Методы измерения онкотического давления плазмы крови, что это и способы нормализации. Осмотическое и онкотическое давление

Плазма крови на 90 - 92% состоит из воды, 7 - 8% плазмы составляют белки (альбумины - 4,5%, глобулины - 2 - 3%, фибриноген - до 0,5%), остальное количество сухого остатка приходится на питательные, минеральные вещества и витамины. Общее содержание минеральных веществ приблизительно равняется 0,9%. Условно выделяют макро- и микроэлементы. Границей является концентрация вещества 1мг%. Макроэлементы (натрий, калий, кальций, магний, фосфор) прежде всего обеспечивают осмотическое давление крови и необходимы для жизненно важных процессов: натрий и калий - для процессов возбуждения, кальций - свертывания крови, мышечных сокращений, секреции; микроэлементы (медь, железо, кобальт, йод) рассматриваются как компоненты биологически активных веществ, активаторы ферментативных систем, стимуляторы гемопоэза, метаболизма.

Белки крови и их значение

1. Обеспечивают онкотическое давление плазмы.

2. Обеспечивают вязкость плазмы, что имеет значение в поддержании артериального давления крови. Вязкость плазмы по отношению к вязкости воды равна 2,2 (1,9-2,6).

3. Белки плазмы играют питательную функцию, являяcь источником аминокислот для клеток (в 3л плазмы содержится около 200 г белков, которые обновляются за 5 суток примерно на 50%).

4. Служат переносчиками гормонов, являются транспортной формой микроэлементов, могут связывать катионы плазмы, препятствуя их потере из организма.

5. Принимают участие в свёртывании крови, являются обязательным компонентом иммунной системы организма, обеспечивают взвешенное состояние эритроцитов, играют роль в поддержании кислотно-основного состояния крови.

Белки плазмы методом электрофореза могут быть разделены на 3 группы: альбумины, глобулины и фибриноген; фракция глобулинов разделяется на альфа-1, альфа-2, бета и гамма-глобулины. Альбумины составляют 60% всех белков плазмы, благодаря низкому молекулярному весу (69000 Д) обеспечивают на 80% онкотическое давление. Благодаря большой суммарной площади поверхности, выполняют роль переносчика многих эндогенных (билирубин, желчные кислоты, соли желчных кислот) и экзогенных веществ. Глобулины образуют комплексные соединения с углеводами, липидами, полисахаридами, связывают гормоны, микроэлементы. Фракция гамма-глобулинов включает иммуноглобулины, агглютинины, многие факторы системы свертывания крови. Фибриноген является источником фибрина, который обеспечивает образования

Осмотическое и онкотическое давление крови.

Осмотическое давление обусловлено электролитами и некоторыми неэлектролитами с низкой молекулярной массой (глюкоза и др.). Чем больше концентрация таких веществ в растворе, тем выше осмотическое давление. Осмотическое давление плазмы зависит в основном от содержания в ней минеральных солей и составляет в среднем 768,2 кПа (7,6 атм.). Около 60% всего осмотического давления обусловлено солями натрия.

Онкотическое давление плазмы обусловлено белками . Величина онкотического давления колеблется в пределах от 3,325 кПа до 3,99 кПа (25-30 мм рт. ст.). За счет него жидкость (вода) удерживается в сосудистом русле. Из белков плазмы наибольшее участие в обеспечении величины онкотического давления принимают альбумины ; вследствие малых размеров и высокой гидрофильности они обладают выраженной способностью притягивать к себе воду.

Постоянство коллоидно-осмотического давления крови у высокоорганизованных животных является общим законом, без которого невозможно их нормальное существование.

Если эритроциты поместить в солевой раствор, имеющий одинаковое осмотическое давление с кровью, то они заметным изменениям не подвергаются. В растворе с высоким осмотическим давлением клетки сморщиваются, так как вода начинает выходить из них в окружающую среду. В растворе с низким осмотическим давлением эритроциты набухают и разрушаются. Это происходит потому, что вода из раствора с низким осмотическим давлением начинает поступать в эритроциты, оболочка клетки не выдерживает повышенного давления и лопается .

Солевой раствор, имеющий осмотическое давление, одинаковое с кровью, называют изоосмотическим, или изотоническим (0,85-0,9 % раствор NaCl). Раствор с более высоким осмотическим давлением, чем давление крови, получил название гипертонического , а имеющий более низкое давление -гипотонического.

