцитов начинается с 16-й недели, когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются лимфобласты (большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка Т - и В-лимфоцитов происходит в Т - и В-зависимых зонах лимфатических узлов.

Кроветворение в костном мозге. Закладка костного мозга осуществляется на 2-м месяце эмбрионального развития. Первые гемопоэтические элементы появляются на 12-й неделе развития; в это время основную массу их составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно. Часть СКК сохраняется в костном мозге в недифференцированном состоянии, они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани. Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие гемопоэтические органы.

Постэмбриональный гемопоэз. Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови (клеточное обновление), который компенсирует физиологическое разрушение дифференцированных клеток.

Миелопоэз происходит в миелоидной ткани (textus myeloideus), расположенной в эпифизах трубчатых и полостях многих губчатых костей.

Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов.

В миелоидной ткани находятся стволовые клетки крови и соединительной ткани.

Предшественники лимфоцитов постепенно мигрируют и заселяют такие органы, как тимус, селезенка, лимфатические узлы и др.

Лимфопоэз происходит в лимфоидной ткани (textus lymphoideus), которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образование Т - и В-лимфоцитов и иммуноцитов (плазмоцитов и др.).

Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две основные клеточные линии - клетки ретикулярной ткани и гемопоэтические.

Ретикулярные, а также жировые, тучные и остеогенные клетки вместе с межклеточным веществом (матрикс) формируют микроокружение для

гемопоэтических элементов. Структуры микроокружения и гемопоэтические

клетки функционируют в неразрывной связи. Микроокружение оказывает

воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов).

Для миелоидной и всех разновидностей лимфоидной ткани характерно

наличие стромальных ретикулярных и гемопоэтических элементов,

образующих единое функциональное целое. В тимусе имеется сложная строма, представленная как соединительнотканными, так и ретикулоэпителиальными клетками. Эпителиальные клетки секретируют особые вещества - тимозины, оказывающие влияние на дифференцировку из СКК Т-лимфоцитов. В лимфатических узлах и селезенке специализированные ретикулярные клетки создают микроокружение, необходимое для пролиферации и дифференцировки в специальных Т - и В-зонах Т - и В-лимфоцитов и плазмоцитов.

СКК являются плюрипотентными (полипотентными) предшественниками всех клеток крови и относятся к самоподдерживающейся популяции клеток. Они редко делятся. Впервые представление о родоначальных клетках крови сформулировал в начале XX в.А. А. Максимов, который считал, что по своей морфологии они сходны с лимфоцитами. В настоящее время это представление нашло подтверждение и дальнейшее развитие в новейших экспериментальных исследованиях, проводимых главным образом на мышах. Выявление СКК стало возможным при применении метода колониеобразования.

Экспериментально (на мышах) показано, что при введении смертельно облученным животным (утратившим собственные кроветворные клетки) взвеси клеток красного костного мозга или фракции, обогащенной СКК, в селезенке появляются колонии клеток - потомков одной СКК. Пролиферативную активность СКК модулируют колониестимулирующие факторы (КСФ), интерлейкины (ИЛ-3 и др.). Каждая СКК в селезенке образует одну колонию и называется селезеночной колониеобразующей единицей (КОЕ-С).

Подсчет колоний позволяет судить о количестве стволовых клеток, находящихся во введенной взвеси клеток. Таким образом, было установлено, что у мышей на 105 клеток костного мозга приходится около 50 стволовых клеток, из селезенки - 3,5 клетки, среди лейкоцитов крови - 1,4 клетки.

Исследование очищенной фракции стволовых клеток с помощью электронного микроскопа позволяет считать, что по ультраструктуре они очень близки к малым темным лимфоцитам.

Исследование клеточного состава колоний позволило выявить две линии их дифференцировки. Одна линия дает начало мультипотентной клетке - родоначальнице гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза (КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке - родоначальнице лимфопоэза (КОЕ-Л). Из мультипотентных клеток дифференцируются олигопотентные (КОЕ-ГМ) и унипотентные родоначальные (прогениторные) клетки.

Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофильных гранулоцитов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегакариоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники (прекурсорные). В лимфопоэтическом ряду выделяют унипотентные клетки - предшественницы для В-лимфоцитов и соответственно для Т - лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Все приведенные выше стадии развития клеток составляют четыре основных компартмена: I - стволовые клетки крови (плюрипотентные, полипоте нтные); II - коммитированные родоначальные клетки (мультипотентные); III - коммитированные родоначальные (прогенторные) олигопотентные и унипотентные клетки; IV - клетки-предшественники (прекурсорные).

Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов - эритропоэтинов (для эритробластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лимфобластов), тромбопоэтинов (для мегакариобластов) и др.

Из каждой клетки-предшественницы происходит образование конкретного вида клеток. Созревание каждого вида клеток проходит ряд стадий, которые в совокупности образуют компартмент созревающих клеток (V).

Зрелые клетки представляют последний компартмент (VI). Все клетки V и VI компартментов морфологически можно идентифицировать.

Рис.18. Постэмбриональный гемопоэз, окраска азур 11-эозином (схема по НАЮриной). Стадии дифферениировки крови: I-IV - морфологически неидентифицируемые клетки; V - VI - морфологически идентифицируемые клетки. Б - базофил; БОЕ - бурстобраэуюшая единица; Г - гранулоциты; Гн - гранулоцит нейтрофильный; КОЕ - колониеобразующ! единицы; КОЕ-С - селезеночная колониеобразующая единица; Л - лимфоцит; Лек - mt фоидная стволовая клетка; М - моноцит; Мет - мегакариошгг; Эо - эозинофил; Э - эритроцит.

Рис. 19.

