Строение и функции сетчатки глаза. Глаз: строение органа зрения

Глаз - находится в орбитальной впадине черепа (глазнице), сзади и с боков окружен мышцами, которые прикрепляются к наружной поверхности глазного яблока и обеспечивают его движение.

Орган зрения состоит из:

Имеет форму шара. Для осмотра доступен только передний отдел - роговица и окружающая его часть, остальная часть залегает в глубине глазницы. Размер глазного яблока определяется расстоянием между передним и задним полюсами и составляет в среднем 24 мм. Линию, соединяющую оба полюса, называют наружной осью глазного яблока, либо геометрической осью глаза, либо сагиттальной осью глаза.

От указанной оси следует отличать внутреннюю ось глазного яблока, соединяющую внутреннюю поверхность роговицы, соответствующую ее переднему полюсу, с точкой на сетчатке, соответствующей заднему полюсу глазного яблока. Ее размер соответствует 21,3 мм.

Линия, соединяющая точки наибольшей окружности глазного яблока во фронтальной плоскости, называется экватором. Он находится на 10-12 мм кзади от края роговицы. Линии, проведенные перпендикулярно экватору и соединяющие на поверхности яблока оба его полюса, носят название меридианов. Вертикальный и горизонтальный меридианы делять глазное яблоко на отдельные квадранты.

Основную массу глазного яблока образует прозрачное содержимое (стекловидное тело, хрусталик, и водянистая влага), окруженное тремя оболочками: белковой - наружной или фиброзной, средней - сосудистой и внутренней - сетчатой.

  • Белковая оболочка - очень прочная соединительнотканная оболочка, которая покрывает весь глаз и защищает его от механических и химических влияний. Передняя часть этой оболочки прозрачна, она называется роговицей, задняя часть, которая является продолжением роговицы - непрозрачная, она называется склерой. Благодаря белковой оболочке глазное яблоко сохраняет присущую ему форму.
  • Средняя оболочка глаза - сосудистая - пронизана густой сеткой кровеносных сосудов, которые питают ткани глаза. В передней части глаза она утолщается, образуя ресничное тело, в толще которого находится ресничная мышца, изменяющая своим сокращением кривизну хрусталика. Ресничное тело переходит в радужную оболочку, состоящую из нескольких слоев. В более глубоком слое залегают пигментные клетки. От количества пигмента зависит цвет глаз. В центре радужной оболочки есть отверстие - зрачок, вокруг которого расположены круговые мышцы. При их сокращении зрачок суживается. Радиальные мышцы, имеющиеся в радужной оболочке, расширяют зрачок. Суживаясь или расширяясь, зрачок регулирует количество света, которое поступает внутрь глаза.
  • Внутренняя оболочка глаза - сетчатка - состоит из двух частей: задней части (зрительная часть сетчатки), состоящей из светочувствительных клеток - фоторецепторов, воспринимающих свет, поступающий в глаз и передней части - не содержащей светочувствительных элементов - слепой части сетчатки.

Зрительная часть сетчатки состоит из пигментных клеток и трех слоев нейронов: первый слой - собственно фоторецепторы - палочки и колбочки, второй слой - биполярные клетки, которые соединяют фоторецепторы с нейронами третьего слоя. Аксоны последних нейронов образуют зрительный нерв. Место, где зрительный нерв выходит из сетчатки (диск зрительного нерва), лишено фоторецепторов, не воспринимает света и называется слепым пятном.

На 3-4 мм кнаружи от диска зрительного нерва (от слепого пятна) в сетчатой оболочке, напротив зрачка, имеется желтое пятно - место наилучшего видения, содержащее наибольшее количество колбочек. Вокруг желтого пятна встречаются и колбочки и палочки, а еще дальше на периферии - только палочки. В глазу у человека насчитывается около 130 млн. палочек и 7 млн. колбочек.

Сетчатка расположена на задней стенке глаза таким образом, что ее фоторецепторы (палочки и колбочки) ориентированы не навстречу световым лучам, а наоборот, обращены к пигментным клеткам и возбуждаются отраженными от них лучами. Способность глаза рассматривать предметы при различной яркости освещения называется адаптацией.

Палочки и колбочки представляют собой нейроны с отростками разной формы. Они отличаются не только формой и строением, но и функцией. Палочки являются рецепторами сумеречного зрения, они возбуждаются при действии слабого света, но при этом человек не различает цветов и видит нечетко. Колбочки - рецепторы дневного зрения. Они приспособлены к восприятию яркого света и способны воспринимать различные цвета.

В палочках имеется вещество красного цвета - зрительный пурпур, или родопсин; на свету, в результате фотохимической реакции, он распадается, а в темноте восстанавливается в течение 30 мин из продуктов собственного расщепления. Вот почему человек, войдя в темную комнату, вначале ничего не видит, а через некоторое время начинает постепенно различать предметы (ко времени окончания синтеза родопсина). В образовании родопсина участвует витамин А, при его недостатке этот процесс нарушается и развивается "куриная слепота".

В колбочках содержится другое светочувствительное вещество - иодопсин. Он распадается в темноте и восстанавливается на свету в течение 3-5 мин. Расщепление иодопсина на свету дает цветовое ощущение.

Цветное зрение объясняется тем, что в сетчатке есть три рода колбочек: одни возбуждаются красным цветом, другие зеленым, третьи - синим. Ощущение всех других цветов возникает вследствие возбуждения этих колбочек в разных соотношениях. Бывают случаи, когда человек не различает некоторых цветов (цветовая слепота, дальтонизм). Это связано с нарушением функций колбочек определенного рода.

Кроме этих слоев, образующих стенку глаза, в нем имеются

  • водянистая влага
  • хрусталик
  • стекловидное тело.

Они заполняют внутреннюю полость глаза и являются его оптической системой, проводящей и преломляющей световые лучи внутри глаза таким образом, что на сетчатке образуется уменьшенное обратное изображение предмета, который находится перед роговицей.

Оптическая система глаза имеет способность создавать на сетчатке изображение предметов, расположенных как на близком, так и на далеком расстоянии от глаза. Эта способность называется аккомодацией и достигается благодаря тему, что хрусталик может изменять свoю форму.