При мышечной работе увеличивается обмен веществ, что может вызвать временные изменения внутренней среды организма. Изменения в крови наблюдаются не только во время работы, но и некоторое время после нее, а также перед началом мышечной деятельности (например, в условиях стартового состояния). При мышечной работе количество циркулирующей крови в сосудах большого и малого кругов кровообращения увеличивается вследствие выхода ее из депо. Мышечная, в частности спортивная, деятельность вызывает более интенсивное, чем в покое, накопление в организме кислых продуктов обмена веществ. Так, например, содержание молочной кислоты в крови может увеличиться с 10 15 мг в 100 мл крови до 250 мг и более. Это ведет к временному изменению в организме кислотнощелочного равновесия. При этом водородный показатель крови может снизиться с 7,36 до 7. Длительная спортивная тренировка способствует повышению щелочного резерва крови (примерно на 1012%). Чем больше щелочной резерв, тем меньше изменения крови в кислую сторону и тем устойчивее физическая работоспособность человека.

Буферные системы крови обеспечивают постоянную величину рН при поступлении в нее кислых или основных продуктов. Они является первой «чертой охраны», которая поддерживает рН, пока продукты, которые поступили, не будут выведены или использованы в метаболических процессах.

В крови есть четыре буферные системы: гемоглобиновая, бикарбонатная а фосфатная, белковая. Каждая система состоит из двух соединений - слабой кислоты и соли этой кислоты и сильного основания. Буферный эффект обусловлен связыванием и нейтрализацией ионов, поступающих соответствующим составом буфера. В связи с тем что в естественных условиях организм чаще встречается с поступлением в кровь недоокисленных продуктов обмена, антикислотные свойства буферных систем преобладают по сравнению с антиосновными.

Бикарбонатный буфер крови достаточно мощный и наиболее мобильный. Роль его в поддержании параметров КОР крови увеличивается за счет связи с дыханием. Система состоит из Н 2 С0 3 и NaHC0 3 , что находятся друг от друга в соответствующей пропорции. Принцип ее функционирования заключается в том, что при поступлении кислоты, например молочной, которая сильнее, чем угольная, основной резерв обеспечивает процесс обмена ионами с образованием слабодисоциируемой угольной кислоты. Угольная кислота восполняет пул, который уже в крови, и сдвигает реакцию H 2 C0 3 C0 2 + Н 2 0 вправо. Особенно активно этот процесс осуществляется в легких, где образованный С02 сразу выводится. Возникает своеобразная открытая система бикарбонатного буфера и легких, благодаря которой напряжение свободного С02 в крови поддерживается на постоянном уровне. Это в свою очередь обеспечивает поддержание рН в рови на постоянном уровне. В случае поступления в кровь основы происходит реакция ее с кислотой. Связывание НСО 3 -приводит к дефициту С0 2 и уменьшение выделения его легкими. При этом увеличивается основной резерв буфера, что компенсируется за счет роста выделение NaCl почками.

Буферная система гемоглобина самая мощная.

На ее долю приходится более половины буферной емкости крови. Буферные свойства гемоглобина обусловлены соотношением восстановленного гемоглобина (ННЬ) и его калиевой соли (КНЬ). В слабощелочных растворов, каким является кровь, гемоглобин и оксигемоглобин имеют свойства кислот и является донаторами Н + или К + Эта система может функционировать самостоятельно, но в организме она тесно связана с предыдущей. Когда кровь находится в тканевых капиллярах, откуда поступают кислые продукты, гемоглобин выполняет функции основания:

КНЬ + Н2С03 -- ННЬ + КНС03.

В легких гемоглобин, напротив, ведет себя как кислота предотвращает защелощение крови после выделения углекислоты. Оксигемоглобин - сильнее кислота, чем дезоксигемоглобином. Гемоглобин, который освобождается, в тканях от О 2 , приобретает большую способность к связыванию, вследствие чего венозная кровь может связывать и накапливать С0 2 без существенного сдвига рН.

Белки плазмы благодаря способности аминокислот к ионизации также выполняют буферную функцию (около 7% буферной емкости крови). В кислой среде они ведут себя как основания, связывающие кислоты. В основном - наоборот, белки реагируют как кислоты, связывая основы. Эти свойства белков определяются боковыми группами. Особенно выражены буферные свойства в конечных карбокси-и аминогрупп цепей.

Фосфатная буферная система (около 5% буферной емкости крови) образуется неорганическими фосфатами крови. Свойства кислоты проявляет одноосновный фосфат (NaH 2 P0 4), а основания - двухосновный фосфат (Na 2 HP0 4). Функционируют они по такому же принципу, как и бикарбонаты. Однако в связи с низким содержанием в крови фосфатов емкость этой системы невелика.

