Какие из перечисленных вакцин относятся к живым. Какими бывают вакцины

1 . По назначению вакцины делятся на профилактические и лечебные .

По характеру микроорганизмов, из которых они созданы, вакии­ны бывают :

Бактериальные;

Вирусные;

Риккетсиозные.

Существуют моно- и поливакцины - приготовленные соответст­венно из одного или нескольких возбудителей.

По способу приготовления различают вакцины :

Комбинированные.

Для повышения иммуногенности к вакцинам иногда добавляют различного рода адъюванты (алюмо-калиевые квасцы, гидроксид или фосфат алюминия, масляную эмульсию), создающие депо антигенов или стимулирующие фагоцитоз и таким обра­зом повышающие чужеродность антигена для реципиента.

2. Живые вакцины содержат живые аттенуированные штаммы возбудителей с резко сниженной вирулентностью или штаммы непатогенных для человека микроорганизмов, близкородственных возбудителю в антигенном отношении (дивергентные штаммы). К ним относят и рекомбинантные (генно-инженерные) вакци­ны, содержащие векторные штаммы непатогенных бакте­рий/вирусов (в них методами генной инженерии введены ге­ны, ответственные за синтез протективных антигенов тех или иных возбудителей).

Примерами генно-инженерных вакцин могут служить вакцина против гепатита В - Энджерикс В и вакцина против коревой краснухи - Ре-комбивакс НВ.

Поскольку живые вакцины содержат штаммы микроорганиз­мов-возбудителей с резко сниженной вирулентностью, то, по существу, они воспроизводят в организме человека легко проте­кающую инфекцию, но не инфекционную болезнь, в ходе которой формируются и активируются те же механизмы защиты, что и при развитии постинфекционного иммунитета. В связи с этим живые вакцины, как правило, создают достаточно на­пряженный и длительный иммунитет.

С другой стороны, по этой же причине применение живых вакцин на фоне иммунодефицитных состояний (особенно у детей) может вызвать тяжелые инфекционные осложнения.

Например, заболевание, определяемое клиницистами как БЦЖит после введения вакцины БЦЖ.

Живые вакиины применяют для профилактики :

Туберкулеза;

Особо опасных инфекций (чумы, сибирской язвы, туляремии, бруцеллеза);

Гриппа, кори, бешенства (антирабическая);

Паротита, оспы, полиомиелита (вакцина Сейбина-Смородинцева-Чумакова);

Желтой лихорадки, коревой краснухи;

Ку-лихорадки.

3. Убитые вакцины содержат убитые культуры возбудителей (цельноклеточные, цельновирионные). Их готовят из микроор­ганизмов, инактивированных прогреванием (гретые), ультрафио­летовыми лучами, химическими веществами (формалином - формоловые, фенолом - карболовые, спиртом - спиртовые и др.) в условиях, исключающих денатурацию антигенов. Иммунногенность убитых вакцин ниже, чем у живых. Поэтому вызываемый ими иммунитет кратковременный и сравнительно менее напряженный. Убитые вакиины применяют для профилактики :


Коклюша, лептоспироза,

Брюшного тифа, паратифа А и В,

Холеры, клещевого энцефалита,

Полиомиелита {вакцина Солка), гепатита А.

К убитым вакцинам относят и химические вакцины, содержащие определенные химические компоненты возбудителей, обла­дающие иммуногенностью (субклеточные, субвирионные). Поскольку они содержат только отдельные компоненты бактери­альных клеток или вирионов, непосредственно обладающих иммуногенностью, то химические вакцины менее реактогенны и могут использоваться даже у детей дошкольного возраста. Известны еще и антиидиотипические вакцины, которые также относят к убитым вакцинам. Это антитела к тому или иному идиотипу антител человека (анти-антитела). Их активный центр аналогичен детерминантной группе антигена, вызвавше­го образование соответствующего идиотипа.

4. К комбинированным вакцинам относят искусственные вакцины.

Они представляют собой препараты, состоящие из микробного антигенного компонента (обычно выделенного и очищенного или искусственно синтезированного антигена возбудителя) и синтетических полиионов (полиакриловая кислота и др.) - мощных стимуляторов иммунного ответа. Содержанием этих веществ они и отличаются от химических убитых вакцин. Первая такая отечественная вакцина - гриппозная полимер-субъединичная ("Гриппол"), разработанная в Институте иммуно­логии, уже внедрена в практику российского здравоохранения. Для специфической профилактики инфекционных заболева­ний, возбудители которых продуцируют экзотоксин, применя­ют анатоксины.

Анатоксин - это экзотоксин, лишенный токсических свойств, но сохранивший антигенные свойства. В отличие от вакцин, при использовании которых у человека формируется антимик­робный иммунитет, при введении анатоксинов формируется антитоксический иммунитет, так как они индуцируют синтез антитоксических антител - антитоксинов.

В настоящее время применяются :

Дифтерийный;

Столбнячный;

Ботулинический;

Стафилококковый анатоксины;

Холероген-анатоксин.

Примерами ассоциированных вак­цин являются:

- вакцина АКДС (адсорбированная коклюшно-дифтерийно-столбнячная вакцина), в которой коклюшный компонент представлен убитой коклюшной вакциной, а дифтерийный и столбняч­ный - соответствующими анатоксинами;

- вакцина ТАВТе, содержащая О-антигены брюшнотифозных, паратифозных А- и В-бактерий и столбнячный анатоксин; брюшнотифозная химическая вакцина с секстаанатоксином (смесь анатоксинов клостридий ботулизма типов А, В, Е, клостридий столбняка, клостридий перфрингенс типа А и эдематиенс - 2 последних микроорганизма - наиболее частые воз­будители газовой гангрены) и др.

В то же время АДС (дифтерийно-столбнячный анатоксин), часто используемый вместо АКДС при вакцинации детей, яв­ляется просто комбинированным препаратом, а не ассоцииро­ванной вакциной, так как содержит только анатоксины.

1. По характеру антигена.

Бактериальные вакцины

Вирусные вакцины

2.По способам приготовления.

Живые вакцины

Инактивированные вакцины (убитые, неживые)

Молекулярные (анатоксины)

Генно-инженерные

Химические

3. По наличию полного или неполного набора антигенов.

Корпускулярные

Компонентные

4. По способности вырабатывать невосприимчивость к одному или нескольким возбудителям.

Моновакцины

Ассоциированные вакцины.