Водянистая влага - прозрачная, бесцветная жидкость, заполняет переднюю и заднюю камеры глазного яблока - щелевидные полости, располагающиеся впереди и позади радужки. Водянистая влага продуцируется сосудами ресничного тела и радужкой. Не путать водянистую влагу камер глазного яблока со слезой! Отток водянистой влаги осуществляется в систему вортикозных вен, в ресничные и конъюнктивальные вены.

Хрусталик расположен позади зрачка и прилегает к радужке. Представляет собой прозрачное тело, имеющее форму двояковыпуклой линзы. Заключен в капсулу, от которой отходят цинновы связки, прикрепляющиеся к ресничной мышце. Сокращения этой мышцы изменяют кривизну хрусталика, делают его более выпуклым или более плоским. При этом изменяется преломляющая сила хрусталика, и он фокусирует на сетчатке изображение соответственно близких или далеких предметов. Иногда наблюдаются нарушения зрения, связанные с неспособностью хрусталика четко фокусировать изображение на сетчатке.

Полость глаза за хрусталиком заполнена вязким веществом - стекловидным телом . Это бесцветная прозрачная масса, по консистенции напоминающая студень.

Вспомогательный аппарат глаза

Вспомогательный аппарат глаза выполняет двигательную и защитную функции. Двигательная функция осуществляется шестью мышцами (верхняя, нижняя, латеральная и медиальная прямые, верхняя и нижняя косые), от сокращению которых зависят движения глаз.

Защитную функцию выполняет слезный аппарат, состоящий из слезных желез, отводящих путей, слезных канальцев, слезного мешка и носослезного протока. Слеза предохраняет роговицу от переохлаждения, высыхания и смывает осевшие пылевые частицы.

К защитному аппарату относятся также брови, веки и ресницы. Веки представляют собой кожные складки, при смыкании они полностью покрывают глазное яблоко. Внутренняя поверхность век покрыта слизистой оболочкой - конъюнктивой. Края век снабжены ресницами, позади них располагаются отверстия сальных желез, в которых вырабатывается жировой секрет для смазки краев век. Брови имеют вид валиков, они покрыты волосами и предохраняют глаз сверху.

Функции глаза

Основная функция зрения состоит в различении яркости, цвета, формы, размеров наблюдаемых объектов. Наряду с другими анализаторами зрение играет большую роль в регуляции положения тела и в определении расстояния до объекта.

Возникновение зрительных ощущений - происходит при помощи зрительного анализатора. Зрительный анализатор представлен воспринимающим отделом - рецепторами сетчатой оболочки глаза, зрительными нервами, проводящей системой и соответствующими участками коры в затылочных долях мозга.

Глаз человека пропускает и преломляет лишь лучи с длиной волны от 400 до 760 мкм. Все преломляющие среды глаза, начиная с роговицы, поглощают ультрафиолетовые лучи. Световые раздражения воспринимаются фоторецепторами - палочками и колбочками сетчатки. Прежде чем достигнуть сетчатки, лучи света проходят через светопреломляющие среды глаза. При этом на сетчатке получается действительное обратное уменьшенное изображение. Несмотря на перевернутость изображения предметов на сетчатке, вследствие переработки информации в коре головного мозга человек воспринимает их в естественном положении, к тому же зрительные ощущения всегда дополняются и согласуются с показаниями других анализаторов.

Четкое представление о наблюдаемых объектах, расположенных на различном расстоянии, осуществляется за счет аккомодации - приспособления глаза к видению различно удаленных предметов. При аккомодации сокращаются мышцы, которые изменяют кривизну хрусталика.

С возрастом эластичность хрусталика уменьшается, он становится более уплощенным и аккомодация ослабевает. В это время человек хорошо видит только далекие предметы: развивается так называемая старческая дальнозоркость. Кроме того существует врожденная дальнозоркость, связанная уменьшенной величиной глазного яблока или слабой преломляющей силой роговицы или хрусталика. При дальнозоркости изображение от далеких предметов фокусируется позади сетчатки.

К нарушениям функции глаза относится и близорукость. При близорукости глазное яблоко увеличено в размере, изображение далеких предметов даже при отсутствии аккомодации хрусталика получается перед сетчаткой. Такой глаз ясно видит только близкие предметы и поэтому называется близоруким.

Эти нарушения зрения исправляют очками, линзы которых усиливают или ослабляют преломляющую силу оптической системы глаза. Очки подбираются индивидуально. Передвижение изображения на сетчатку при близорукости осуществляется при помощи вогнутых стекол, при дальнозоркости - выпуклых стекол. В отличие от старческой при врожденной дальнозоркости аккомодация хрусталика может быть нормальная.

Достижение света фоторецепторов приводит к фотохимической реакции - распаде светочувствительных пигментов. Продукты распада изменяют мембранный потенциал фоторецепторов, в результате чего в нейронах сетчатки, связанных с ними, возникает возбуждение. Это возбуждение по волокнам зрительного нерва проводится к зрительному центру коры больших полушарий, где происходят окончательный анализ возбуждения, различение изображений и формирование ощущения.

От избыточной освещенности глаз предохраняется путем изменения диаметра зрачка. Помимо этого сетчатка сама способна компенсировать увеличение яркости: существуют колбочки к палочки, функционирующие в разных диапазонах яркостей, происходят перестройка рецепторных областей, фотохимические сдвиги и т. д.

Гигиена зрения

Глаз следует оберегать от разных механических воздействий, читать в хорошо освещенном помещении, держа книгу на определенном расстоянии (до 33-35 см от глаза). Свет должен падать слева. Нельзя близко наклоняться к книге, так как хрусталик в этом положении долго находится в выпуклом состоянии, что может привести к развитию близорукости.

Слишком яркое освещение вредит зрению, разрушает световоспринимающие клетки. Поэтому сталеварам, сварщикам и лицам других сходных профессий рекомендуется надевать во время работы темные защитные очки.

Нельзя читать в движущемся транспорте. Из-за неустойчивости положения книги все время меняется фокусное расстояние. Это ведет к изменению кривизны хрусталика, уменьшению его эластичности, в результате чего ослабевает ресничная мышца. Расстройство зрения может возникнуть также из-за недостатка витамина А.