А - сегментоядерный нейтрофильный гранулоцит; Б - эозинофильный (ацидофильный) гранулоиит; В - базофильный фанулоцит: 1 - сегменты ядра; 2 - тельце полового хроматина; 3 - первичные (азурофильные) гранулоциты; 4 - вторичные (специфические) гранулы; 5 - зрелые специфические гранулы эозинофила, содержащие кристаллоиды; б - гранулы базофила различной величины и плотности; 7 - периферическая зона, не содержащая органелл; 8 - микроворсинки и псевдоподии.

Рис. 20. Эмбриональный гемоппэп (по А.А. Максимову).

А - кроветворение в стенке желточного мешка зародыша морской свинки: 1 - меэенхималыгые клетки; 2 - эндотелий стенки сосудов; 3 - первичные кровяные клетки-бласты; 4 - митотическос деление бластов; Б - поперечный срез кровяного островка зародыша кролика S"/j сут: I - полость сосуда; 2 - эндотелий; 3 - интраваскулярные кровяные клетки; 4 - делящаяся кровяная клетка; 5 - формирование первичной кровяной клетки; 6 - энтодерма; 7 - висцеральный листок мезодермы. В - развитие вторичны); эритробластов в сосуде зародыша кролика 13"Д сут: 1 - эндотелий; 2 - проэритробласты; 3 - базофильные эритробласты; 4 - полихроматофильные эритробласты; 5 - оксифильные эритробласты (нормобласты); 6 - оксифильный эритробласт с пикнотическим ядром; 7 - обособление ядра от оксифильного эритробласта (нормобласта); 8 - вытолкнутое ядро нормобласта; 9 - вторичный эритроцит. Г - кроветворение в костном мозге зародыша человека с длиной тела 77 мм. Экстра во скул я рное развитие клеток крови: 1 - эндотелий сосуда; 2 - бласты; 3 - нейтрофильные гранулоциты; 4 - эоэинофильный миелоцит.

Недифференцированные стволовые клетки, которые активно используются в медицине, представляют собой основу для развития клеток мозга, крови или любого другого органа. В современной фармакологии и косметологии этот биологический материал является ценным лекарством. Специалисты научились самостоятельно выращивать его для разных нужд: например, брать материал пуповинной крови, который широко применяют для восстановления и укрепления иммунной системы.

Что такое стволовые клетки

Если объяснять понятным языком, то СТ (стволовые недифференцированные клетки) представляют собой «прародителей» обычных клеток, которых насчитывается сотни тысяч видов. Обычные клетки отвечают за наше здоровье, обеспечивают исправную работу жизненно необходимых систем, заставляют наше сердце биться и работать мозг, они ответственны за пищеварение, красоту кожи и волос.

Где находятся стволовые клетки

Невзирая на внушительную цифру в 50 миллиардов штук, такой ценный материал у взрослого человека имеется в очень малых количествах. В основной массе клетки содержатся в костном мозге (мезенхимальные клетки и стромальные клетки) и подкожном жире, остальные равномерно распределены по всему телу.

По-другому сформирован эмбрион. Миллиарды стволовых клеток образуются после деления зиготы, которая является результатом слияния мужской и женской гамет. Зигота хранит в себе не только генетическую информацию, но и план последовательного развития. Однако в процессе эмбриогенеза ее единственной функцией является деление. Других задач, помимо передачи генетической памяти следующему поколению, нет. Клетки деления зиготы и являются стволовыми, точнее, эмбриональными.

Свойства

Взрослые клетки находятся в состоянии покоя, пока какая-либо из регулирующих систем не подаст сигнал об опасности. СТ активируются и по кровотоку добираются до пораженного места, где, считывая информацию с «соседок», превращаются в костные, печеночные, мышечные, нервные и другие составляющие, стимулируя внутренние резервы организма к восстановлению тканей.

Количество чудо-материала с возрастом уменьшается, притом начало сокращения приходится на совсем юный возраст – 20 лет. К 70 годам клеток остается очень мало, этот мизерный остаток поддерживает функционирование систем жизнеобеспечения организма. Помимо этого, «постаревшие» СТ частично теряют свою универсальность, они уже не могут перевоплощаться в любой тип ткани. Например, исчезает возможность превращения в нервные и кровяные составляющие.

По причине недостачи гемопоэтических составляющих, отвечающих за кровообразование, человек на старости лет покрывается морщинами и иссыхает из-за того, что кожа уже не получает достаточного питания. Эмбриональный материал самый способный в деле перевоплощения, значит, самый ценный. Такие СТ могут переродиться в любой вид ткани в организме, быстро восстановить иммунитет, стимулировать орган к регенерации.

Разновидности

Может показаться, что разновидностей стволовых клеток только две: эмбриональные и клетки, находящиеся в организме родившегося человека. Но это не так. Их классифицируют по полипотентности (способности перевоплощаться в другие виды тканей):

  • тотипотентные клетки;
  • плюрипотентные;
  • мультипотентные.

Благодаря последнему виду, как можно понять по названию, можно получить любые ткани в организме человека. Это не единственная классификация. Следующее различие будет заключаться в способе получения:

  • эмбриональные;
  • фетальные;
  • постнатальные.

Эмбриональные СТ берутся у эмбрионов, которым несколько дней. Фетальные клетки – это биологический материал, собранный из тканей эмбрионов после абортов. Их потентность по сравнению с трехдневными эмбрионами несколько ниже. Постнатальный вид – это биоматериал рожденного человека, добываемый, например, из пуповинной крови.