Для характеристики КОР крови введен ряд понятий. Буферная емкость - величина, определяемая отношением между количеством Н + или ОН-, добавленных к раствору, степени изменения его рН: чем меньше смещение рН, тем больше емкость. Сумма анионов всех слабых кислот называется буферными основаниями (ВВ). Содержание их в крови составляет около 48 ммоль / л. Отклонение по концентрации буферных оснований от нормы обозначается термином «излишек основ» (BE). То есть идеальным является BE около 0. В норме возможны колебания в пределах от -2,3 до +2,3 ммоль/л. Смещение в положительную сторону называется алкалозом , а в отрицательный - ацидозом . В случае алкалоза рН крови становится выше 7,43, в случае ацидоза - ниже 7,36.

Механизм регуляции КОР крови в целостном организме заключается в совместном действии внешнего дыхания, кровообращения, выделения и буферных систем. Так, если в результате повышенного образования Н 2 С0 3 или других кислот будут появляться излишки анионов, то они сначала нейтрализуются буферными системами. Параллельно интенсифицируется дыхание и кровообращение, что приводит к увеличению выделения углекислого газа легкими. Нелетучие кислоты в свою очередь выводятся с мочой или потом.

Наоборот, при увеличении содержания в крови основ снижается выделение С0 2 легкими (гиповентиляция) и Н + с мочой. Подключение систем дыхания, кровообращения и выделения к поддержанию КОР обусловлено соответствующими механизмами регуляции функции этих органов. Наконец, в норме рН крови может изменяться лишь на короткое время. Естественно, что при поражении легких или почек функциональные возможности организма по поддержанию КОР на должном уровне снижаются. В случае появления в крови большого количества кислых или основных ионов только буферные механизмы (без помощи систем выделения) не удержат рН на константной уровне. Это приводит к ацидозу или алкалозу.

Введение

1. Онкотическое давление плазмы крови. Значение данной константы для водно-солевого обмена между кровью и тканями

2. Общая характеристика факторов (акцелератов) свертывания крови. Первая фаза свертывания крови

3. Сердечно-сосудистый центр: его локализация, особенности функционирования

4. Системное АД, основные гемодинамические факторы, определяющие его величину

5. Состав и ферментативные свойства сока поджелудочной железы, механизмы регуляции его секреции. Значение желчи

6. Нервно-рефлекторная регуляция дыхания: рецепторы, нервные центры, эффекторы

Заключение

Список литературы

Введение

Физиология – наука о жизнедеятельности организма как целое, его взаимодействие с окружающей средой и о динамике жизненных процессов. Этим определяются и методы физиологических исследований. Физиология изучает только живые организмы.

Физиология широко пользуется химическими и физико-химическими методами исследования, так как свойствами живого организма являются обмен веществ и энергии, то есть химические и физические процессы.


1. Онкотическое давление плазмы крови. Значение данной константы для водно-солевого обмена между кровью и тканями

Онкотическое давление плазмы крови зависит в основном от концентрации белков, их размеров и гидрофильности (способности удерживать воду). Осмотическое давление водных растворов обусловлено солями. Онкотическое давление (ОнД) имеет большое значение в распределении воды и растворенных в ней веществ между кровью и тканями. ОнД крови составляет в среднем 7,5-8,0 атмосфер.

Осмотическое давление крови, лимфы и тканевой жидкости в норме поддерживается на постоянном уровне, хотя оно может незначительно изменяться, например при обильном поступлений в кровь воды или солей, но на непродолжительное время. Давление быстро выравнивается благодаря деятельности выделительных органов (почки, потовые железы), удаляющих избыток воды или солей.

При введении в кровь (внутривенно или внутриартериально) лекарственных веществ или солевых растворов, нужно обеспечивать одинаковое их осмотическое давление с осмотическим давлением крови.

Физиологические растворы все же не равноценны плазме крови, так как не содержат высокомолекулярных коллоидных веществ, которыми являются белки плазмы. Поэтому к солевому раствору с глюкозой прибавляют различные коллоиды, например водорастворимые высокомолекулярные полисахариды (декстран), или особым образом обработанные белковые препараты. Коллоидные вещества добавляют в количестве 7-8%. Такие растворы вводят человеку, например, после большой кровопотери. Однако наилучшей кровезамещающей жидкостью все же является плазма крови.

2. Общая характеристика факторов (акцелератов) свертывания крови. Первая фаза свертывания крови

В процесссвертываемости крови вовлечено много веществ. Двенадцать из них называются факторами свертываемости; они пронумерованы от I до XIII, поскольку фактор VI оказался тем же самым, что и фактор V. Этот список из 12 факторов, тем не менее, неполон, в процессе свертывания участвуют и другие вещества, например АДФ и серотонин.

Три стадии свертывания крови: сосудистая стадия, тромбоцитарная стадия, стадия коагуляции и ретракция сгустка.