Таблица. Орган зрения

Системы Придатки и части глаза Строение Функции
Вспомогательные Брови Волосы, растущие от внутреннего к внешнему углу глаза Отводят пот со лба
Веки Кожные складки с ресницами Защищают глаз от световых лучей, пыли
Слезный аппарат Слезная железа и слезовыводящие пути Слезы смачивают, очищают, дезинфицируют глаз
Оболочки Белочная Наружная плотная оболочка, состоящая из соединительной ткани Защита глаза от механического и химического воздействия, вместилище всех частей глазного яблока
Сосудистая Срединная оболочка, пронизанная кровеносными сосудами Питание глаза
Сетчатка Внутренняя оболочка глаза, состоящая из фоторецепторов - палочек и колбочек Восприятие света
Оптическая Роговица Прозрачная передняя часть белочной оболочки Преломляет лучи света
Водянистая влага Прозрачная жидкость, находящаяся за роговицей Пропускает лучи света
Радужная оболочка (радужка) Передняя часть сосудистой оболочки Содержит пигмент, придающий цвет глазу
Зрачок Отверстие в радужной оболочке, окруженное мышцами Регулирует количество света, расширяясь и суживаясь
Хрусталик Двояковыпуклая эластичная прозрачная линза, окруженная ресничной мышцей Преломляет и фокусирует лучи света, обладает аккомодацией
Стекловидное тело Прозрачное тело в состоянии коллоида Заполняет глазное яблоко. Пропускает лучи света
Световоспринимающая Фоторецепторы (нейроны) В сетчатке в форме палочек и колбочек Палочки воспринимают форму (зрение при слабом освещении), колбочки - цвет (цветовое зрение)
Зрительный нерв Нервные клетки коры, от которых начинаются волокна зрительного нерва, соединены с отростками фоторецепторных нейронов Воспринимает возбуждение и передает в зрительную зону коры головного мозга, где происходит анализ возбуждения и формирование зрительных образов

В большой степени прогрессу физиологии зрения и слуха, способствовали работы Г. Л. Гельмгольца.

Здоровье глаз

Строение органа зрения человека и особенности его развития

Орган зрения человека, это сложный элемент человеческого организма.

Несмотря на властвование техники, появление «умных» машин, искусственный интеллект по-прежнему не способен конкурировать с природным интеллектом и работой организма – в целом.

Человеческий организм – самый совершенный компьютер.

Сегодня, это практически вечный двигатель, если судить с точки зрения трансплантологии, когда один орган способен «обслуживать» два организма.

Строение человеческого глаза

Глаза – орган зрения, во-первых, поэтому он содержит множество чувствительных рецепторов. Человеческий глаз – это маленький наружный мозг. Это гипоталамус и гипофиз головного мозга.

Глаза устроены достаточно сложно и слажено между собой и со всем организмом. Это парный орган, обеспечивающий прием и передачу к мозгу внешней информации.

Орган зрения состоит из таких частей:

  1. Глазного яблока
  2. Защитных частей: глазницы, век, слезного и двигательного аппарата.

Глазное яблоко помещено в глазницы – впадины черепа, которые являются его составляющими. Это надежно защищает глазное яблоко.

Глазницы имеют две стороны – правую и левую. Обе стороны имеют форму четырехгранных пирамид, которые обращены своими вершинами назад. Оси глазниц пересекаются в черепе возле турецкого седла. Верхняя глазница составляет одну из стенок пазухи лба, тогда, как нижняя глазница является одной из сторон гайморовой пазухи.

С внутренней стороны верхней глазницы открывается зрительная щель, которая направляет преломленные лучи света к мозгу. Через эту щель проходит зрительный нерв и глазничная артерия.

Итак, в глазнице расположены:

  • Глазное яблоко
  • Ткани, облегающие глазное яблоко – жировая, мышечная, сосудистая и нервные волокна.

Само же глазное яблоко состоит из таких анатомо-физиологических образований, которые делятся на три группы:

  • Капсула глаза, сосудистый тракт и сетчатка
  • Внутриглазная жидкость
  • Хрусталик и стекловидное тело

Капсула глаза, сосудистый тракт

Капсула глаза - это наружная оболочка глазного яблока, состоящая, главным образом, из белой фиброзной ткани – склеры. Внешняя часть склеры покрыта оболочкой, которая называется роговицей.

Роговица – это тонкая и прозрачная, но достаточно прочная оболочка, защищающая глазное яблоко от внешних влияний. Также, роговица выполняет оптическую функцию – она преломляет лучи света. За роговицей расположена сетчатка, которая и производит предварительную переработку информации, после чего посредством нервных импульсов передает ее в мозг.

Внутренняя сторона склеры утончается и переходит в решетчатую пластинку. Через эту пластинку проходят нервные волокна. Внешняя сторона склера переходит в плотную оболочку, которая покрыта сосудистой оболочкой. Сосудистая оболочка образует сосудистый тракт.

Сосудистый тракт принято делить на три части:

  • сосудистая оболочка
  • ресничное тело оно же цилиарное тело
  • радужная оболочка.

Роль сосудистой оболочки глаза заключена в питании органа зрения. Ресничное (цилиарное) тело вырабатывает влагу и питает глаз, а также приспосабливает глаза видеть предметы одинаково на разном расстоянии. То есть, выполняет аккомадиционную функцию.

Радужная оболочка – диафрагма с центральным отверстием (зрачком), которая определяет цвет глаза. Именно в ней вырабатывается и накапливается пигмент. Формируется эта оболочка возле границы склеры и роговицы. Радужная оболочка, помимо того, что определяет какого цвета, будет орган зрения, регулирует количество поступающего света к сетчатке.

Внутриглазная жидкость, хрусталик и стекловидное тело

Внутриглазная жидкость – это не слезы и предназначена она для внутренних потребностей глаза. В отличие от слезной жидкости, внутриглазная не омывает глазное яблоко, а питает его. Также она питает все внутренние структуры глаза.

Хрусталик – это относительно твердое и подвижное тело, которое расположено сразу же за радужкой. Крепится хрусталик посредством миллиона цинновых связок. Предназначен хрусталик для преломления световых лучей.

Стекловидное тело – это гелеподобная масса, которая заполняет собой все пространство глазного яблока за хрусталиком. Эта масса имеет в своем составе около 98% воды. Главная задача этой составляющей – сохранять форму глазного яблока.

Кроме того, через стекловидное тело проходят световые лучи к сетчатке. То есть, эта масса выполняет также оптическую функцию.

Наружнее строение глаза

Составляющими наружного строения глаза, являются:

  • Слезные точки
  • Ресницы

Веки представляют собой гибкие кожные складки, которые соединяются между собой внешними и внутренними спайками. Веки прикрывают глазное яблоко и помогают внутренним тканям удерживать глазное яблоко.