Выращивание стволовых клеток

Изучая свойства эмбриональных стволовых клеток, ученые пришли к выводу, что это материал, идеальный для трансплантации, так как им можно заменить любые ткани в организме человека. Эмбриональные составляющие получают из неиспользованной ткани эмбрионов, которых изначально выращивают для­ искусственного оплодотворения. Однако использование эмбрионов вызывает этические возражения, в результате ученые открыли новый тип стволовых клеток – индуцированные плюрипотентные.

Индуцированные плюрипотентные клетки (iPS) сняли этические проблемы без потери уникальных свойств, которыми обладают эмбриональные. Материалом для их выращивания служат не эмбрионы, а зрелые дифференцированные клетки пациента, которые извлекают из организма, а после проведения работ в специальной питательной среде, возвращают обратно, но уже с обновленными качествами.

Применение

Применение СТ очень широко. Определить области, где они употребляются, тяжело. Большинство ученых заявляет, что за лечением донорским биоматериалом будущее, однако дополнительные исследования следует продолжать проводить. На данный момент такие работы в большинстве своем успешные, они положительно отразились на лечении многих заболеваний. Взять, например, помощь в лечении рака, первые этапы которой уже дали надежду на выздоровление многим больным.

В медицине

Медицина не случайно возлагает огромные надежды на микротехнологии. Уже 20 лет врачи со всего мира используют мезенхимальные клетки костного мозга для лечения серьезных заболеваний, в том числе и злокачественных опухолей. Донором такого материала с набором антиген может стать близкий родственник больного, у которого подходящая группа крови. Ученые проводят и другие исследования в области лечения таких заболеваний, как цирроз печени, гепатит, патологии почек, диабет, инфаркт миокарда, артроз суставов, аутоиммунные болезни.

Лечение стволовыми клетками различных заболеваний

Спектр использования в лечении поражает. Из СТ делают многие лекарства, но особым преимуществом пользуются трансплантации. Не все пересадки заканчиваются хорошо из-за индивидуального отторжения материала, но лечение в большинстве случаев успешно. Оно используется против таких недугов:

  • острый лейкоз (острый лимфобластный, острый миелобластный, острый недифференцированный и другие виды острого лейкоза);
  • хронические лейкозы (хронический миелоидный, хронический лимфоцитарный и другие типы хронического лейкоза);
  • патологии пролиферации миелоидного ростка (острый миелофиброз, истинная полицитемия, идиопатический миелофиброз и другие);
  • фагоцитарные дисфункции;
  • наследственные нарушения метаболизма (болезнь Гарлера, болезнь Крабе, метахромная лейкодистрофия и другие);
  • наследственные расстройства работы иммунной системы (дефицит адгезии лимфоцитов, болезнь Костманна и другие);
  • лимфопролиферативные расстройства (лимфогранулематоз, неходжкинская лимфома);
  • другие наследственные расстройства.

В косметологии

Методы использования стволовых клеток нашли свое применение в сфере красоты. Косметологические фирмы все больше выпускают средств с такой биологической составляющей, которая может быть, как животной, так и человеческой. В составе косметики ее маркируют как Stem Cells. Ей приписывают чудодейственные свойства: омолаживание, отбеливание, регенерация, восстановление упругости и эластичности. Некоторые салоны даже предлагают инъекции стволовых клеток, однако введение препарата под кожу будет дорогостоящим.

Выбирая то или иное средство, не ведитесь на «удочку» красивых высказываний. Данный биоматериал не имеет никакого отношения к антиоксидантам, да и провести омоложение на десяток лет за одну неделю не получится. Учтите, что такие крема и сыворотки не будут стоить копейки, ведь получение стволовых клеток - это процесс непростой и трудоемкий. Например, японские ученые пытаются заставить улиток выделять больше слизи с содержанием заветного материала в лабораториях. Вскоре эта слизь станет основой новой косметики.

Видео: Стволовая клетка

Что такое клеточное омоложение? Сейчас модно быть красивым, стройным, излучать здоровье. Буквально несколько лет назад многие делали себе инъекции ботокса, сегодня новое направление в моде - стволовые клетки.

Подробное описание

Самые начальные клетки человеческого организма - это стволовые клетки. Они образуются сразу после зачатия в оплодотворенной яйцеклетке. Способность становиться любой клеткой - это основное их отличительное качество, так называемая полипотентность. Стволовые клетки зародыша, пока он растет, образуют его мозг, печень, желудок, сердце. Даже после рождения в организме ребенка их еще очень много, но с каждым годом их становится меньше, к 20 годам у человека практически отсутствуют стволовые клетки. Это научно доказанный факт. Но взрослому эти клетки тоже необходимы - они всегда заменяют пораженные в случае болезни какого-либо органа. На протяжении жизни органов с заболеваниями становится гораздо больше, а вот стволовые клетки уменьшаются, поэтому человек старится.

Немного истории

Прорыв в клеточной биологии произошел в 1998 году, когда в США ученые смогли выделить и клонировать линии эмбриональных стволовых клеток. После чего клеточная биология начала развиваться двумя путями:

1. Исследования с целью лечения тяжелых заболеваний.

2. В клинической практике процедура «ревитализации», т. е. омоложения организма инъекциями со стволовыми клетками в комплексном подходе с другими косметическими средствами.

Как происходит омоложение стволовыми клетками?

Стволовые клетки в косметических кабинетах

В России нет ограничений на применение эмбриональных стволовых клеток, поэтому клеточная терапия есть везде. Любой косметический салон упоминает в своем прайсе стволовые клетки. Но на практике это инъекции вытяжек из тканей эмбрионов, а они могут вызвать аллергические реакции и даже отторжение. А если же процедура проводится не в лаборатории, то есть риск, что клеточный материал может быть заражен.