Гемостаз, или образование сгустка, начинается с сосудистой стадии: это 30-минутный период, который начинается, когда, стенка кровеносного сосуда повреждена. Спазм сосуда (ангиоспазм) приводит к снижению потери крови в больших сосудах и может даже полностью остановить капиллярную потерю крови. Начальное повреждение стенок сосудов совместно с их спазмом, вызывает изменение базальной мембраны. Стенки становятся «липкими», что помогает не только удержать тромбоциты, но и запечатать мелкие сосуды. Все это - результат выделения химических веществ (включая гормоны местного действия) стенками сосудов, который, однако, инициирует вторую стадии: гемостаза - тромбоцитарную.

3. Сердечно-сосудистый центр: его локализация, особенности функционирования

Сердце представляет собой полый мышечный орган, разделенный продольной перегородкой на изолированные друг от друга правую и левую половины. Каждая из них состоит из предсердия и желудочка, разделенных фиброзными перегородками. Односторонний ток крови из предсердий в желудочки и оттуда в аорту и легочную артерию обеспечивается клапанами, находящимися у входного и выходного отверстий желудочков. Открытие и закрытие клапанов зависят от величины давлений по обе их стороны.

Мышечные волокна сердца содержат миофибриллы, имеющие поперечную исчерченность. Диаметр мышечных волокон составляет 12-24 мк, длина может достигать 50 мк.

Толщина стенок разных отделов сердца неодинакова. Это обусловлено различиями в мощности производимой работы. Наибольтая работа выполняется мышцами левого желудочка, толщина стенки которого достигает 10-15 мм. Стенки правого желудочка несколько тоньше (5-8 мм), еще тоньше стенки предсердий (2-Змм).

Размеры сердца обусловлены объемом его полостей и толщиной стенок. Эти величины зависят от размеров тела, возраста, пола и двигательной активности человека. Размеры сердца определяют путем рентгенографии, объемы полостей - при помощи радиокардиографии (введение в кровь радиоактивных веществ и регистрация проходящей через сердце крови при помощи счетчиков Гейгера-Мюллера). У здоровых взрослых мужчин среднего роста и веса длинник сердца равен в среднем 14 см, поперечник 12 см, объем полостей желудочков 250-350 мл. У женщин эти величины несколько меньше.

Общий объем сердца определяют при помощи специального метода - биплановой телерентгенографии. Снимки сердца при этом делаются в двух проекциях. На основании полученных величин вычисляют объем сердца. В среднем он составляет у мужчин 700-900 мл, у женщин 500-600 мл. Тяжелый физический труд и занятия спортом способствуют развитию гипертрофии миокарда и ведут к увеличению объема полостей сердца.

Сердце снабжается кровью через венечные артерии, начинающиеся у места выхода аорты. Кровь поступает в венечные артерии во время расслабления сердца. При сокращении желудочков вход в венечные артерии прикрывается полулунными клапанами, а сами артерии сжимаются сократившейся мышцей сердца. Поэтому кровоснабжение сердца при его сокращении уменьшается. В венечные артерии поступает около 200-250 мл крови в 1 мин. При физической работе кровоснабжение сердца увеличивается. Объем притекающей к нему крови зависит от мощности выполняемой работы. При очень напряженной работе кровоснабжение сердца может возрастать до 1000 мл.

Сердечная мышца обладает способностью к автоматии, возбудимостью, проводимостью и сократимостью.

Автоматия сердца. Способность сердца ритмически сокращаться без внешних раздражений, под влиянием импульсов, возникающих в нем самом, называется автоматией сердца. Возбуждение в нем возникает в месте впадения полых вен в правое предсердие. Здесь находится скопление атипической мышечной ткани, называемое синоатриальным узлом или узлом Кис-Фляка. Атипическая мышечная ткань по своему строению отличается от основной массы миокарда. Клетки этой ткани богаты протоплазмой, поперечная же исчерченность в них выражена менее четко.

Возникающее в синоатриальном узле - главном водителе ритма сердца - возбуждение распространяется до атриовентрикулярного узла, расположенного в правом предсердии в межпредсердной перегородке. От этого узла отходит пучок Гиса, он делится на две ножки, разветвления которых, называемые волокнами Пуркине, проводят возбуждение к мускулатуре желудочков.

Синоатриальный узел обладает наиболее выраженной автоматией. В нормальных условиях импульсы из этого отдела сердца обеспечивают деятельность всех остальных. Автоматия других участков миокарда, в частности атриовентрикулярного узла, выражена слабее. Она подавляется импульсами от главного водителя ритма сердца.