Веки во внутренних углах образуют изгиб, имеющий форму подковы. Этот изгиб сужает пространство и называется оно слезным озером. Именно здесь расположены слезные точки и слезовыводящие канальца.

Слезных точек – две. Одна из них расположена вверху краю века, а вторая, соответственно, в нижнем краю века. В этих местах слезные точки переходят в слезоотводящие канальца. В свою очередь канальца «впадают» в слезный мешочек, который имеет выход в носовую полость через слезно-носовой канал.

Наш организм взаимодействует с окружающей средой при помощи органов чувств, или анализаторов. С их помощью человек не только способен «ощущать» внешний мир, на основе этих ощущений он обладает особыми формами отражения - самосознанием, творчеством, способностью предвидеть события и т. д.

Что представляет собой анализатор?

Согласно И. П. Павлову, каждый анализатор (и даже орган зрения) - не что иное, как комплексный «механизм». Он способен не только воспринимать сигналы окружающей среды и преобразовать их энергию в импульс, но и производить высший анализ и синтез.

Орган зрения, как и любой другой анализатор, состоит из 3-х неотъемлемых частей:

Периферическая часть, которая отвечает за восприятие энергии внешнего раздражения и переработку ее в нервный импульс;

Проводящие пути, благодаря которым нервный импульс проходит прямо к нервному центру;

Корковый конец анализатора (или же сенсорный центр), расположенный непосредственно в головном мозге.

Палочки состоят из внутреннего и наружного сегментов. Последний образуется при помощи сдвоенных мембранных дисков, которые собой представляют складки плазматической мембраны. Колбочки отличаются величиной (они больше) и характером дисков.

В различают три типа колбочек и всего один вид палочек. Количество палочек может достигать 70 млн, а то и больше, в то время как колбочек - всего 5-7 млн.

Как уже было сказано, существует три типа колбочек. Каждый из них воспринимает разный цвет: синий, красный или желтый.

Палочки же нужны для восприятия информации о форме предмета и освещенности помещения.

От каждой из фоторецепторных клеток отходит тоненький отросток, который образует синапс (место, где контактируют два нейрона) с другим отростком биполярных нейронов (нейрон II). Последние передают возбуждение уже более крупным ганглиозным клеткам (нейрон III). Аксоны (отростки) этих клеток образуют зрительный нерв.

Хрусталик

Это двояковыпуклая кристально прозрачная линза диаметром 7-10 мм. Не имеет ни нервов, ни сосудов. Под влиянием ресничной мышцы хрусталик способен менять свою форму. Именно эти изменения формы хрусталика и называются аккомодацией глаза. При установке на дальнее видение хрусталик уплощается, а при ближнем видении - увеличивается.

Вместе со хрусталик образует светопреломляющую среду глаза.

Стекловидное тело

Им заполнено все свободное пространство между сетчаткой и хрусталиком. Имеет желеобразную прозрачную структуру.

Строение органа зрения аналогично принципу устройства фотоаппарата. Зрачок исполняет роль диафрагмы, суживаясь или расширяясь в зависимости от освещения. В качестве объектива - стекловидное тело и хрусталик. Световые лучи попадают на сетчатку, но изображение при этом выходит перевернутым.

Благодаря светопреломляющим средам (тем самым хрусталику и стекловидному телу) пучок света попадает на желтое пятно на сетчатке, которое является лучшей зоной видения. Колбочек и палочек световые волны достигнут лишь после того, как пройдут всю толщу сетчатки.

Двигательный аппарат

Двигательный аппарат глаза составляют поперечнополосатые 4 прямые мышцы (нижняя, верхняя, латеральная и медиальная) и 2 косые (нижняя и верхняя). Прямые мышцы отвечают за поворот глазного яблока в соответствующую сторону, а косые - за повороты вокруг сагиттальной оси. Движения обоих глазных яблок синхронные только благодаря мышцам.

Веки

Кожные складки, цель которых - ограничивать глазную щель и закрывать ее при смыкании, обеспечивают защиту глазного яблока спереди. На каждом веке находится около 75 ресниц, цель которых - защитить глазное яблоко от попадания инородного предмета.

Примерно раз в 5-10 секунд человек моргает.

Слезный аппарат

Состоит из слезных желез и системы слезных путей. Слезы обезвреживают микроорганизмы и способны увлажнить конъюнктиву. Без слез конъюнктива глаза и роговица просто высохли бы, и человек бы ослеп.

Слезные железы ежедневно вырабатывают около ста миллилитров слезы. Интересный факт: женщины плачут чаще, чем мужчины, потому что выделению слезной жидкости способствует гормон пролактин (которого у девушек гораздо больше).

В основном слеза состоит из воды, содержащей примерно 0,5 % альбумина, 1,5% хлорида натрия, немного слизи и лизоцима, который обладает бактерицидным действием. Имеет слабощелочную реакцию.

Строение глаза человека: схема

Давайте подробнее рассмотрим анатомию органа зрения с помощью рисунков.

На рисунке сверху схематически изображены части органа зрения в горизонтальном разрезе. Здесь:

1 - сухожилие средней прямой мышцы;

2 - задняя камера;

3 - роговая оболочка глаза;

4 - зрачок;

5 - хрусталик;

6 - передняя камера;

7 - радужная оболочка глаза;

8 - конъюнктива;

9 - сухожилие прямой латеральной мышцы;

10 - стекловидное тело;

11 - склера;

12 - сосудистая оболочка;

13 - сетчатка;

14 - желтое пятно;

15 - зрительный нерв;

16 - кровяные сосуды сетчатки.

На данном рисунке изображено схематическое строение сетчатки глаза. Стрелкой показано направление пучка света. Цифрами отмечены:

1 - склера;

2 - сосудистая оболочка;

3 - пигментные клетки сетчатки;

4 - палочки;

5 - колбочки;

6 - горизонтальные клетки;

7 - биполярные клетки;

8 - амакринные клетки;

9 - ганглиозные клетки;

10 - волокна зрительного нерва.

На рисунке изображена схема оптической оси глаза:

1 - объект;

2 - роговая оболочка глаза;

3 - зрачок;

4 - радужная оболочка;

5 - хрусталик;

6 - центральная точка;

7 - изображение.

Какие функции выполняет орган?