Организм после применения процедуры введения стволовых клеток

В России новую технологию инъекций стволовых клеток активно испытывают на людях, на Западе же почти все эксперименты проводятся на животных. Стволовые клетки применяют все чаще, но какой будет эффект в будущем, еще не известно. Никто из ученых не смог дать прогноз на 10-20 лет вперед, потому что до конца область применения не изучена. Пока лечение стволовыми клетками считают альтернативной медициной. Что будет дальше, посмотрим.

Откуда берут стволовые клетки для омоложения

Сейчас в российских косметических центрах используют несколько видов стволовых клеток:

1. Эмбриональные стволовые клетки. Их получают из печени, поджелудочной железы, мозга абортированных человеческих зародышей, а затем культивируют в материале, по составу похожем на сыворотку крови. Весь полученный биоматериал после проверки на наличие вирусов помещается на хранение в жидкий азот.

2. Клетки пуповины новорожденных, костный мозг человека. Лечение пуповинными клетками особенно эффективно между членами одной семьи. В России есть банк стволовых клеток, в котором могут хранить пуповинную кровь. Пункцию костного мозга берут из подвздошных костей таза взрослого человека, после чего в лаборатории выращивают многомиллионную колонию.

3. Стволовые клетки, выделенные из жировой ткани.

Отсроченная реакция

Омоложение стволовыми клетками очень популярно.

В зависимости от выбранного метода, эффект от инъекций с клеточным материалом начинает появляться только через 1-3 месяца. И врачами почему-то не говорится о визуальных эффектах омоложения, они делают упор на улучшение самочувствия пациентов. Человек просто платит деньги, ему делают инъекцию, и он ждет изменений в течение трех месяцев. На практике больной не видит особых изменений в теле, лице, но ощущает, что организм ведет себя по-другому: темнеют волосы, появляется острота зрения, высыпается за 5-6 часов.

Некоторые пациенты отмечали, что уже через месяц стали читать без очков, исчезла общая усталость организма, стали пропадать морщины. Но те, кто рассказывали о таких изменениях уже через месяц, обычно делали комплексную процедуру омоложения, куда входила и мезотерапия с разглаживающими кожу инъекциями. Во всех случаях пациенты полностью доверялись клинике и врачам, о последствиях в будущем не думали. Сколько же стоит лечение стволовыми клетками?

Цена молодости

Все исследователи сошлись во мнении, что эффект от клеточных инъекций длится год, по истечении этого периода процедуру лучше повторить. Как говорят, если раз в 1,5 года обращаться к специалистам за клеточной инъекцией, то человек минимально сможет дожить до 150 лет. Справедливости ради стоит сказать, что омоложение стволовыми клетками - это очень дорогостоящая процедура, и делать ее 1 раз в 1,5 года очень затратно. Она обходится минимально в 17 тысяч евро, и это в том случае, если пациент молод, здоров и хочет просто немного затормозить процесс старения. Чем старше человек и чем больше у него болезней, тем дороже будет клеточная терапия, из-за того, что ему понадобится большее количество стволовых клеток.

Как это зависит от возраста

Если молодому организму для поддержания тонуса нужно примерно 20-35 миллионов клеток, то даме предпенсионного возраста с букетом болезней может быть недостаточным и 200 миллионов. По мнению специалистов, такая высокая цена оправдана, ведь выращивание клеток - процесс, требующий знаний и высоких технологий, а поэтому очень дорогой. Если вам предлагают такие процедуры по меньшей цене, то, скорее всего, эти препараты не имеют отношения к стволовым клеткам.

Есть, правда, государственные научные институты, там инъекции дешевле, но цена все равно стартует от 5 тыс. долларов США. В них пользуются стволовыми клетками костного мозга. Также в научных институтах используют и специальные факторы роста клеток - пептиды. Т. к. стволовые клетки при введении не могут найти поврежденный орган, указывают им путь белки, которые включают работу клетки организма, заставляя ее работать и искать средства самостоятельного выздоровления.

Результаты

Те пациенты, которые проходили курсы омоложения стволовыми клетками в научно-исследовательских институтах, отмечали, что уже через три недели пропадала усталость, повышался тонус организма, появлялась острота зрения, немного разглаживались морщины, у мужчин наблюдалось повышенное либидо и улучшение потенции. Как видно, результаты терапии по ревитализации организма и в косметических клиниках, и в научно-исследовательских институтах совпадают, хотя методики у них абсолютно разные.

В НИИ используют специальный белок-фактор роста клеток, в косметических кабинетах - дополнительную мезотерапию. Все эти дополнительные инъекции и процедуры, которые идут вместе с уколами стволовых клеток, по словам врачей, направлены на подстраховку клиник от отсутствия результата лечения стволовыми клетками, т. к. мезотерапия и дополнительный белок уже давно известны как отличный и эффективный способ разглаживания морщин.

Специалисты по клеточной терапии умалчивают о том, были ли отрицательные результаты или вообще не было результата. А такие случаи есть, пациенты не замечали никаких изменений даже по прошествии 3-6 месяцев, но ни клиника, ни НИИ никак не возмещают затраты, т. к. они не дают гарантии, что организм найдет в себе силы для восстановления.

Клеточные технологии. Их развитие в современной медицине

Несмотря на то что есть положительные результаты, врачи и научное сообщество крайне скептически относятся к такой терапии. Многие считают, что, да, открытие стволовых клеток и возможность их выращивания - это крупнейшее открытие в генетике со времени расшифровки структуры ДНК, но его не нужно использовать для всех подряд, а только для лечения очень серьезных заболеваний. Стволовые клетки содержат в себе зашифрованную информацию обо всем организме, значит, из них можно вырастить не только колонию клеток, но даже какой-то орган.