Если, например, у лягушки изолировать синоатриальный узел (путем перерезки или охлаждения соответствующих участков сердца), то деятельность сердца временно прекращается. Затем сокращения его возникают вновь, но ритм их будет менее частым, чем был до изоляции главного водителя ритма. Этот опыт, впервые проведенный Станниусом, доказывает ведущую роль синоатриального узла для нормальной работы сердца.

Автоматия водителей ритма сердца обусловлена периодическим изменением мембранных потенциалов в их клетках. Во время диастолы происходит постепенная деполяризация мембраны. В тот момент, когда ее потенциал оказывается значительно сниженным, возникает возбуждение, распространяющееся по всем волокнам миокарда. Периодически наступающая деполяризация клеточных мембран обусловлена изменением их проницаемости. По одним данным, во время диастолы уменьшается выход ионов калия из клеток, по другим, наоборот, увеличивается поступление туда ионов натрия. В результате концентрация ионов натрия и калия по обе стороны мембраны начинает изменяться, что ведет к ее деполяризации. Значение ионов натрия для возникновения процессов возбуждения в клетках - водителях ритма подтверждается более высоким содержанием здесь натрия по сравнению с другими участками миокарда.

Возбудимость сердца. Она проявляется в возникновении возбуждения при действии разных раздражителей. Сила раздражителя при этом должна быть не менее пороговой. При некоторых условиях пороговые раздражители вызывают сокращения максимальной силы. Эта особенность возникновения возбуждения в сердце получила название закона «все или ничего». Однако закон этот проявляется не всегда. Степень сокращения сердечной мышцы зависит не только от силы раздражителя, но и от величины ее предварительного растяжения, а также от температуры и состава питающей ее крови.

Возбудимость сердечной мышцы непостоянна. Она изменяется по ходу возбуждения. В начальном его периоде сердечная мышца невосприимчива (рефрактерна) к повторным раздражениям. Этот период называется фазой абсолютной рефрактерности. У человека она длится 0,2-0,3 сек., т. е. совпадает с временем сокращения сердца. По окончании фазы абсолютной рефрактерности возбудимость сердечной мышцы постепенно восстанавливается и на очень короткое время становится выше исходной.

Часть общего осмотического давления, обусловленная белками, называется коллоидно-осмотическим (онкотическим) давлением плазмы крови. Онкотическое давление равно 25 - 30 мм рт. ст. Это составляет 2 % от общего осмотического давления.

Онкотическое давление в большей степени зависит от альбуминов (80 % онкотического давления создают альбумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. При снижении концентрации белка в плазме крови (гипопротеинемия ) вода перестает удерживаться в сосудистом русле и переходит в ткани, развиваются отеки. Причиной гипопротеинемии может быть потеря белка с мочой при поражении почек или недостаточный синтез белка в печени при её повреждении.

Регуляция рН крови

рН (водородный показатель) – это концентрация водородных ионов, выраженная отрицательным десятичным логарифмом молярной концентрации ионов водорода. Например, рН=1 означает, что концентрация равна 10 -1 моль/л; рН=7 - концентрация составляет 10 -7 моль/л, или 100 нмоль/л. Концентрация водородных ионов существенно влияет на ферментативную деятельность, на физико-химические свойства биомолекул и надмолекулярных структур. В норме рН крови соответствует 7,36 (в артериальной крови - 7,4; в венозной крови - 7,34). Крайние пределы колебаний рН крови, совместимые с жизнью, - 7,0-7,7, или от 16 до 100 нмоль/л.

В процессе обмена веществ в организме образуется огромное количество «кислых продуктов», что должно приводить к сдвигу рН в кислую сторону. В меньшей степени в организме накапливаются в процессе метаболизма щелочи, которые могут снизить содержание водорода и сместить рН среды в щелочную сторону - алкалоз. Однако реакция крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови и нервно-рефлекторных механизмов регуляции.

Буферные системы крови

Буферные растворы (БР) сохраняют устойчивость буферных свойств в определенном интервале значений рН, то есть обладают определенной буферной емкостью. За единицу буферной емкости условно принимают емкость такого буферного раствора, для изменения рН которого на единицу требуется добавить 1 моль сильной кислоты или сильной щелочи на 1 л раствора.

Буферная емкость находится в прямой зависимости от концентрации БР: чем концентрированнее раствор, тем больше его буферная емкость; разведение БР сильно уменьшает буферную емкость и лишь незначительно изменяет рН.


Тканевая жидкость, кровь, моча и другие биологические жидкости являются буферными растворами. Благодаря действию их буферных систем поддерживается относительное постоянство водородного показателя внутренней среды, обеспечивающее полноценность метаболических процессов (см. Гомеостаз ). Наиболее важной буферной системой является бикарбонатная система крови .