Как уже упоминалось, зрение человека передает практически 90% информации об окружающем нас мире. Без него мир бы был однотипным и неинтересным.

Орган зрения является достаточно сложным и не до конца изученным анализатором. Даже в наше время у ученых иногда возникают вопросы по поводу строения и предназначения этого органа.

Основные функции органа зрения - восприятие света, форм окружающего мира, положения предметов в пространстве и т. д.

Свет способен вызвать сложные изменения в и, таким образом, является адекватным раздражителем для органов зрения. Считается, что первым воспринимает раздражение родопсин.

Наиболее качественное зрительное восприятие будет при условии, что изображение предмета будет падать на область пятна сетчатки, желательно на его центральную ямку. Чем дальше от центра проекция изображения предмета, тем оно менее отчетливо. Такова физиология органа зрения.

Заболевания органа зрения

Давайте рассмотрим некоторые самые распространенные заболевания органов зрения.

  1. Дальнозоркость. Второе название данного заболевания - гиперметропия. Человек с этим недугом плохо видит объекты, которые находится близко. Обычно затруднено чтение, работа с маленькими предметами. Обычно развивается у людей в возрасте, но может появиться и у молодых. Полностью излечить дальнозоркость можно только при помощи опреционного вмешательства.
  2. Близорукость (ее еще называют миопия). Заболевание характеризуется невозможностью хорошо видеть предметы, находящиеся достаточно далеко.
  3. Глаукома - повышение внутриглазного давления. Происходит из-за нарушения циркуляции жидкости в глазу. Лечится медикаментозно, но в некоторых случаях может потребоваться операция.
  4. Катаракта - не что иное, как нарушение прозрачности хрусталика глаза. Помочь избавиться от этого заболевания может только офтальмолог. Требуется хирургическое вмешательство, при котором зрение человека можно восстановить.
  5. Воспалительные заболевания. К таким относятся конъюнктивит, кератит, блефарит и прочие. Каждое из них по-своему опасно и имеет различные методы лечения: некоторые можно излечить медикаментами, а некоторые только при помощи операций.

Профилактика заболеваний

В первую очередь нужно помнить, что вашим глазам тоже нужно отдыхать, и чрезмерные нагрузки ни к чему хорошему не приведут.

Используйте только качественное освещение с лампой мощностью от 60 до 100 Вт.

Чаще проводите гимнастику для глаз и хотя бы раз в год проходите обследование у офтальмолога.

Помните, что заболевания органов глаз - достаточно серьезная угроза качеству вашей жизни.

Кажется, что чем больше мы ее изучаем, тем большее удивление вызывает эта сложность, представлявшаяся ранее нам такой ясной и доступной, но сейчас, на новом витке научного познания, остающаяся как никогда непостижимой.

Мысль о том, что живые существа меняются с течением времени, высказывалась многими задолго до Чарльза Дарвина. Среди ранних эволюционистов был не только Ламарк, но и дед Дарвина - Эразм. Однако эти идеи не могли стать господствующими в науке, так как за ними не стояло рационалистического объяснения механизма эволюции. Ламарк постулировал некое вложенное во все живое стремление к совершенству - особую сущность, которую он называл принципом градации. Дарвин же нашел механистическое объяснение процессу изменения органического мира, и оно оказалось очень простым и понятным образованной публике того времени - естественный отбор (natural selection).

Имеется много документальных подтверждений того, что Дарвин был поражен сложностью глаза, несмотря на то, что по сравнению с современной наукой, у него было мало знаний. И все же, хотя он не мог объяснить, как именно это происходило, он верил, что такая удивительная сложность могла развиваться путем естественного процесса эволюции. Очень маленькие изменения, отобранные в качестве преимущественных, могли передаваться и увеличиваться на протяжении многих поколений для того, чтобы создать основное чудо сложности как человеческий глаз.

Очевидно, что Дарвин не был сумасшедшим. Он предложил свою теорию эволюции, и его основные объяснения касательно постепенного развития сложных структур, таких как глаза, убедили большинство современных исследователей. Итак, что именно он предложил для объяснения сложности таких структур, как человеческий глаз? Рассмотрите следующую цитату Дарвина:

Разум говорит мне, что если бы могли происходить постепенные переходы от простого несовершенного глаза к сложному и совершенному, то каждый уровень перехода был бы полезным для его обладателя, как это и есть. Если далее глаз непрерывно изменяется, и эти изменения наследуются, что также соответствует действительности, и если бы такие изменения были полезны для любого животного при изменяющихся условиях жизни, тогда трудность поверить в то, что совершенный и сложный глаз мог быть создан путем естественного отбора, хоть это и непостижимо для нашего воображения, не рассматривалась бы как ниспровергающая теорию.

Дарвин не был в состоянии дать объяснение тому, что происходило в реальности, но он предложил последовательную эволюцию человеческого глаза, приводя примеры различий в глазах других существ, которые казались менее сложными. Эти различия были расположены в последовательном порядке в прогрессии: от наиболее простых до наиболее сложных глаз. Появилось большое количество посредников, которые соединяли один тип глаза с другим в эволюционной шкале.

Некоторые из "наиболее простых" глаз - это ни что иное, как просто пятно из небольшого количества светочувствительных клеток, объединенных вместе. Такой тип глаза годится только для различения света от тьмы. Он не может определять изображения. Начиная от такого простого глаза, Дарвин продолжал демонстрировать существа с последовательно более сложными глазами, пока не была достигнута сложность человеческого глаза.

Определенно, такой сценарий кажется рациональным. Тем не менее, многие из теорий, которые изначально казались на бумаге целесообразными, вскоре были опровергнуты. Такие теории требуют прямого экспериментального доказательства для своей поддержки, прежде чем их примут в качестве "научных". Неужели сложные структуры, такие как глаза, действительно эволюционировали в реальной жизни? Не существует документального подтверждения, что у кого-то эволюционировал глаз, или хотя бы глазное пятно, с помощью любого механизма отбора в существе, у которого раньше не было глаз. Также, нет документального свидетельства в пользу эволюции одного типа глаз в другой тип в любом существе, никакая эволюция глаз вообще никогда не наблюдалась. Конечно, доводом является то, что для такой эволюции необходимо тысячи или миллионы лет. Возможно и так, но без возможности наблюдения и испытания, такие предположения, хотя и целесообразные, должны содержать большую степень веры.