Поэтому использовать эту технологию для извлечения прибыли недопустимо, т. к. она не до конца изучена, проводятся клинические исследования и эксперименты. В настоящее время, кроме косметических процедур, медицинские клиники предлагают и лечение серьезных заболеваний инъекциями со стволовыми клетками. В прайсах написано, что сахарный диабет, онкологические заболевания возможно излечить инъекциями. Но подтвержденных данных о таких выздоровлениях нет. Наоборот, есть мнения специалистов, что омоложение стволовыми клетками вызывает рак.

Положительный эффект

При лечении ишемических болезней, гормональных и иммунных заболеваний, некоторых нарушений в развитии у детей прекрасно помогают стволовые клетки. В конце 2015 года американскими учеными была спасена жизнь юноши, который получил инфаркт миокарда. Взяли его же мезенхимальные стволовые клетки и ввели в организм. Есть положительные результаты клеточной терапии при лечении болезни Паркинсона, артрита, артроза, ревматизма. Конечно, учитывая такие научные достижения, инъекции стволовых клеток просто для омолаживания выглядят тускло.

Еще удручает то, что в бюджете не предусмотрена статья финансирования на развитие клеточной биологии и разработку методик лечения тяжелых заболеваний в ведущих НИИ и лабораториях России. Частные же клиники разработками не занимаются, они, как правило, работают с целью получения прибыли. Поэтому в России клеточные технологии ассоциируются только с омоложением, в отличие от Запада, где активно финансируются исследования клеточных технологий при лечении тяжелых заболеваний.

Клиники, предоставляющие услуги по трансплантации стволовых клеток

В России не так много таких центров, но основные это Центр акушерства, гинекологии и перинатологии РАМН, а точнее их лаборатория клинической иммунологии, руководитель Геннадий Сухих, Коммерческий институт стволовой клетки, также группа клиник «Пирамида», руководителем является Александр Тепляшин.

Стволовые клетки вместе с инъекциями пептидов (факторами роста) практикует Институт биологической медицины. Они же, по мнению специалистов этого института, и активизируют действие стволовых клеток.

«Корчак» - клиника косметологии и пластической хирургии - также имеет в качестве одного из направлений терапию стволовыми клетками. Здесь используют клеточный материал 3-хмесячного эмбриона свиньи, выращенного на питательной среде. За 3 дня до введения выращивание останавливают. Благодаря «живому» материалу, эффект омоложения и оздоровления достигается через пару месяцев и держится на протяжении 1-2 лет.

Инъекции плаценты в японской клинике Rhana также называют клеточной терапией, хотя это совсем другое. Они считают, что плацента способна омолаживать организм, но у нее узкий круг действия: снятие синдрома хронической усталости и повышение либидо и половой активности.

«Версаж» - также клиника, использующая в своей работе стволовые клетки. Но она специализируется на антивозрастных программах, включающих комплексное лечение.

В России активно применяют клеточную терапию в Новосибирском НИИ клинической иммунологии СО РАМ. Также для лечения заболеваний сердца и кардиопластики во Владивостоке, Иркутске, Томске и Новосибирске применяют лечение и восстановительные процедуры стволовыми клетками человека. Широкое распространение применение их в процедурах омоложения и в косметических получило в клиниках Санкт-Петербурга.

Серьезный выбор клиники

В России в настоящее время достаточно многие клиники предлагают омолаживающие процедуры стволовыми клетками. Но надо понимать, действительно ли это те самые клетки. Зачастую используют просто клеточный материал. Поэтому, прежде чем решиться на процедуру, нужно больше собрать информации о клинике, о ее специализации, есть ли у нее лаборатория, если нет таковой, то с какой они сотрудничают, насколько результативно они работают, постараться найти пациентов клиники, которые уже получали эти процедуры.

Далее уже в самой клинике попросить, чтобы предоставили «Клеточный паспорт», удостоверяющий, что в стволовых клетках нет вирусов. Перед введением клеток вам обязательно должны предложить пройти обследование. Даже если процедура пройдет удачно, эффект вы сможете увидеть только через 1-3 месяца и не на лице или теле, а в общем состоянии организма. Почувствуете бодрость, прилив сил. Но этого может и не произойти, т. к. обычно клиники не берут на себя никакой ответственности за последствия омоложения стволовыми клетками. Гарантии ни клиники, ни НИИ не предоставляют.

Эмбриональные стволовые клетки (ЭСК) являются классическими стволовыми клетками, поскольку они способны к бесконечному самообновлению и имеют мультипотентный дифференцировочный потенциал. Их источником обычно являются первичные половые клетки, внутренняя клеточная масса бластоцисты или отдельные бластомеры зародышей 8-клеточной стадии, а также клетки морулы более поздних стадий.

Эмбриональным стволовым клеткам свойственна самая большая из всех категорий стволовых клеток теломеразная активность, которая обеспечивает им способность к беспрецедентному самообновлению (больше 230 клеточных удвоений в пробирке; тогда как дифференцированные клетки делятся примерно 50 раз в течение жизни).

В лабораторных условиях эти клетки способны дифференцироваться в различные типы как эмбриональных клеток, так и клеток взрослого организма. Они обладают нормальным кариотипом и в контролируемых условиях могут быть клонированы и многократно воспроизведены без изменения их свойств.