Живые вакцины – препараты в которых в качестве действующего начала используются:

Аттенуированные, т.е. ослабленные (потерявшие свою патогенность) штаммы микроорганизмов;

Так называемые дивергентные штаммы непатогенных микроорганизмов, имеющих родственные антигены с антигенами патогенных микроорганизмов;

Рекомбинантные штаммы микроорганизмов, полученные генно-инженерным способом (векторные вакцины).

Иммунизация живой вакциной приводит к развитию вакцинального процесса, протекающего у большинства привитых без видимых клинических проявлений. Основное достоинство этого типа вакцин – полностью сохраненный набор антигенов возбудителя, что обеспечивает развитие длительной невосприимчивости даже после однократной иммунизации. Однако есть и ряд недостатков. Главный – риск развития манифестной инфекции в результате снижения аттенуации вакцинного штамма (напр., живая полиомиелитная вакцина в редких случаях может вызвать полиомиелит вплоть до развития поражения спинного мозга и паралича).

Аттенуированные вакцины изготавливают из микроорганизмов с пониженной патогенностью, но выраженной иммуногенностью. Введение их в организм имитирует инфекционный процесс.

Дивергентные вакцины – в качестве вакцинных штаммов используются микроорганизмы, находящиеся в близком родстве с возбудителями инфекционных заболеваний. Антигены таких микроорганизмов индуцируют иммунный ответ, перекрестно направленный против антигенов возбудителя.

Рекомбинантные (векторные) вакцины – создаются на основе использования непатогенных микроорганизмов со встроенными в них генами специфических антигенов патогенных микроорганизмов. В результате этого введенный в организм живой непатогенный рекомбинантный штамм вырабатывает антиген патогенного микроорганизма, обеспечивающий формирование специфического иммунитета. Т.о. рекомбинантный штамм выполняет роль вектора (проводника) специфического антигена. В качестве векторов используют, например, ДНК-содержащий вирус осповакцины, непатогенные сальмонеллы, в геном которых введены гены HBs – антигена вируса гепатита В, антигены вируса клещевого энцефалита и др.

Бактериальные вакцины

Наименование вакцины

Штамм

Туберкулезная, БЦЖ (из микобактерий бычьего типа)

Атт., Див.

А.Кальмет, К.Герен

Чумная, EV

Г.Жирар, Ж.Робик

Туляремийная

Б.Я.Эльберт, Н.А.Гайский

Сибиреязвенная, СТИ

Л.А.Тамарин, Р.А.Салтыков

Бруцеллезная

П.А.Вершилова

Ку-лихорадки, М-44

В.А.Гениг, П.Ф.Здродовский

Вирусные

вакцины

Оспенная (вирус оспы коров)

Э.Дженнер

А.А.Смородинцев, М.П.Чумаков

Желтой лихорадки

Гриппозная

В.М.Жданов

Паротитная

А.А.Смородинцев, Н.С.Клячко

Венесуэльского энцефаломиелита

В.А.Андреев, А.А.Воробьев

Полиомиелитная

А.Сэбин, М.П.Чумаков, А.А.Смородинцев

Примечание: Атт. – аттенуированная, Див. – дивергентная.

Инактивированные вакцины – приготовлены из убитых микробных тел либо метаболитов, а также отдельных антигенов, полученных биосинтетическим или химическим путем. Эти вакцины проявляют меньшую (по сравнению с живыми) иммуногенность, что ведет к необходимости многократной иммунизации, однако они лишены балластных веществ, что уменьшает частоту побочных эффектов.

Корпускулярные (цельноклеточные, цельновирионные) вакцины – содержат полный набор антигенов, приготовлены из убитых вирулентных микроорганизмов (бактерий или вирусов) путем термической обработки, либо воздействием химических агентов (формалин, ацетон). Напр., противочумная (бактериальная), антирабическая (вирусная).

Компонентные (субъединичные)вакцины – состоят из отдельных антигенных компонентов, способных обеспечить развитие иммунного ответа. Для выделения таких иммуногенных компонентов используют различные физико-химические методы, поэтому их ещё называют химические вакцины. Напр., субъединичные вакцины против пневмококков (на основе полисахаридов капсул), брюшного тифа (на основе О-, Н-, Vi - антигенов), сибирской язвы (полисахариды и полипептиды капсул), гриппа (вирусные нейраминидаза и гемагглютинин). Для придания этим вакцинам более высокой иммуногенности их сочетают с адъювантами (сорбируют на гидроксиде аллюминия).

Генно-инженерные вакцины содержат антигены возбудителей, полученные с использованием методов генной инженерии, и включают только высокоиммуногенные компоненты, способствующие формированию иммунного ответа.

Пути создания генно-инженерных вакцин:

1. Внесение генов вирулентности в авирулентные или слабовирулентные микроорганизмы (см. векторные вакцины).

2. Внесение генов вирулентности в неродственные микроорганизмы с последующим выделением антигенов и их использованием в качестве иммуногена. Напр., для иммунопрофилактики гепатита В предложена вакцина, представляющая собой HBsAg вируса. Его получают из дрожжевых клеток, в которые введен вирусный ген (в форме плазмиды), кодирующий синтез HBsAg. Препарат очищают от дрожжевых белков и используют для иммунизации.

3. Искусственное удаление генов вирулентности и использование модифицированных организмов в виде корпускулярных вакцин. Селективное удаление генов вирулентности открывает широкие перспективы для получения стойко аттенуированных штаммов шигелл, токсигенных кишечных палочек, возбудителей брюшного тифа, холеры и др. бактерий. Возникает возможность для создания поливалентных вакцин для профилактики кишечных инфекций.

Молекулярные вакцины – это препараты в которых антиген представлен метаболитами патогенных микроорганизмов, чаще всего молекулярных бактериальных экзотоксинов – анатоксинов.

Анатоксины – токсины обезвреженные формальдегидом (0,4%) при 37-40 ºС в течение 4 нед., полностью утратившие токсичность, но сохранившие антигенность и иммуногенность токсинов и используемые для профилактики токсинемических инфекций (дифтерии, столбняка, ботулизма, газовой гангрены, стафилококковых инфекций и др.). Обычный источник токсинов –промышленно култивируемые естественные штаммы-продуценты. Анатоксины выпускаю в форме моно- (дифтерийный, столбнячный, стафилококковый) и ассоциированных (дифтерийно-столбнячный, ботулинический трианатоксин) препаратов.