Бикарбонатная буферная система

NaHCO 3 = 18

Поступающая в кровь в результате обменных процессов кислота (HA) вступает в реакцию с гидрокарбонатом натрия:

НА + NаHCO 3 ® NaA + H 2 CO 3 (1)

Это чисто химический процесс, вслед за которым включаются физиологические регуляторные механизмы.

1. Двуокись углерода возбуждает дыхательный центр, объем вентиляции увеличивается и СО 2 выводится из организма.

2. Результатом химической реакции (1) является уменьшение щелочного резерва крови, восстановление которого обеспечивается работой почек: образующаяся в результате реакции (1) соль (NаА) поступает в почечные канальцы, клетки которых непрерывно секретируют свободные водородные ионы и обменивают их на натрий:

NaА + H + ® HA + Na +

Образующиеся в канальцах почек нелетучие кислые продукты (HA) выводятся с мочой, а натрий реабсорбируется из просвета почечных канальцев в кровь, восстанавливая тем самым щелочной резерв (NаHCO 3).

Особенности бикарбонатного буфера

1. Самый быстродействующий.

2. Нейтрализует как органические, так и неорганические кислоты, поступающие в кровь.

3. Взаимодействуя с физиологическими регуляторами pH, обеспечивает выведение летучих (легкие) и нелетучих кислот, а также восстанавливает щелочной резерв крови (почки).

Фосфатная буферная система

Na 2 HPO 4 = 4

Эта система нейтрализует поступающие в кровь кислоты (НА) благодаря их взаимодействию с гидрофосфатом натрия.

НА + Na 2 HPO 4 ® NaА + NaH 2 PO 4

Образующиеся вещества в составе фильтрата поступают в почечные канальцы, где гидрофосфат натрия и натриевая соль (NaА) взаимодействуют с водородными ионами, а дигидрофосфат выделяется с мочой, освобождающийся натрий реабсорбируется в кровь и восстанавливает щелочной резерв крови:

Na 2 HPO 4 + H + ® NaH 2 PO 4 + Na +

NaA + H + ® HA + Na +

Особенности фосфатного буфера

1. Емкость фосфатной буферной системы мала в связи с небольшим количеством в плазме фосфатов.

2. Основное назначение фосфатная буферная система приобретает в почечных канальцах, участвуя в восстановлении щелочного резерва и выведении кислых продуктов.

Гемоглобиновая буферная система

KHb KHbO 2

HHb (венозная кровь) HHbO 2 (артериальная кровь)

Образующаяся в процессе обмена веществ двуокись углерода поступает в плазму, а затем в эритроцит, где под влиянием фермента карбоангидразы при взаимодействии с водой образуется угольная кислота:

СО 2 + Н 2 О ® Н 2 СО 3

В тканевых капиллярах гемоглобин отдает свой кислород тканям, а восстановленная слабая соль гемоглобина вступает в реакцию с еще более слабой угольной кислотой:

KНb + H 2 CO 3 ® KHCO 3 + HHb

Таким образом, происходит связывание водородных ионов гемоглобином. Проходя через капилляры легких, гемоглобин соединяется с кислородом и восстанавливает свои высокие кислотные свойства, поэтому реакция с Н 2 СО 3 протекает в обратном направлении:

ННbO 2 + KHCO 3 ® KHbO 2 + H 2 CO 3

Двуокись углерода поступает в плазму, возбуждает дыхательный центр и выводится с выдыхаемым воздухом.

Это давление крови (25 - 30 мм рт. ст. или 0,03 – 0,04 атм.) создается белками. От уровня этого давления зависит обмен воды между кровью и межклеточной жидкостью. Онкотическое давление плазмы крови обусловлено всеми белками крови, но основной вклад (на 80%) вносят альбумины. Крупные молекулы белков не способны выходить за пределы кровеносных сосудов, и будучи гидрофильными, удерживают воду внутри сосудов. Благодаря этому белки играют важную роль в транскапиллярном обмене. Гипопротеинемия, возникающая, например, в результате голодания, сопровождается отеками тканей (переходом воды в межклеточное пространство).

Общее количество белков в плазме составляет 7-8% или 65-85 г/л.

Функции белков крови.

1. Питательная функция .

2 . Транспортная функция.

3 . Создание онкотического давления .

4 . Буферная функция – За счет наличия в составе белков плазмы щелочных и кислых аминокислот, белки участвуют в поддержании кислотно-основного равновесия.

5 . Участие в процессах гемостаза.

Процесс свертывания включает целую цепь реакций, в которых участвует ряд белков плазмы (фибриноген и др.).