Исследования показали, что трансплантация ЭСК эффективна для лечения патологий, в основе которых лежит нарушение функций или гибель специализированных типов клеток. Так, болезнь Паркинсона, вызываемая прогрессивной дегенерацией и утратой дофамин-продуцирующих нейронов определенной зоны головного мозга, может успешно лечиться при помощи интрацеребральной инъекции эмбриональных нейронов. Также при сахарном диабете I типа (вызываемом нарушением работы островковых клеток поджелудочной железы) имплантация в печень островковых клеток поджелудочной железы приводит к нормализации уровня глюкозы. С помощью трансплантации ЭСК поддаются лечению и другие трудноизлечимые заболевания - например, мышечная дистрофия Дюшенна, дегенерация клеток Пуркинье. Трансплантация ЭСК эффективна и в случае травм - в частности, травм спинного мозга.

На первый взгляд, ЭСК наиболее подходят для использования в репаративной медицине. Однако хорошо известно, что при трансплантации в организм ЭСК способны порождать новообразования - тератомы. Поэтому перед применением ЭСК в клеточной терапии необходимо провести их дифференцировку в нужном направлении и убрать из популяции ЭСК клетки, потенциально способные привести к образованию тератом. Еще одна проблема, которую приходится преодолевать при использовании ЭСК - необходимость так или иначе обеспечить их гистосовместимость с организмом реципиента. Наконец, трудно оставить без внимания этическую сторону использования клеток эмбрионов человека для получения ЭСК.

Стволовые клетки взрослого организма

Стволовые клетки присутствуют во многих органах и тканях взрослых млекопитающих: в костном мозге, крови, скелетных мышцах, зубной пульпе, печени, коже, желудочно-кишечном тракте, поджелудочной железе. Большинство этих клеток слабо охарактеризованы. По сравнению с ЭСК, стволовые клетки взрослого организма имеют меньшую способность к самоподдержанию, и хотя они дифференцируются во множество клеточных линий, но не обладают мультипотентностью. Теломеразная активность и, соответственно, пролиферативный потенциал у стволовых клеток взрослого организма высоки, но все же ниже, чем у ЭСК.

Предполагается, что наименее дифференцированные стволовые клетки находятся в организме в состоянии покоя. В случае необходимости запускается необратимый процесс их поэтапного созревания в определенном направлении дифференцировки.

Стволовые кроветворные клетки

Из стволовых клеток взрослого организма наиболее хорошо охарактеризованы стволовые кроветворные клетки (СКК). Это клетки мезодермального происхождения. Они дают начало всем видам кроветворных и лимфоидных клеток. В норме кроветворение в организме, по-видимому, поддерживается в основном за счет постоянно сменяемого небольшого числа относительно короткоживущих клеточных клонов. In vitro стволовые кроветворные клетки при определенных условиях способны к самоподдержанию и могут быть простимулированы к дифференцировке в направлении тех же клеточных линий, что и in vivo.

Уже несколько десятков лет ткани костного мозга успешно применяют для лечения различных заболеваний крови (например, лейкозов), а также радиационных поражений организма, восстанавливая с их помощью нарушенные функции кроветворных и лимфоидных органов. Для этого обычно проводится трансплантация костного мозга; в последнее время используется и пуповинная кровь. Популяция СКК служит потенциальным источником для предшественников эндотелиальных клеток, что делает возможным применение СКК для лечения ишемической болезни и инфаркта миокарда.

Стволовые клетки нервной ткани

Еще одна категория клеток, которая в настоящее время интенсивно изучается, - это стволовые клетки нервной ткани (СКНТ). Эти клетки первоначально были найдены в субвентрикулярной зоне эмбрионального головного мозга. До недавнего времени считалось, что головной мозг взрослого организма не содержит стволовых клеток. Однако эксперименты на грызунах и приматах, а также клинические испытания с привлечением волонтеров показали, что СКНТ продолжают присутствовать и во взрослом головном мозге. In vitro стволовые клетки нервной ткани могут быть «нацелены» как на пролиферацию, так и на дифференцировку в различные типы нейронов и клетки глии (опорные и защитные клетки нервной ткани). Как эмбриональные СКНТ, так и СКНТ взрослого организма, трансплантированные в головной мозг, могут генерировать нейрональные и глиальные клетки. Хотя неизвестно, какова продолжительность самообновления стволовых клеток нервной ткани, в лабораторных условиях их можно культивировать в течение длительного периода.

Стромальные клетки-предшественники и мезенхимальные стволовые клетки

Стромальные клетки-предшественники и мезенхимальные стволовые клетки (МСК) были открыты около 30 лет назад. Это своего рода универсальные клетки, которые содержатся в костном мозге, в своеобразном депо, где они хранятся «про запас». Они способны к интенсивной пролиферации, могут дифференцироваться во многие клеточные типы и трансплантабельны in vivo. При необходимости они поступают в поврежденный орган или ткань и превращаются в нужные специализированные клетки.

In vitro численность мезенхимальных стволовых клеток может увеличиваться в 100000 раз в течение 6–8 недель, при этом они остаются в недифференцированном состоянии. Каждая колония стромальных клеток является клоном, то есть образуется путем пролиферации одной клетки, которая была названа колонеобразующей клеткой фибробластов (КОК-Ф). У животных и человека в физиологических условиях величина эффективности клонирования КОК-Ф колоний остается относительно стабильной и является важным параметром скелетного статуса, что указывает на роль КОК-Ф в патофизиологии дефектов кости и костного мозга.

Получено много данных о том, что в противоположность кроветворным стволовым клеткам костномозговые КОК-Ф представляют собой местную популяцию, то есть не мигрируют из одной части организма в другую и, соответственно, не приживаются при инфузии. Жаль, если эта проблема не найдет своего решения - ведь для лечения таких распространенных костных заболеваний, как остеопороз или незавершенный остеогенез, когда нельзя трансплантировать генетически измененные стромальные клетки во все области поражений, возможность их доставки через циркулирующую систему выглядит очень желательной. В целом же, вопрос о возможности миграции стромальных клеток, а также о факторах, благоприятствующих ей, остается открытым.