Конъюгированные вакцины – комплексы бактериальных полисахаридов и токсинов (напр., сочетание антигенов Haemophilus influenzae и дифтерийного анатоксина). Принимаются попытки создать смешанные бесклеточные вакцины, включающие анатоксины и некоторые другие факторы патогенности, напр., адгезины (напр., ацеллюлярная коклюшно-дифтерийно-столбнячная вакцина).

Моновакцины – вакцины применяемые для создания невосприимчивости к одному возбудителю (моновалентные препараты).

Ассоциированные препараты – для одномоментного создания множественной невосприимчивости, в этих препаратах совмещаются антигены нескольких микроорганизмов (как правило убитых). Наиболее часто применяются: адсорбированная коклюшно-дифтерийно-столбнячная вакцина (АКДС-вакцина), тетравакцина (вакцина против брюшного тифа, паратифов А и В, столбнячный анатоксин), АДС-вакцина (дифтерийно-столбнячный анатоксин).

Методы введения вакцин.

Вакцинные препараты вводят внутрь, подкожно, внутрикожно, парентерально, интраназально и ингаляционно. Способ введения определяют свойства препарата. Живые вакцины можно вводить накожно (скарификацией), интраназально или перорально; анатоксины вводят подкожно, а неживые корпускулярные вакцины – парентерально.

Внутримышечно вводят (после тщательного перемешивания) сорбированные вакцины (АКДС, АДС, АДС-М, ВГВ, ИПВ). Верхний наружный квадрант ягодичной мышцы использоваться не должен, так как у 5% детей там проходит нервный ствол, а ягодицы грудничка бедны мышцами, так что вакцина может попасть в жировую клетчатку (риск медленно рассасывающейся гранулемы). Место инъекции - передненаружная область бедра (латеральная часть четырехглавой мышцы) или, у детей старше 5-7 лет, дельтовидная мыш­ца. Игла вводится отвесно (под углом 90°). После укола следует оттянуть поршень шприца и вводить вакцину только при отсутствии крови, в противном случае следует повторить укол. Перед инъекцией собирают мышцу двумя пальцами в складку, увеличив расстояние до надкостницы. На бедре толщина подкожного слоя у ребёнка до возраста 18 месяцев - 8 мм (макс. 12 мм), а тол­щина мышцы - 9 мм (макс. 12 мм), так что достаточно иглы длиной 22-25 мм. Другой метод - у детей с толстой жировой прослойкой - растянуть кожу над местом инъекции, сократив толщину подкожного слоя; при этом глубина введения иглы меньше (до 16 мм). На руке толщина жирового слоя всего 5-7 мм, а толщина мышцы - 6-7 мм. У больных гемофилией внутримышечное введение осуществляют в мышцы предплечья, подкожное - в тыл кисти или стопы, где легко прижать инъекционный канал. Подкожно вводят несорбированные - живые и полисахаридные - вакцины: в подлопаточную область, в наружную поверхность плеча (на границе верхней и средней трети) или в передненаружную область бедра. Внутрикожное введение (БЦЖ) проводят в наружную поверхность плеча, реакция Манту - в сгибательную поверхность предплечья. ОПВ вводят в рот, в случае срыгивания ребенком дозы вакцины ему дают повторную дозу, если он срыгнет и ее, - вакцинацию откладывают.

Наблюдение за привитыми длится 30 минут, когда теоретически возможна анафилактическая реакция. Следует информировать родителей о возможных реакциях, требующих обращения к врачу. Ребенок наблюдается патронажной сестрой первые 3 дня после введения инактивированной вакцины, на 5-6-й и 10-11-й день - после введения живых вакцин. Сведения о проведенной вакцинации заносят в учетные формы, прививочные журналы и в Сертификат профилактических прививок.

По степени необходимости выделяют: плановую (обязательную) вакцинацию, которая проводится в соответствии с календарем прививок и вакцинацию по эпидемиологическим показаниям, которая проводится для срочного создания иммунитета у лиц, подвергшихся риску развития инфекции.

КАЛЕНДАРЬ ПРОФИЛАКТИЧЕСКИХ ПРИВИВОК В УКРАИНЕ

(Приказ МЗ Украины №48 от 03.02.2006)

Прививки по возрасту

Возраст

Вакцинация от:

Примечания

Гепатит В

Туберкулеза

Гепатит В

Дифтерии, Коклюша, Столбняка Полиомиелита (ИПВ) Гемофильной инфекции

Детям с высоким риском развития поствакцинальных осложнений вакциной АаКДС

Дифтерии, Коклюша, Столбняка Полиомиелита (ОПВ) Гемофильной инфекции

Детям с высоким риском развития поствакцинальных осложнений вакциной АаКДС

Гепатит В

Кори, Краснухи,Паротита

Дифтерии, Коклюша, Столбняка вакциной АаКДС Полиомиелита (ОПВ) Гемофильной инфекции

Дифтерии, Столбняка Полиомиелита (ОПВ) Кори, Краснухи, Паротита

Туберкулеза

Дифтерии, Столбняка Полиомиелита (ОПВ) Туберкулеза

Краснухи (девочки), Паротита (мальчики)

Дифтерии, Столбняка

Взрослые

Дифтерии, Столбняка

Прививки для профилактики туберкулеза не проводят в один день с другими прививками. Недопустимо комбинировать в один день прививки для профилактики туберкулеза с другими парентеральными манипуляциями. Ревакцинации против туберкулеза подлежат дети в возрасте 7 и 14 лет с негативным результатом пробы Манту. Ревакцинация проводится вакциной БЦЖ.

Вакцинации для профилактики гепатита В подлежат все новорожденные, вакцинация проводится моновалентной вакциной (Энжерикс В). Если мать новорожденного HBsAg «–» (негативна), что документально подтверждено, можно начать вакцинацию ребенка в течение первых месяцев жизни или объединить с прививками против коклюша, дифтерии, столбняка, полиомиелита (Инфанрикс ИПВ, Инфанрикс пента). В случае комбинации иммунизации с прививками против коклюша, дифтерии, столбняка и полиомиелита, рекомендуются схемы: 3-4-5-18 мес жизни или 3-4-9 мес. жизни. Если мать новорожденного HBsAg «+» (позитивна), ребенка прививают по схеме (первые сутки жизни) - 1-6 мес. Первая доза вводится в первые 12 часов жизни ребенка независимо от массы тела. Вместе с вакцинацией, но не позже 1-ой недели жизни, в другую часть тела необходимо ввести специфичный иммуноглобулин против гепатита В из расчета 40 МЕ/кг массы тела, но не менее 100 МЕ. Если у матери новорожденного с HBsAg неопределен HBsAg статус, прививки ребенку проводят обязательно в первые 12 часов жизни с одновременным исследованием статуса матери по HBsAg. В случае получения позитивного результата у матери, профилактику гепатита В проводят также как в случае прививки новорожденного ребенка от HBsAg «+» матери.