6. Белки вместе с эритроцитами определяютвязкость крови – 4,0-5,0, что в свою очередь оказывает влияние на гидростатическое давление крови, СОЭ и др.

Вязкость плазмы составляет 1,8 – 2,2 (1,8-2,5). Она обусловлена наличием в плазме белков. При обильном белковом питании вязкость плазмы и крови повышается.

7. Белки являются важным компонентом защитной функции крови (особенно γ- глобулины). Они обеспечивают гуморальный иммунитет, являясь антителами.

Все белки плазмы крови делят на 3 группы:

· альбумины,

· глобулины,

· фибриноген .

Альбумины (до 50г/л) . Их 4-5% от массы плазмы, т.е. около 60% всех белков плазмы приходится на их долю. Они являются самыми низкомолекулярными. Их молекулярная масса около 70 000 (66 000). Альбумины на 80% определяют коллоидно-осмотическое (онкотическое) давление плазмы.

Общая площадь поверхности множества мелких молекул альбумина очень велика, и поэтому они особенно хорошо подходят для выполнения функции переносчиков различных веществ. Они переносят: билирубин, уробилин, соли тяжелых металлов, жирные кислоты, лекарственные препараты (антибиотики и др.). Одна молекула альбумина может одновременно связать 20-50 молекул билирубина. Альбумины образуются в печени. При патологических состояниях их содержание снижается.

Рис. 1. Белки плазмы

Глобулины (20-30г/л). Их количество доходит до 3% от массы плазмы и 35-40% от общего количества белков, молекулярная масса до 450 000.

Различают α 1 , α 2, β и γ –глобулины (рис. 1).

Во фракции α 1 –глобулинов(4%) имеются белки, простетической группой которых являются углеводы. Эти белки называют гликопротеинами. Около 2/3 всей глюкозы плазмы циркулирует в составе этих белков.

Фракция α 2 –глобулинов (8%) включает гаптоглобины, относящиеся по химическому строению к мукопротеинам, и медьсвязывающий белок – церулоплазмин . Церулоплазмин связывает около 90% всей меди, содержащейся в плазме.

К другим белкам во фракции α 2 –глобулинов относятся тироксинсвязывающий белок, витамин – В 12 - связывающий глобулин, кортизол-связывающий глобулин.

К β–глобулинам (12%) относятся важнейшие белковые переносчики липидов и полисахаридов. Важное значение липопротеидов состоит в том, что они удерживают в растворе нерастворимые в воде жиры и липиды и обеспечивают тем самым их перенос кровью. Около 75% всех липидов плазмы входят в состав липопротеидов.

β– глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов (железа, меди).

К третьей группе - γ–глобулинам (16%) относятся белки с самой низкой электрофоретической подвижностью. γ–г лобулины участвуют в формировании антител , защищают организм от воздействий вирусов, бактерий, токсинов.

Почти при всех заболеваниях, особенно при воспалительных, содержание γ–глобулинов в плазме повышается. Повышение фракции γ –глобулинов сопровождается понижением фракции альбуминов. Происходит снижение так называемого альбумин-глобулинового индекса, который в норме составляет 0,2 /2,0.

К γ–г лобулинам относят также антитела крови (α и β агглютинины), определяющие ее принадлежность к той или иной группе крови.

Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах. Период полураспада глобулинов до 5 дней.

Фибриноген (2-4 г/л). Его количество составляет 0,2 – 0,4% от массы плазмы, молекулярная масса 340 000.

Он обладает свойством становиться нерастворимым, переходя под воздействием фермента тромбина в волокнистую структуру - фибрин, что и обусловливает свертывание (коагуляцию) крови.

Фибриноген образуется в печени. Плазма, лишенная фибриногена называется сывороткой .

Физиология эритроцитов.

Эритроциты – красные кровяные клетки, не содержащие ядра (рис.2).

У мужчин в 1 мкл крови содержится в среднем 4,5-5,5 млн. (около 5,2 млн. эритроцитов или 5,2х10 12 /л) . У женщин эритроцитов меньше и не превышает 4-5 млн. в 1 мкл (около 4,7х10 12 /л) .

Функции эритроцитов:

1.Транспортная – перенос кислорода от легких к тканям и углекислого газа от тканей к альвеолам легких. Возможность выполнять эту функцию связана с особенностями строения эритроцита: он лишен ядра, 90% его массы составляет гемоглобин, остальные 10% приходятся на белки, липиды, холестерин, минеральные соли.


Рис. 2. Эритроциты человека (электронная микроскопия)

Кроме газов эритроциты переносят аминокислоты, пептиды, нуклеотиды к различным органам и тканям.