Стромальные клетки-предшественники выполняют также очень важную роль, обеспечивая специфическое микроокружение, необходимое для пролиферации и дифференцировки гемопоэтических и иммунокомпетентных клеток на территории кроветворных и лимфоидных органов. Таким образом, «корректировка» нарушений микроокружения в принципе может проводиться именно через эту категорию клеток.

Значительный интерес для клинического применения представляют мезенхимальные стволовые клетки, которые входят в состав популяции стромальных клеток-предшественников (или колонеобразующих клеток стромальных фибробластов - КОК-Ф) костного мозга. Их использование началось с успешного лечения несросшихся костных переломов размноженными в культурах аутологическими стромальными клетками костного мозга. До сих пор репарация костной и хрящевой ткани остается одной из наиболее важных областей применения МСК. С помощью трансплантации этих клеток удалось добиться успехов в лечении тяжелого контингента больных с ложными суставами, несросшимися переломами и хроническим остеомиелитом, остеоартритом. Принципы применяемых при этом биотехнологичеких методов являются универсальными и могут использоваться также для лечения больных с дефектами костной ткани различной локализации (травматология, ортопедия, нейрохирургия, черепно-лицевая хирургия, стоматология-имплантология).

Как возможные носители рекомбинантной ДНК, мезенхимальные стволовые клетки также представляют собой весьма привлекательный объект для генной инженерии, для лечения ряда дегенеративных и наследственных заболеваний.

Клетки костного мозга и МСК могут быть использованы и в терапии ишемической болезни сердца, поражений конечностей и головного мозга, а также для лечения инфарктов миокарда. Это еще одна область применения МСК, которая находится на стадии предклинических испытаний. В лабораторных исследованиях, проведенных на животных, и при лечении инфарктов миокарда у людей, костномозговые СК трансплантировались в область инфаркта либо прямой инъекцией, либо посредством их внутрисосудистого введения. В результате удалось достичь реального уменьшения зоны инфаркта. Однако прежде, чем терапия СК взрослого организма будет осуществляться в полном объеме, необходимо дополнительное проведение клинических испытаний и хорошо спланированных клинических исследований, которые позволят сделать окончательное заключение о безопасности и эффективности предложенного метода.

Особый интерес представляют первые данные, показывающие возможность использования костномозговых стромальных клеток при репарационных процессах в коже. В частности, исследования показывают, что после внутрикожного введения стромальных клеток костного мозга регенерация поврежденной кожной ткани шла более упорядоченно с меньшими нежелательными последствиями, к которым относится образование рубца.

Надо отметить, что для успеха лечения ключевым моментом остается и правильный выбор метода трансплантации СК. В ряде лабораторий сейчас работают также над улучшением способов очистки популяций СК и обогащения их ранними предшественниками, чтобы создать условия для более эффективной клеточной терапии. Согласно общему мнению, требуются также дальнейшие лабораторные исследования для изучения феномена пластичности стволовых клеток, а также многих других аспектов.

Как видим, со стволовыми клетками связано много надежд и ожиданий. Возможно, уже не за горами время, когда открытые свойства стволовых клеток и те, которые находятся сегодня для нас пока за семью печатями, создадут новые перспективы для лечения ряда серьезных заболеваний.

Чем уникальны стволовые клетки

В процессе развития эмбриона человека происходит ряд ключевых событий: за оплодотворением яйцеклетки следует т. н. дробление, суть которого сводится к быстрому накоплению тотипотентного (т. е. способного к созданию целого организма, повторению эмбриогенеза из одной клетки) клеточного материала.

Примерно после 12 клеточных делений этот процесс резко замедляется, и нарушается синхронность делений. Начинается транскрипция генома зародыша, то есть реализация наследственной информации. Это изменение, известное как переход к средней бластуле, по всей вероятности, отражает истощение определенного компонента материнского происхождения, который используется для связывания с вновь синтезируемой ДНК.

Транскрипция завершается тем, что в цитоплазме этих уникальных первичных клеток накапливается информация в форме матричных РНК, которая определяет дальнейшее внутриутробное развитие. Реализация информации осуществляется в конечном итоге путем миграции, специализации клеток и формирования основных зародышевых листков - эктодермы (источник клеток кожи, ЦНС и пр.), мезодермы (источник клеток мышц, костей, крови и пр.) и энтодермы (источник клеток желез, ЖКТ и пр.), что происходит в процессе т. н. гаструляции.

Начиная с этого момента, в каждой ткани сохраняются ограниченные количества неспециализированных клеток. Такие клетки называют стволовыми клетками или клетками-предшественниками, их основная функция - управление процессом создания организма в целом, перенос и реализация наследственных программ.

Стволовые клетки - это недифференцированные, незрелые клетки эмбриона, плода, новорожденного или взрослого организма, способные к самообновлению и дифференцировке в различные типы тканей и органов. В организме взрослого человека они исполняют роль «машин регенерации», их цель - поддержание морфофункционального постоянства ткани, они имеют меньший потенциал, чем в самом начале эмбриогенеза, но способны эффективно замещать поврежденные элементы специализированной ткани в необходимом объеме. Практически для каждого типа тканей существуют свои собственные клетки-предшественники (предифференцированные клетки). Истинные плюрипотентные (способные к дифференцировке в клетки разных тканей разных зародышевых листков) клетки в нормальных условиях в организме встречаются крайне редко, их выделение из взрослого организма в настоящий момент без применения методик клонирования не представляется возможным.