Интервал между первой и второй, второй и третьей вакцинацией АКДС вакциной составляет 30 дней. Интервал между третьей и четвертой вакцинацией должен составлять не менее 12 мес. Первая ревакцинация в 18 месяцев проводится вакциной с ацеллюлярным коклюшным компонентом (далее - АаКДС) (Инфанрикс). АаКДС используется для дальнейшей вакцинации детей, которые имели поствакцинальные осложнения на предыдущие прививки АКДС, а также для проведения всех вакцинаций детям с высоким риском возникновения поствакцинальных осложнений по итогам вакцинальной комисии или детского иммунолога. Для профилактики дифтерии, столбняка, коклюша, полиомиелита, гепатита В и инфекций вызванных бактериями Haemophilus influenze типа b (далее - Hib) можно использовать комбинированные вакцины (с разными вариантами комбинаций антигенов), которые зарегистрированы в Украине (Инфанрикс гекса).

Инактивированная вакцина для профилактики полиомиелита (далее ИПВ) применяется для первых двух вакцинаций, а в случае противопоказаний к введению оральной полиомиелитной вакцины (далее - ОПВ) - для всех последующих вакцинаций согласно календаря вакцинаций (Полиорикс, Инфанрикс ИПВ, Инфанрикс пента, Инфанрикс гекса). После вакцинации ОПВ предлагается ограничить инъекции, парентеральные вмешательства, плановые операции в течение 40 дней, исключить контакт с больными и ВИЧ-инфицированными.

Вакцинация для профилактики Hib-инфекции, может проводиться моновакцинами и комбинированными вакцинами которые содержат Hib-компонент (Хиберикс). В случае использования Hib-вакцины и АКДС разных производителей, вакцины вводятся в различные части тела. Желательно использовать комбинированные вакцины с Hib-компонентом для первичной вакцинации (Инфанрикс гекса).

Вакцинация для профилактики кори, эпидемического паротита и краснухи проводится комбинированной вакциной (далее - КПК) в возрасте 12 мес (Приорикс). Повторную вакцинацию для профилактики кори, паротита и краснухи проводят детям в возрасте 6 лет. Детям, которые не были вакцинированы против кори, паротита и краснухи в возрасте 12 мес и в 6 лет, вакцинацию можно провести в любом возрасте до 18 лет. В таком случае ребенок должен получить 2 дозы с минимальным интервалом. Детям в возрасте 15 лет, которые получили 1 или 2 вакцинацию против кори, но не были вакцинированы против эпидемического паротита и краснухи и не болели этими инфекциями, проводится плановая вакцинация против эпидемического паротита (мальчики) или против краснухи (девочки). Лица старше 18 лет, которые не были ранее вакцинированы против этих инфекций, могут быть вакцинированы одной дозой согласно эпидемическим показаниям в любом возрасте до 30 лет. Перенесенные заболевания корью, эпидемическим паротитом или краснухой не является противопоказанием к вакцинации тривакциной.

Это биопрепараты, содержащие штаммы вирусов, утратившие способность вызывать клинически выраженное заболевание, но сохранившие способность репродуцироваться в организме восприимчивого животного и стимулировать выработку факторов специфического противовирусного иммунитета.

Принцип получения живых вакцин . Основным в технологии производства живых вакцин является получение аттенуированных штаммов вирусов путем:

1) адаптации патогенных вирусов к маловосприимчивым или совсем невосприимчивым лабораторным животным. Так был получен штамм ЛЗ Накамура для профилактики чумы крупного рогатого скота (путем серийных пассажей на кроликах), штамм К для профилактики чумы свиней. При пассажах на животных успех во многом зависит от выбора метода заражения. Так, Л. Пастер путем серийных (130-140) интрацеребральных пассажей уличного вируса бешенства на кроликах получил вакцинный штамм, известный под названием вирус-фикс. Получены аттенуированные штаммы вирусов инфекционного бронхита, инфекционного ларинготрахеита птиц, катаральной лихорадки овец и другие путем адаптации к куриным эмбрионам. Методом адаптации к культурам клеток (пассирование в сочетании с селекцией в культуре клеток) вируса чумы крупного рогатого скота (штамма ЛЗ Накамура) удалось получить аттенуированный ареактогенный вакцинный штамм ЛТ. Аналогичным путем получены вакцинные штаммы вирусов инфекционного ринотрахеита, парагриппа-3, вирусной диареи крупного рогатого скота, чумы плотоядных и др.

При многочисленных серийных пассажах вируса происходит накопление случайных мутаций.

В основе изменчивости вируса лежат мутации, т. е. изменения состава и последовательностей нуклеотидов вирусного генома.

Исследователь, используя различные методы селекции, отбирает штаммы по признаку утраты вирулентности (к естественно восприимчивому животному) при сохранении иммуногенности. Это очень длительная, кропотливая работа, которая не всегда может быть успешной;

2) селекции природно-ослабленных штаммов вирусов при атипично или латентно протекающих инфекциях. Так были выделены вакцинные штаммы вируса болезни Ньюкасла В1, Н, Ф, Ла Сота, Бор-74 (ВГНКИ), аттенуированные штаммы ротавирусов человека;

3) использование гетеротипичных антигеннородственных апатогенных штаммов в качестве живых вакцин. Например, вирус оспы голубей создает иммунитет против оспы кур; вирус герпеса индеек защищает кур от болезни Марека; вирус фиброматоза создает у кроликов иммунитет от миксоматоза; вирус кори человека в состоянии защитить щенков от чумы плотоядных;

4) аттенуация вирусов генно-инженерными методами. Этот метод конструирования стабильных аттенуированных штаммов связан с делеционными (делеция - выпадение одного или нескольких нуклеотидов в вирусном геноме) мутациями. Преимущество таких мутантов состоит в том, что их способность к реверсии практически исключается. Исходя из этого, прилагаются усилия для получения стабильных делеционных мутаций, которые бы обеспечили вирусу достаточную дефектность, делающую его аттенуированным, но не настолько, чтобы потерять жизнеспособность. Этот тип «генной хирургии», использующий рестрикционные эндонуклеазы, может быть исполнен только на ДНК. Следовательно, те вирусные геномы, которые представлены РНК, должны быть транскрибированы в ДНК-копии, а затем подвергнуты изменениям.