2. Участие в иммунных реакциях – агглютинации, лизиса и т.п., что связано с наличием в мембране эритроцитов комплекса специфических соединений – антигенов (агглютиногенов).

3. Детоксицирующая функция – способность адсорбировать токсические вещества и их инактивировать.

4. Участие в стабилизации кислотно-основного состояния крови за счет гемоглобина и фермента карбоангидразы.

5. Участие в процессах свертывания крови за счет адсорбции на мембране эритроцитов ферментов этих систем.

Свойства эритроцитов .

1. Пластичность (деформируемость) – это способность эритроцитов к обратимой деформации при прохождении через микропоры и узкие извитые капилляры диаметром до 2,5-3 мкм. Это свойство обеспечивается благодаря особой форме эритроцита – двояковогнутого диска.

2. Осмотическая стойкость эритроцитов. Осмотическое давление в эритроцитах несколько выше, чем в плазме, что обеспечивает тургор клеток. Оно создается более высокой внутриклеточной концентрацией белков по сравнению с плазмой крови.

3. Агрегация эритроцитов. При замедлении движения крови и повышении ее вязкости эритроциты образуют агрегаты или монетные столбики. Вначале агрегация носит обратимый характер, но при более длительном нарушении кровотока образуются истинные агрегаты, что может привести к микротромбообразованию.

4. Эритроциты способны отталкиваться друг от друга, что связано со строением мембраны эритроцитов. Гликопротеины, составляющие 52% массы мембраны, содержат сиаловую кислоту, которая придает отрицательный заряд эритроцитам.

Эритроцит функционирует максимум 120 дней, в среднем 60-90 дней . По мере старения способность эритроцитов к деформации снижается, а превращение их в сфероциты (имеющие форму шара) за счет изменения цитоскелета приводит к тому, что они не могут проходить через капилляры диаметром до 3 мкм.

Эритроциты разрушаются внутри сосудов (внутрисосудистый гемолиз) или захватываются и разрушаются макрофагами в селезенке, купферовских клетках печени и костном мозге (внутриклеточный гемолиз).

Эритропоэз – процесс образования эритроцитов в костном мозге. Первой морфологически распознаваемой клеткой эритроидного ряда, образующейся из КОЕ-Э (предшественница эритроидного ряда), является проэритробласт, из которого в ходе 4-5 последующих удвоений и созревания образуется 16-32 зрелые эритроидные клетки.

1) 1 проэритробласт

2) 2 базофильных эритробласта I порядка

3) 4 базофильных эритробласта II порядка

4) 8 полихроматофильных эритробластов I порядка

5) 16 полихроматофильных эритробластов II порядка

6) 32 полихроматофильных нормобласта

7) 32 оксифильных нормобласта - денуклеация нормобластов

8) 32 ретикулоцита

9) 32 эритроцита.

Эритропоэз в костном мозге занимает 5 дней.

В костном мозге человека и животных эритропоэз (от проэритробласта до ретикулоцита) протекает в эритробластических островках костного мозга, которых в норме содержится до 137 на 1 мг ткани костного мозга. При угнетении эритропоэза их количество может уменьшаться в несколько раз, а при стимуляции – увеличиваться.

Из костного мозга в кровь поступают ретикулоциты, в течение суток созревающие в эритроциты. По количеству ретикулоцитов судят об эритроцитарной продукции костного мозга и интенсивности эритропоэза. У человека их количество составляет от 6 до 15 ретикулоцитов на 1000 эритроцитов.

За сутки в 1мкл крови поступает 60-80 тыс. эритроцитов. За 1 минуту образуется 160х10 6 эритроцитов.

Гуморальным регулятором эритропоэза является гомон эритропоэтин. Основным источником его у человека являются почки, их перитубулярные клетки. В них образуется до 85-90% гормона. Остальное количество вырабатывается в печени, подчелюстной слюнной железе.

Эритропоэтин усиливает пролиферацию всех способных к делению эритробластов и ускоряет синтез гемоглобина во всех эритроидных клетках, в ретикулоцитах, «запускает» в чувствительных к нему клетках синтез иРНК, необходимых для образования энзимов, участвующих в формировании гема и глобина. Гормон также увеличивает кровоток в сосудах, окружающих эритропоэтическую ткань в костном мозге и увеличивает выход в кровь ретикулоцитов из синусоидов красного костного мозга.

Физиология лейкоцитов.

Лейкоциты или белые кровяные тельца – это клетки крови, различной формы и величины, содержащие ядра.

В среднем у взрослого здорового человека в крови содержится 4 – 9х10 9 /л лейкоцитов.

Увеличение их количества в крови получило название лейкоцитоз , уменьшение – лейкопения .



Понравилась статья? Поделитесь ей
Наверх