Необходимая вера в такой сценарий увеличивается еще больше, когда принимается во внимание тот факт, что даже простое светочувствительное пятно является чрезвычайно сложным, вовлекая большое количество специальных протеинов и белковых систем. Эти протеины и системы интегрированы таким способом, что если хотя бы что-то одно отсутствовало, то зрение прекратилось бы. Другими словами, чтобы такое чудо как зрение произошло даже в светочувствительном пятне, много различных протеинов и систем должны были эволюционировать одновременно, поскольку без них не было бы зрения.

Например, первый шаг в зрении - это обнаружение фотонов. Для того чтобы уловить фотон, специализированные клетки используют молекулу, которая называется "11-цис-ретиналь". Когда фотон света взаимодействует с этой молекулой, он почти мгновенно изменяет ее форму. Эта форма теперь называется "транс-ретиналь". Такое изменение приводит к изменению формы другой молекулы, которая называется родопсином (rhodopsin). Новая форма родопсина называется метародопсином II (metarhodopsin II). Метародопсин ІІ далее присоединяется к другому протеину, трансдусину (transducin), заставляя его отпустить присоединенную молекулу, которая называется GDP, и подобрать другую молекулу, GTP.

Молекула GTP-трансдусин-метародопсин II присоединяется к другому протеину, который называется фосфодиэстераза. Когда это происходит, фосфодиэстераза расщепляет молекулы, которые называются cGMPs. Это расщепление cGMPs уменьшает их относительное количество в клетке. Такое уменьшение cGMPs воспринимается ионным каналом. Этот ионный канал закрывается и не дает иону натрия проникать в клетку. Это блокирование проникновения натрия в клетку является причиной нарушения баланса заряда вдоль мембраны клетки. Это нарушение равновесия заряда посылает электрический ток в мозг. Потом мозг интерпретирует этот сигнал, а результат называется зрением. Необходимо много других протеинов, чтобы вернуть протеины и другие упоминавшиеся молекулы назад к их первоначальным формам, чтобы они могли уловить другой фотон света и дать сигнал мозгу. Если какой-нибудь из этих протеинов или молекул отсутствует, даже в наиболее простой глазной системе, зрение не состоится.

Конечно, возникает вопрос, как могла такая система постепенно эволюционировать?

Все части должны находиться на месте одновременно. Например, какую пользу извлек бы червь, не имеющий глаз, эволюционировав неожиданно протеин 11-цис-ретиналь в маленькой группе или "пятне" клеток на голове? Такие клетки могут определять фотоны, но что из этого? Какая польза в этом для червя?

Теперь, предположим, что эти клетки развили каким-то образом все необходимые протеины, чтобы активизировать электрический заряд сквозь свои мембраны в ответ на фотон света, который падает на них. Ну и что? Какая польза из того, что они имеют возможность установить электрический потенциал на своих мембранах, если не существует нервного пути к мозгу червя? Что бы было, если бы этот путь внезапно эволюционировал, и такой сигнал мог бы посылаться в мозг червя. И что из этого? Каким образом червь собирается узнать, что делать с этим сигналом? Он должен будет научиться понимать, что означает этот сигнал. Изучение и интерпретация являются очень сложными процессами, вовлекающими много разных протеинов в других уникальных системах. Теперь червь в течение своей жизни должен эволюционировать возможность передать эту способность своим потомкам. Если он не передаст эту способность, то потомок должен будет научиться сам, в противном же случае зрение не даст ему никакого преимущества.

Все эти прекрасные процессы требуют регулирования. Никакая из функций не может быть полезной, пока она не будет регулироваться (включаться и выключаться). Если светочувствительные клетки не могут выключаться, когда они включены, зрение может и не состоятся. Такая способность к регулированию тоже чрезвычайно сложна, и в нее вовлекается множество протеинов и других молекул, при этом чтобы зрение принесло пользу, все они должны находиться на своем месте... изначально.

Но, что если мы не станем объяснять происхождение первого, чувствительного к свету "пятна". Эволюция более сложных глаз, с такой точки зрения, представляется простой, не так ли? Не совсем.

Дело в том, что для каждого из различных компонентов требуется наличие уникальных протеинов, выполняющих специфические функции, которые должны быть закодированы уникальным геном в ДНК этого существа. Ни гены, ни протеины, которые они кодируют, не функционируют самостоятельно. Существование уникального гена или протеина означает, что вовлекается уникальная система других генов или протеинов со своей функцией. В такой системе отсутствие хотя бы одного системного гена, протеина или молекулы означает, что целая система становиться нефункциональной. Принимая во внимание тот факт, что эволюция одного гена или протеина никогда не наблюдалась и не воспроизводилась в лабораторных условиях, такие, на первый взгляд незначительные различия, внезапно становятся очень важными и огромными.

Дефекты дизайна

А как насчет "дефектов дизайна" в человеческом глазе? Существует известный аргумент в пользу эволюции, что интеллектуальный дизайнер ничего не создавал бы с дефектами. Эволюция, с другой стороны, будучи естественным процессом проб и ошибок, легко объясняет существование дефектов в природном мире. Хотя многих это доказательство убедило, оно само по себе предполагает мотивы и возможности дизайнера. Говорить, что все созданное должно соответствовать нашим индивидуальным убеждениям о совершенстве, перед тем как мы сможем определить дизайн, вводит в заблуждение.

Другая проблема выявления дефектов дизайна в природе заключается в том, что нам не известна вся информация, которую необходимо знать. То, что нам изначально кажется дефектом дизайна, может оказаться преимуществом, как только мы больше узнаем о потребностях определенной системы или существа. В любом случае, давайте детальнее рассмотрим предполагаемые дефекты дизайна человеческого глаза. В своей книге 1986 года, "Слепой часовщик", известный биолог-эволюционист Ричард Доукинс выдвигает это аргумент дефекта в дизайне глазе человека:

Любой инженер естественно предположил бы, что фотоэлементы будут направлены к свету, а их провода будут направленными обратно к мозгу. Он высмеивал бы любое предположение, что фотоэлементы могут быть направленными от света, а их провода, остались на стороне, наиболее близко расположенной к этому свету. И все же, точно так это происходит во всех сетчатках позвоночных. Каждый фотоэлемент, в действительности, подключен "задом наперед", а его провод торчит в сторону, наиболее близкой к свету. Провод должен двигаться по поверхности сетчатки к месту, где он проходит через отверстие в сетчатке (так называемое "слепое пятно"), чтобы затем присоединиться к оптическому нерву. Это означает, что свет, вместо того чтобы без препятствий проходить к фотоэлементам, должен преодолеть массу соединенных проводов, и, по-видимому, испытывает некоторое ослабление и искажение (фактически, не очень большое, но, тем не менее, это является принципом, который оскорбил бы любого мыслящего инженера). Я не ожидаю точного объяснения этого странного положения дел. Соответствующий период эволюции произошел так давно.