Первые успехи в аттенуации вирусов с использованием методов генной инженерии достигнуты в опытах с ДНК-содержащими вирусами животных. Делеционные мутанты по тимидинкиназе получены у вируса инфекционного ринотрахеита крупного рогатого скота и вируса болезни Ауески. Так, мутанты вируса инфекционного ринотрахеита вследствие делении в гене тимидинкиназы не способны кодировать синтез этого фермента в клетках инфицированного организма. Нарушение этой функции генома вируса сопровождается его аттенуацией при сохранении антигенных свойств.

Основное требование к живым вакцинам на основе делеционных мутантов вирусов - их выраженная репликация in vitro и in vivo с тем, чтобы производство вакцин было экономически выгодным, а применение достаточно эффективным.

Любой вакцинный штамм должен быть хорошо изучен, клонирован, паспортизирован и комиссионно сдан во Всероссийский государственный научно-исследовательский институт контроля, стандартизации и сертификации ветеринарных препаратов, где он хранится, поддерживается и контролируется.

Так как свойства вакцины определяются вакцинным штаммом, то к ним предъявляются следующие основные требования:

генетическая стабильность - способность сохранять свои свойства в различных условиях пассирования на восприимчивых животных, в системе культивирования, хранения и т. д., т. е. штамм не должен подвергаться реверсии (возврату в исходное состояние);

безвредность - вакцинный штамм не должен вызывать клиническую картину болезни, вместе с тем должен обладать способностью «приживаться» (размножаться) в организме естественно восприимчивых животных. От длительности приживаемости обычно зависят продолжительность и напряженность иммунитета. Высокоиммуногенные штаммы приживаются в организме на 2-4 нед.

При идеальном исходе аттенуации вирус должен практически утрачивать способность поражать клетки-мишени, но сохранять способность размножаться в других клетках, обеспечивая создание выраженного и напряженного иммунитета при минимальной реактогенности и полной безопасности.

Живые вакцины обладают рядом существенных преимуществ перед инактивированными вакцинами:

1) создают высокую напряженность и длительность иммунитета (более чем на 1 год, иногда на всю жизнь), так как в организме вакцинные штаммы размножаются, вызывая развитие вакцинной реакции, сходной с естественным постинфекционным процессом, происходит активация всех компонентов иммунной системы, стимулируется общий (системный) и местный ответ;

2) требуются малые прививочные дозы и для большинства из них однократное введение;

3) возможное применение их не только подкожно, внутримышечно, но и перорально, интраназально и аэрозольно;

4) иммунитет вырабатывается в более короткий срок, на первых этапах обычно за счет интерферона, а затем уже - накопления вируснейтрализирующих антител;

5) технология и экономичность изготовления их превосходят создание инактивированных вакцин.

Несмотря на преимущества живых вакцин по некоторым позициям, у них есть недостатки:

1) иногда возможны поствакцинальные осложнения у молодых, ослабленных и беременных животных;

2) возможно, хотя и в редких случаях, внесение в организм животных контаминантов (латентных вирусов, микроорганизмов), загрязняющих вакцины. Например, культуры клеток из тканей крупного рогатого скота нередко инфицированы аденовирусами, вирусами диареи, парагриппа-3; куриные эмбрионы - вирусами лейкозно-саркоматозного комплекса, аденовирусами, микоплазмами; культуры клеток свиного происхождения - парвовирусами, классической чумы свиней. Неконтролируемое попадание посторонних агентов в вакцину может привести к серьезным последствиям;

3) возможна реверсия вакцинного штамма;

4) живые вакцинные штаммы весьма чувствительны к неблагоприятным факторам, возникающим при производстве, хранении, транспортировке и применении;

5) нужен довольно длительный срок для получения аттенуированных вакцинных штаммов.

Генетический механизм аттенуации недостаточно изучен. Это обстоятельство не дает возможности предложить единое правило получения вакцинных штаммов. Несмотря на попытки многих исследователей, до сих пор не получено аттенуированных вакцинных штаммов вирусов ящура, инфекционной анемии лошадей и др.

Живые вакцины широко применяют в основном для животных на откорме и не рекомендуются в репродуктивных стадах. Готовят их на биофабриках, биокомбинатах или других предприятиях по производству биопрепаратов, которые получают вакцинные штаммы из Всероссийского государственного научно-исследовательского института контроля, стандартизации и сертификации ветеринарных препаратов.

Таким образом, технология изготовления живых вакцин сводится к культивированию вакцинного штамма в какой-либо биологической системе (животные, эмбрионы птиц, культуры тканей и клеток); определению концентрации вируса (его титра) в вируссодержащем материале; контролю на стерильность (отсутствие посторонних контаминантов); фасовке и лиофилизации (перед лиофилизацией для сохранения биологической активности вируса добавляют стабилизирующие вещества). Затем вакцины проходят контроль на стерильность, биологическую активность, реактогенность, безвредность, антигенную и иммуногенную активности. Если вакцина отвечает всем установленным показателям, ее этикетируют и выпускают для применения.

Живую вакцину обычно называют вирусвакциной. Анализ данных применения живых вакцин свидетельствует о достаточно высокой эффективности многих из них, например, таких, как вакцины против чумы крупного рогатого скота, чумы плотоядных, болезни Ньюкасла и др.

В 1998 г. в нашей стране был впервые принят Закон "Об иммунопрофилактике инфекционных заболеваний", который определил правовые основы государственной политики в области иммунопрофилактики инфекционных болезней. Закон предусматривает бесплатную иммунизацию на добровольной основе вакцинами, включенными в национальный календарь прививок, а также возможность отказа от вакцинации. Родители несут ответственность за свое здоровье и здоровье своих детей. Они принимают самостоятельное решение на основе информации о заболеваниях, против которых проводятся прививки , о календаре вакцинации, о вакцинах, о поствакцинальных осложнениях, о противопоказаниях к прививкам.

Во всем мире прививки начинают делать детям с самого раннего возраста, практически сразу после рождения, поскольку надежной защиты от инфекций у ребенка нет, а возможность заболеть из-за контактов с другими людьми есть. Если мама ранее переболела так называемыми детскими инфекциями, то у нее имеются антитела (защитные белки крови), которые передаются малышу через плаценту во время беременности и через грудное молоко (если мама кормит грудью).