В процессе старения количество изначально заложенной регенерационной информации в клетках стремительно снижается, уменьшается количество самих стволовых клеток. Истощенная репарационная система становится малоэффективной - возникает ряд заболеваний, ассоциированных со старением: увядает кожа, снижается эластичность хрящей, плотность костей, повреждается эндотелий сосудов - ухудшается кровоснабжение, постепенно все ткани организма попадают в условия сниженного снабжения кислородом, ускоряются процессы замещения функционально активных тканей на неполноценные соединительные стромальные ткани. Воздействие ряда инфекций, реализация врожденных, наследственных и мультифакториальных заболеваний, хронические интоксикации (в том числе, алкогольные), травмы также приводят к подобным последствиям - организм оказывается неспособным справиться с нарастающим потоком проблем и постепенно погибает.

Успех трансплантации органов и тканей человека открыл новую эру в медицине - продемонстрирована принципиальная возможность замены дефектных тканей и органов пациента на донорские, здоровые. К сожалению, трансплантация органов остается малодоступной, сопровождается сложными оперативными вмешательствами и требует постоянной иммуносупрессии в большом объеме.

Ученые всего мира интенсивно работают над проблемой лабораторного получения клеток-предшественников с целью их последующей имплантации для замещения погибших тканей, что, по мнению медицинского научного сообщества, может послужить альтернативой трансплантации органов. В 1998 году американским ученым Джону Герхарту и Джеймсу Томпсону впервые в лабораторных условиях удалось получить и нарастить культуры эмбриональных стволовых клеток и половых прогениторных клеток, способных полностью повторить эмбриогенез. Таким образом, у человечества появилась реальная возможность в лабораторных условиях выращивать необходимое количество «запчастей» для организма и тем самым корригировать последствия ряда хронических и острых заболеваний. Дм. Шаменков, к.м.н.

Пластичность стволовых клеток

До недавнего времени считалось, что органоспецифические стволовые клетки могут дифференцироваться только в клетки соответствующих органов. Однако, по ряду данных, это не так: существуют органоспецифические стволовые клетки взрослых животных, которые способны к дифференцировке в клетки органов, отличных от органов происхождения стволовых клеток, даже если они онтогенетически принадлежат к разным зародышевым листкам. Это свойство стволовых клеток получило название пластичности. Так, существует много данных, что МСК костного мозга обладают широкой пластичностью и способны давать начало некоторым элементам нервной ткани, кардиомиоцитам, эпителиальным клеткам, гепатоцитам.

Альтернативная гипотеза феномена пластичности заключается в том, что мультипотентные стволовые клетки и после рождения присутствуют в различных органах и стимулируются к специфической пролиферации и дифференцировке в ответ на локальные факторы, представленные тем органом, в который рекрутированы стволовые клетки. Также есть предположение, что стволовые клетки рекрутируются в поврежденные органы и уже там реализуют свои свойства пластичности, т. е. дифференцируются в нужном для их восстановления направлении.

Вместе с тем нельзя не отметить, что ряд ученых подвергает сомнению саму концепцию пластичности стволовых клеток, указывая на то, что соответствующие эксперименты были выполнены на чистых популяциях тканевоспецифических стволовых клеток.

Словарь

Диплоидная клетка (от греч. diplуos - двойной и еidos - вид) - клетка с двумя гомологичными (подобными) наборами хромосом. Диплоидны все зиготы и, как правило, клетки большинства тканей животных и растений, кроме половых клеток.

Дифференцировочный потенциал - способность к превращению в разнообразные клетки организма.

Кариотип (от греч. kаryon - орех и typos - отпечаток, форма) - типичная для вида совокупность морфологических типов хромосом (форма, размер, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе. Для определения кариотипа используют микрофотографию хромосом делящихся клеток.

Мезодерма - средний зародышевый листок у большинства многоклеточных животных и человека. Из него развиваются органы крово– и лимфообразования, органы выделения, половые органы, мышцы, хрящи, кости и др.

Мультипотентность - способность к дифференцировке в пределах одного зародышевого листка.

Плюрипотентность - способность к дифференцировке разных тканей разных зародышевых листков.

Полипотентность - способность генома стволовых клеток взрослого организма изменять профиль дифференцеровки при трансплантации в новую ткань реципиента.

Строма (от греч. stroma - подстилка) - основная опорная структура органов, тканей и клеток живых организмов и растений.

Стромальные клетки - клетки соединительнотканной опорной структуры органа.

Теломеры - специализированные ДНК-белковые структуры, которые находятся на концах линейных хромосом эукариот.

Теломеразная активность - активность теломеразы, фермента, который с помощью особого механизма синтезирует теломерную ДНК, и тем самым влияет на рост клеток. Высокая активность теломеразы свойственна половым и стволовым клеткам. Как только стволовые клетки начинают дифференцироваться, теломеразная активность падает, а их теломеры начинают укорачиваться.

Тератома (от греч. tеratos - урод) - доброкачественная опухоль, вызванная нарушением эмбрионального развития. Как правило, состоит из мышечной, нервной и др. тканей.

Тотипотентность - способность к созданию целого организма, повторению эмбриогенеза из одной клетки.

Фибробласты (от лат. fibra - волокно и blastуs - росток) - основная клеточная форма соединительной ткани животных и человека. Фибробласты образуют волокна и основное вещество этой ткани. При травме кожи они участвуют в закрытии ран и образовании рубцов.

Эктодерма - наружный зародышевый листок многоклеточных животных. Из эктодермы образуются кожный эпителий, нервная система, органы чувств, передний и задний отделы кишечника и т. д.

Энтодерма - внутренний зародышевый листок многоклеточных животных. Из энтодермы образуются эпителий кишечника и связанные с ним железы: поджелудочная железа, печень, легкие и т. д.



Понравилась статья? Поделитесь ей
Наверх