Доказательство Доукинса, определенно, кажется интуитивным. Проблема Доукинса не в обосновании интуицией, а скорее в недостатке проверки его гипотезы. Она может казаться сколь угодно обоснованной до тех пор, пока Доукинс не будет иметь возможности проверить свои предположения, чтобы в действительности увидеть насколько "перевернутая" конструкция сетчатки лучше "неперевернутой" для потребностей человека. Эта гипотеза остается непроверенной, и поэтому не поддерживается научным методом. Кроме этой проблемы существует еще одна: даже если бы Доукинс доказал с научной стороны, что перевернутая сетчатка на самом деле более необходима для человеческого зрения, это все еще не опровергло бы дизайн с научной точки зрения.

Сила теории дизайна остается не в ее возможности проявлять совершенство в дизайне, а в ее возможности указывать на статистическую невозможность натуралистического метода для объяснения сложности жизни, которая очевидна в такой структуре, как человеческий глаз. Предполагаемые дефекты не устраняют этого статистического вызова эволюционным теориям. Ошибка Доукинса заключается в предположении, что размышления, знания и мотивация всех дизайнеров похожи на его размышления, знания и мотивацию. Проблемы Доукинса далее обостряются его собственным признанием, что перевернутая сетчатка прекрасно функционирует. Его аргумент обсуждает не технические неисправности перевернутой сетчатки, а касается эстетики. Перевернутая сетчатка не кажется ему правильной, не смотря на тот факт, что она используется животными, обладающими наиболее острыми в мире зрительными системами (формирующими изображение).

Неперевернутая против перевернутой

Наиболее развитые неперевернутые сетчатки в мире принадлежат осьминогу и кальмару (головоногим). Средняя сетчатка осьминога содержит 20 миллионов клеток-фоторецепторов. Средняя человеческая сетчатка содержит примерно 126 миллионов клеток-фоторецепторов. Это ничто по сравнению с птицами, у которых в 10 раз больше фоторецепторов и в 2-5 раз больше колбочек, чем у людей.

В сетчатке глаза человека есть место, которое называется "центральной ямкой". Ямка является центральным местом в центральной части человеческой сетчатки, называемой пятном. В этой области у людей намного большая концентрация фоторецепторов, особенно колбочек. Также, кровяные сосуды, нервные и ганглиозные клетки расположены в ней таким образом, что они не размещаются между источником света и клетками фоторецепторов, тем самым, устраняя даже эту незначительную помеху непосредственному проходу света. Это создает область высокой визуальной резкости с уменьшением визуальной резкости к периферии человеческой сетчатки.

Колбочки в пятне (и в любом другом месте) также имеют пропорцию 1:1 по отношению к ганглиозным клеткам. Ганглиозные клетки помогают предварительно обрабатывать информацию, полученную от фоторецепторов сетчатки. Что касается палочек сетчатки, одна ганглиозная клетка получает информацию от множества, даже сотен клеток-палочек, но с колбочками, наибольшая концентрация которых находится в пятне, дело обстоит по-другому. Пятно обеспечивает информацию, необходимую для максимальной детализации изображения и, полученная с помощью периферийных участков сетчатки информация помогает обеспечивать как пространственную, так и контекстуальную информацию. По сравнению с периферией, пятно в 100 раз более чувствительно к мельчайшим деталям, чем остальная часть сетчатки. Это дает возможность человеческому глазу фокусироваться на определенном участке в поле зрения, не будучи сильно отвлеченным периферийным зрением.

Сетчатки птиц, с другой стороны, не имеют пятна или ямки, расположенных центрально. Зрительная резкость равна во всех областях. Сетчатки осьминога также не имеют центрально расположенной ямки, но у них есть то, что называется линейным централисом. Он формирует диапазон высшей резкости горизонтально вдоль сетчатки осьминога. Уникальной особенностью глаз осьминога является то, что, не смотря на положение их тела, их глаза всегда поддерживают одну и ту же позицию относительно гравитационного поля Земли, используя орган равновесия статоцист.

Причина этого кроется в том факте, что в сетчатке осьминога размещены определения горизонтальных и вертикальных проекции в полях их зрения. Это предвиденный способ оценивания горизонтальности и вертикальности. Осьминоги используют данную способность не для создания изображения, как это делают позвоночные, а для того, чтобы замечать модели движений. Интересно то, что, не зависимо от формы объекта, осьминог отвечает на конкретные движения, похожие на движения жертвы, так как если бы это действительно была жертва. Тем не менее, если их обычная жертва не двигается, осьминог не реагирует на отсутствие движения. В этом аспекте, зрение осьминога похоже на сложные глаза насекомых.

В действительности, глаз осьминога рассматривается, как сложный глаз с единственной линзой. В некоторых других отношениях, он также более простой в процессе обработки информации, чем глаз позвоночных. Фоторецепторы состоят только из палочек, и информация, передаваемая ими, не проходит сквозь какой-нибудь вид периферийной обработки ганглиозными клетками. Глаза осьминога устроены не для того, чтобы воспринимать мельчайшие детали, но для восприятия схем и способов движения, устраняя, таким образом, потребность в очень высокой обработке, которая наблюдается в глазах человека и позвоночных.

Высокая мощность обработки в человеческом глазе и в глазах других позвоночных не дешева. Она очень дорогая, и тело платит высокую цену за поддержку такого высокого уровня определения и силы обработки. Сетчатка имеет наивысшие из всех тканей тела потребности в энергии и показатели метаболизма веществ. Потребление кислорода человеческой сетчаткой (на грамм ткани) на 50% больше, чем печени, на 300% больше, чем коры головного мозга и на 600% больше миокарда (сердечной мышцы). Но это средний показатель метаболизма кислорода для сетчатки в целом. Отдельно же взятый слой клеток-фоторецепторов имеет значительно больший показатель обмена веществ. Вся эта энергия должна поставляться быстро и в нужном количестве.