В первые 3-6 месяцев жизни доношенный ребенок защищен материнскими антителами. Однако у недоношенных детей и детей, находящихся на искусственном вскармливании, такой защиты нет. Таким образом, очень важно, чтобы необходимые прививки были сделаны ребенку уже в первые дни жизни. Во многих странах, в том числе и в России, проводить вакцинопрофилактику начинают в течение первых дней после рождения (в это время детям делают прививки против туберкулеза, гепатита В), а основное количество прививок, в соответствии с национальным календарем плановых прививок, приходится на первый год жизни.

Мониторинг инфекционных заболеваний показывает, что до настоящего времени в мире из 14 млн смертей, связанных с инфекциями, около 3 млн были обусловлены заболеваниями, которые могли быть предупреждены своевременной вакцинацией. В то же время в странах с высоким уровнем числа привитых людей, в том числе в нашей стране, многие инфекции встречаются эпизодически, поэтому не только население, но и медики забыли об их опасности.

В условиях массовой иммунизации возникает, казалось бы, парадоксальная ситуация: увеличивается объем и спектр используемых вакцинных препаратов, это снижает заболеваемость инфекциями, осложнения и летальные исходы, вызванные ими. Но так как растет число привитых, растет и число побочных эффектов прививок, хотя их относительное количество остается неизменно низким (например, энцефалит при коревой инфекции может развиться у одного пациента из тысячи заболевших, а после прививки менее чем у одного из миллиона привитых). Время, когда необходимо проводить вакцинацию, как уже говорилось, определяется национальным календарем прививок, а тот, в свою очередь, обусловлен наличием необходимых вакцин, их эффективностью и безопасностью для маленьких детей, а также эпидемиологической обстановкой, т.е. наличием тех или иных заболеваний в стране. В нашей стране наряду с отечественными вакцинами есть и зарубежные. Все они качественные, это доказано многочисленными исследованиями Государственного института контроля вакцинных и иммунобиологических препаратов им. Л.А. Тарасевича. Отечественные вакцины неоднократно проверяются - как на этапе производства, так и при их использовании. Зарубежные вакцины проходят контроль до регистрации в нашей стране и далее - в процессе применения.

Почему родители боятся прививок?

Несмотря на то что вакцинация давно стала признанным во всем мире способом профилактики инфекционных заболеваний, далеко не все родители относятся к вакцинации без предубеждения. Наиболее частыми мотивами отказа от прививок являются:

  • убеждение, что не существует риска заразиться инфекцией, против которой проводится прививка;
  • уверенность в том, что есть другие способы защиты от инфекций;
  • мнение, что лучше переболеть;
  • боязнь осложнений после прививки ;
  • недоверие к официальной, "традиционной" медицине;
  • религиозные взгляды.

Давайте разберемся, насколько действительно опасна вакцинация.

Что такое вакцинальные реакции и какими они бывают?

Абсолютно безопасных вакцин нет. Введение любой из них вызывает ответную реакцию организма, которая иногда имеет клинические проявления. Это так называемые обычные, или нормальные вакцинальные реакции (процессы), под которыми понимают изменения в организме, развивающиеся с определенным постоянством после введения той или иной вакцины. Обычные вакцинальные реакции бывают местными и общими. Местная нормальная реакция - уплотнение тканей, краснота, не превышающая 8 см в диаметре, иногда легкая болезненность в месте введения вакцины. Эти явления развиваются сразу после введения препарата, как при использовании живых, так и неживых вакцин. Проходят в течение несколько дней (1-4 дня) и обусловлены дополнительными веществами, содержащихся в вакцинах. Встречаются у 5-15% привитых детей, в зависимости от вакцины. Общие нормальные реакции проявляются повышением температуры, кратковременной интоксикацией (ее симптомами являются недомогание, головная боль, нарушение сна, аппетита). Общие реакции бывают:

  • слабыми (повышение температуры до 37,5 С, при отсутствии симптомов интоксикации);
  • средней силы (повышение температуры от 37,6 С до 38,5 С, умеренно выраженная интоксикация);
  • сильными (повышение температуры выше 38,6 С, выраженные проявления интоксикации).

У детей, привитых живыми вакцинами, к нормальному вакцинальному процессу относят также симптомы со стороны тех органов и систем, которые поражаются при соответствующем инфекционном заболевании. Например, для коревой вакцинации, помимо температуры и интоксикации, характерны: кашель, насморк, коньюнктивит, краснота (гиперемия) зева, для паротитной -увеличение околоушных слюнных желез, при вакцинации против краснухи - кашель, насморк, сыпь, боли в суставах. Все проявления обычного вакцинального процесса кратковременны и при введении неживых вакцин длятся 1-3 дня, а при использовании живых - в среднем 3-5 дней. Сроки появления общих вакцинальных реакций у разных типов вакцин тоже несколько отличаются: для неживых вакцин - это 1-3-й дни после иммунизации (в 80-90% случаев - первые сутки), для живых - с 5-6-го по 12-14-й дни (при этом пик проявлений приходится на 8-11-й дни после прививки ). При отсутствии температуры и других клинических проявлений нормальный вакцинальный процесс считают бессимптомным. Частота развития нормального вакцинального процесса зависит от применяемой вакцины (табл.1). Таблица 1. Частота развития нормальных вакцинальных реакций

Вакцина Местные реакции (отек, покраснение, боль), % от общего числа привитых Общие проявления
Tемпература тела выше 38.0 градусов C Головная боль, нарушение самочувствия
против туберкулеза 90,0-95,0% - -
против гемофильной инфекции 5,0-15,0% 2,0-10,0% -
против гепатита В Дети – 5,0%, взрослые -15,0% - 1,0-6,0%
против кори, краснухи, эпидемического паротита 10,0% 5,0-10,0% 5,0% (к данным симптомам присоединяется сыпь)
против полиомиелита (живая вакцина) - менее 1,0% менее 1,0%
против коклюша, дифтерии, столбняка (АКДС) 10,0% 1,0% 10-15,0%

Возможные осложнения после вакцинации

В редких случаях реакции детей на прививку отличаются от обычных. В этом случае речь может идти о поствакцинальных осложнениях. Причинами появления осложнений являются остаточная реактогенность вакцинных препаратов (потенциальная способность вакцины вызывать побочные эффекты), индивидуальные особенности привитого человека, иногда - технические погрешности при проведении иммунизации. Реактогенность вакцины зависит от ее состава. Более реактогенны неживые вакцины, содержащие микроорганизм целиком, почти не реактогенны неживые вакцины, содержащие отдельные части микроорганизма. Реактогенность увеличивается при нарушении условий транспортировки и хранения вакцины, что возможно, например, при самостоятельном приобретении вакцин пациентом. К индивидуальным особенностям организма человека, предрасполагающим к развитию осложнений, относят имевшие место ранее тяжелые аллергические реакции на компоненты вакцины, предрасположенность к судорожным состояниям, что характерно для детей первых трех лет жизни, наличие иммунодефицитных состояний или заболеваний (подавляющая иммунитет терапия, применяемая, например, при онкологических заболеваниях; первичные иммунодефицитные заболевания; СПИД). Технические нарушения при вакцинации заключаются, например, в подкожном введении вакцин, требующих внутрикожного введения (вакцина против туберкулеза - БЦЖ). Однако эти причины встречаются крайне редко. Таким образом, поствакцинальные осложнения - это редкие состояния, развивающиеся у привитого человека, связанные с проведенной вакцинацией и имеющие очевидную или доказанную связь с прививкой, но не свойственные обычному течению вакцинального процесса. Поствакцинальные осложнения имеют характерные клинические проявления и сроки развития после иммунизации. По клиническим проявлениям выделяют: чрезмерно сильные реакции, аллергические (местные и общие) осложнения и осложнения с вовлечением нервной системы. Сроки появления поствакцинальных осложнений совпадают со сроками развития обычных реакций на вакцинацию. Чрезмерно сильные реакции наблюдаются чаще после использования неживых вакцин, в частности - вакцины против дифтерии, коклюша, столбняка (АКДС и Тетракока). Среди живых вакцин они возникают преимущественно после коревой вакцины. Сроки развития осложнений для неживых вакцин - первые трое суток после вакцинации (чаще всего - в 95% случаев - в первые сутки), для живых вакцин - 5-14-й дни после прививки . Симптомы сохраняются 1-3 дня. Клинические проявления таких реакций - подъем температуры выше 39,5°С, нарушение общего состояния (вялость или беспокойство), нарушение сна, аппетита, иногда - рвота. При чрезмерно сильных реакциях, вызванных живыми вакцинами, появляются также симптомы, характерные для обычных реакций на эти препараты. При наблюдении на протяжении нескольких лет за детьми, перенесшими такие реакции, никаких изменений в состоянии их здоровья не выявлено.

Аллергические реакции

Местные аллергические реакции в основном регистрируются после введения неживых вакцин, содержащих гидроксид алюминия: АКДС, Тетракока и других. При использовании живых вакцин местные аллергические реакции наблюдаются реже и также связаны с дополнительными веществами, входящими в препарат. Местные аллергические реакции характеризуются появлением красноты (гиперемии) и припухлости (отечности) более 8 см в диаметре в месте введения вакцинного препарата. По классификации ВОЗ местной реакцией считают отек и гиперемию, распространяющиеся за пределы близлежащего сустава или занимающие более половины участка тела в области проведения прививки . Эти симптомы при использовании как неживых, так и живых вакцин появляются в первые 1-3 дня после иммунизации. К крайне редким общим аллергическим реакциям относится анафилактический шок - резкое падение артериального давления в результате введение какого-либо препарата. В одном случае из миллиона введений вакцин это состояние требуют реанимационных мероприятий. В основном общие аллергические реакции проявляются в виде крапивницы, отека Квинке, различной сыпи на коже, которые возникают при введении неживых вакцин в первые 1-3 дня после прививки , а при введении живых вакцин - с 4-5-го по 14-й дни.

Поствакцинальные осложнения со стороны нервной системы

Фебрильные судороги (судорожный синдром, развивающийся на фоне высокой - более 38 градусов С - температуры тела) могут появиться после применения любых вакцин. Чаще всего это происходит при введении АКДС (Тетракока); на втором месте - коревая вакцина, вводимая отдельно или в составе комбинированного препарата.

При использовании неживых вакцин судороги могут развиться на первый, реже - на 2-3-й третий день после прививки , а при введении живых вакцин - на 5-12-й день. В настоящее время большинство специалистов не рассматривают фебрильные судороги как поствакцинальное осложнение, поскольку у детей первых 3 лет жизни существует предрасположенность к появлению судорог на фоне высокой температуры, вызванной различными причинами (например, острым инфекционным заболеванием), а не только прививкой.

Афебрильные судороги, т.е. судороги с нарушением сознания и поведения, которые развиваются на фоне нормальной или несколько повышенной (до 38,0 градусов С) температуры тела, наблюдают преимущественно после введения коклюшной вакцины (АКДС, Тетракок) и крайне редко - после коревой вакцинации. В отличие от фебрильных, они могут появляться в более отдаленный от проведенной прививки срок - через 1-2 недели. Развитие афебрильных судорог свидетельствует о наличии у ребенка органического поражения нервной системы, которое не было своевременно выявлено до прививки или протекало скрыто.

Вакцинация в данном случае послужила только провоцирующим фактором. Пронзительный крик - упорный монотонный крик у детей первого полугодия жизни, возникающий через несколько часов после прививки , который длится от 3 до 5 часов. Он отмечается преимущественно при введении вакцины АКДС (или Тетракок), содержащей убитую цельноклеточную коклюшную вакцину (разработана бесклеточная коклюшная вакцина, которая не имеет подобного осложнения). Развитие пронзительного крика, возможно, связано с кратковременным повышением внутричерепного давления и появлением головной боли или это реакция на болезненность в месте введения вакцины. Вакциноассоциированные заболевания, т.е. заболевания, развившиеся в результате введения вакцины, - это наиболее серьезные осложнения со стороны нервной системы. К ним относят вакциноассоциированный полиомиелит - заболевание, связанное с введением оральной (через рот) живой полиомиелитной вакцины; коревой или краснушный энцефалит, вызванный введением аналогичных вакцин, и серозный менингит, вызванный вакцинным вирусом эпидемического паротита. Эти осложнения наблюдаются крайне редко (1 на 1000 000 доз вакцины и менее) и только при использовании живых вакцин. Возможность появления таких заболеваний связывают с тяжелым иммунодефицитным состоянием ребенка и/или изменением свойств вакцинного микроорганизма. Неживые вакцины никогда не вызывают вакциноассоциированных заболеваний, поэтому их использование абсолютно безопасно для лиц с иммунодефицитными состояниями и заболеваниями. Поствакцинальные осложнений - это крайне редкая патология. По данным Центра Госсанэпиднадзора Санкт-Петербурга, число детей со всеми поствакцинальными осложнениями на все вакцины колеблется от 5 до 10-15 человек, причем в основном отмечаются местные реакции.

Если ребенок, которому сделали прививку, заболел

Важно отметить, что если вакцинированный ребенок заболевает, то заболевание, как правило, оказывается случайным, совпавшим с проведенной прививкой по времени и не имеющим прямой связи с ней. Большинство всех болезней начинается с повышения температуры и интоксикации, что в совокупности с данными о прививке заставляет родителей, а иногда и врача думать о поствакцинальном осложнении, в то время как он заболел, например, ОРЗ. Это приводит к тому, что не осуществляется своевременная диагностика заболевания и не начинается соответствующая терапия. Поэтому, если привитой ребенок заболел, в первую очередь необходимо вызвать врача и решить вопрос о том, что это - заболевание или осложнение, связанное с прививкой. При появлении поствакцинальных осложнений лечение направлено на устранение симптомов: при чрезмерно сильных реакциях применяются жаропонижающие препараты, при аллергических - противоаллергические средства и т.д.

Противопоказания к прививке

Противопоказаний к проведению прививок немного. Не рекомендуется вакцинация, если у ребенка острое заболевание или обострение хронического заболевания. В этом случае прививку проводят после выздоровления малыша (через 2 недели после острой болезни и через месяц после обострения хронической инфекции). Противопоказанием к вакцинации является также тяжелая аллергия на один из компонентов вакцины, тяжелая реакция на предшествующую дозу вакцины. Существуют и индивидуальные противопоказания к вакцинам. Так, вакцину против коклюша (АКДС, Тетракок) не вводят лицам с прогрессирующим поражением нервной системы и афебрильными судорогами, а живые вакцины (против туберкулеза, кори, краснухи, паротита, полиомиелита) противопоказаны лицам с первичным (врожденным) иммуннодефицитным состоянием, что бывает крайне редко (таких детей единицы).

Подготовка к прививке

Специально готовить ребенка к прививке не надо, но важно, чтобы перед вакцинацией он был здоров и имел нормальную температуру тела (36,6 С). Для детей с аллергией важно соблюдение режима дня и режима питания, т.е. чтобы на момент вакцинации ребенок не получал новых продуктов или продуктов, на которые у него есть аллергия, на него также не должны воздействовать причинные аллергены, вызывающие обострения болезни (пыль, пыльца растений, шерсть и т.п.). Если ребенок в связи с аллергическим заболеванием получает какое-либо специфическое плановое, курсовое лечение, то прививки проводят на фоне этой терапии. Если ребенок не получает курсовой терапии, то прививки можно делать без дополнительных назначений медикаментозных средств. Детям, склонным к острым аллергическим реакциям (крапивница, отек Квинке) противоаллергические средства назначают за несколько дней до и после прививки . Если по каким-то причинам прививки не сделаны в сроки, указанные в календаре, их можно сделать позже в любом возрасте. Детям с хроническими заболеваниями, аллергией, поражением нервной системы и другими патологиями рекомендуется проведение прививок в первую очередь, так как они тяжелее переносят инфекции, у них чаще возможны осложнения. Как уже было сказано, вакцинация в нашей стране осуществляется исключительно на добровольной основе. Этот принцип возлагает ответственность за здоровье малыша на его самых близких людей - родителей. Надеемся, что все сказанное о прививках поможет им проанализировать ситуацию и принять то решение, благодаря которому их ребенок вырастет здоровым.

Современные вакцинные препараты можно условно разделить на две группы: живые и неживые.

Живые вакцины состоят из ослабленных, незаразных микроорганизмов (это вакцины против туберкулеза, кори, эпидемического паротита, краснухи, полиомиелита). Кроме того, имеются дополнительные вещества - минимальное количество антибиотиков и белка той питательной среды, на которой выращивали вакцинный микроорганизм. При введении живой вакцины в организм человека происходит кратковременное размножение вакцинного микроорганизма (вирусов или бактерий), приблизительно в течение 4-5 дней. Поэтому после прививки некоторое время (10-14 дней) могут сохраняться клинические проявления нормального вакцинального процесса. При введении живых вакцин формируется длительный, стойкий иммунитет. Неживые вакцины очень разнообразны, но ни в одной из них нет живого микроорганизма. Действующим началом является убитый микроорганизм (например вакцина против коклюша, клещевого энцефалита, гепатита А, некоторые зарубежные вакцины против полиомиелита и т.д.), или отдельные части микроорганизмов (например, некоторые вакцины против гриппа, вакцины против гемофильной инфекции типа В, против, гепатита В) или обезвреженные продукты жизнедеятельности микроорганизмов (например анатоксины против дифтерии, столбняка). Как правило, неживые вакцины содержат два дополнительных вещества - консервант (сохраняет долгое время вакцину в стабильном состоянии) и адъювант - гидрооксид аллюминия (усиливает иммуногенность вакцины, т.е. способность вызывать длительную защиту от болезни). В качестве консервантов наиболее часто используют соль ртути - мертиолят, реже - формальдегид. Мертиолят (в международном названии тиомерсал) уже более 50 лет применяется в качестве консерванта в различных вакцинах, лекарственных препаратах и пищевых продуктах. По данным ВОЗ ртуть содержится в питьевой воде до 1 мкг/л, в воздухе (за счет испарений земной коры). В результате за сутки в организм человека попадает с пищей и водой, через легкие до 21 мкг различных соединений ртути. В тоже время в одной дозе вакцины против коклюша, дифтерии, столбняка (АКДС) или против гепатита В содержится 25 мкг мертиолята. Эта доза значительно меньше, чем та которая накапливается в организме человека в процессе жизни. Тем не менее, мертиолят (тиомерсал) признан Всемирной Организацией Здравоохранения (ВОЗ) потенциальным нейротоксином (токсином, поражающим нервную систему) и поэтому всем фирмам, производящим вакцины рекомендовано усовершенствовать технологию их производства, отказавшись в ближайшем будущем от мертиолята. В настоящее время уже выпускается отечественная вакцина против гепатита В, не содержащая тиомерсал. Неживые вакцины обычно вызывают менее напряженный и длительный иммунный, чем живые, поэтому требуют больше повторных введений.

Ведите календарь прививок с помощью нашего , записывайте реальные даты вакцинирования ребенка, получайте уведомления о предстоящих прививках на email!



Понравилась статья? Поделитесь ей
Наверх