Непосредственно под каждым фоторецептором находится слой сосудистой оболочки глаза. Этот слой содержит густой капиллярный пласт, который называется сосудисто-капиллярным. Единственное, что отделяет капилляры от прямого контакта с фоторецепторами - это очень тонкий (как одна клетка) пигментный эпителий сетчатки (ПЭС). Эти капилляры намного больше средних, будучи 18-50 микронов в диаметре. Они обеспечивают огромное количество крови на грамм ткани и составляют 80% притока крови для всего глаза. С другой стороны, артерия сетчатки, которая проходит сквозь "слепое пятно" и распределяется вдоль внешней сетчатки, обеспечивая потребности нервного слоя, вносит только 5% всего снабжения крови сетчатке. Большая близость хороидального снабжения крови к клеткам фоторецепторов без лишней промежуточной ткани или пространства, такого, как нервы или ганглиозные клетки, (то есть, из неперевернутой системы) обеспечивает наиболее быструю и эффективную поставку жизненно-важных питательных веществ, и устраняет большое количество производимых отходов. Клетки, которые удаляют эти отходы и пополняют запасы некоторых необходимых элементов в фоторецепторах, - это клетки ПЭС.

Каждый день палочки и колбочки сбрасывают примерно 10% своих сегментированных дисков. Среднее число дисков у палочек составляет от 700 до 1000, у колбочек - 1000-1200. Это само по себе создает потребность в обмене веществ в клетках ПЭС, которые должны перерабатывать большое количество сброшенных дисков. К счастью, им не нужно далеко перемещаться, чтобы достичь клеток ПЭС, поскольку они обрушиваются с конца фоторецептора, который непосредственно контактирует со слоем клеток ПЭС. Если бы эти диски сбрасывались в обратном направлении (к линзам и роговице), то их высокий уровень сбрасывания, в результате, создал бы мрачное затемнение перед фоторецепторами, которое не очищалось бы настолько быстро, как это было бы необходимо для поддержания высокого уровня визуальной четкости.

Высокий уровень переработки поддерживает высокий уровень чувствительности фоторецепторов. Клетки ПЭС также содержат изомеразу ретинола (витамина А). Трансретинал должен превратиться обратно в 11-цисретинал в визуальном молекулярном каскаде. С помощью витамина А и ретинальной изомеразы клетки ПЭС способны выполнять эту задачу, перенося затем такие обновленные молекулы обратно к фоторецепторам. Интересно, что клетки ПЭС в сетчатках головоногих не имеют ретинальной изомеразы.Тем не менее, сетчатки всех позвоночных все же обладают этим важным энзимом. Описанные выше функции требуют большого количества энергии. И клетки ПЭС так же, как и клетки фоторецепторов, должны быть максимально приближены к хорошему кровяному снабжению, что и наблюдается в действительности.

Как подразумевает само их название, клетки ПЭС пигментированы очень темным черным цветом, который называется меланином. Меланин поглощает рассеивающийся свет, тем самым, предотвращая побочное отражение фотонов и косвенную активацию фоторецепторов. Это значительно помогает в создании четкого/резкого изображения на сетчатке. Для некоторых позвоночных, таких как, к примеру, кошка, существует отличающаяся система, у которой в наличии имеется отражающий слой, позволяющий лучше видеть в темноте (в шесть раз лучше, чем люди), но плохо в дневное время.

Итак, мы видим, что перевернутые сетчатки имеют, по крайней мере, минимальные, если не существенные преимущества, основанные на потребностях их владельцев. У нас также имеется доказательство, что наилучшие глаза в мире для определения изображения и его интерпретации - это всегда глаза с "перевернутой" сетчаткой, у которых есть ретинальная организация. Касательно недостатков в общем, то они не имеют практического значения по сравнению с соответствующими функциями. Даже Докинс признает, что это неудобство является в основном эстетическим. Рассмотрите следующее утверждение Докинса:

За одним исключением, фотоэлементы всех глаз, которые я успел проиллюстрировать, располагались спереди нервов, что соединяли их с мозгом. Это очевидно, но не универсально. Земляной червь, …предположительно, содержит свои фотоэлементы на неправильной стороне соединяющих нервов. То же делает и глаз позвоночных. Фотоэлементы направлены в обратную сторону от света. Это не так глупо как кажется. Поскольку они очень маленькие и прозрачные, то не столь важно, куда они направлены: большинство фотонов будут направляться прямо и затем проходить сквозь ряд помех, нагруженных пигментами, которые ждут, чтобы их поймать.

Эволюционная теория в примерах

В принципе, все органы зрения предназначены для того, чтобы захватывать отдельные частицы света - фотоны. Вполне возможно, что ещё в докембрийский период жили организмы, способные воспринимать свет. Это могли быть и многоклеточные существа, и одноклеточные. Однако первое известное нам животное, наделённое зрением, появилось около 540 миллионов лет назад. А всего через сто миллионов лет, в ордовикском периоде, уже существовали все известные нам сегодня типы органов зрения. Нам остаётся лишь правильно расставить их, чтобы понять их эволюцию.

У одноклеточных животных - например, эвглены зелёной - имеется лишь светочувствительное пятно: "глазок". Оно различает свет, что жизненно важно для той же эвглены, ведь без энергии света в её организме не может протекать фотосинтез, а значит, не образуются органические вещества. До появления этой органеллы - глазка - одноклеточные животные хаотично сновали в толще воды, пока случайно не попадали на свет. Эвглена же всегда плывёт только на свет.

У первых многоклеточных животных органы зрения были крайне примитивны. Так, у многих морских звёзд по всей поверхности тела разбросаны отдельные светочувствительные клетки. Эти животные способны лишь различать светлое и тёмное. Заметив проплывающую тень - хищник? - они спешат зарыться в песок.

У некоторых животных светочувствительные клетки группировались в виде "глазного пятна". Теперь можно было, пусть и очень приблизительно, оценить, с какой стороны двигался хищник. Более пятисот миллионов лет назад глазные пятна появляются у медуз. Этот орган зрения позволял им ориентироваться в пространстве, и медузы заселяют открытое море. Дождевым червям подобные пятна помогают скрываться от света в земле.

Следующую ступень эволюции глаза демонстрируют ресничные черви. В передней части их тела имеются два симметричных пятна: в каждом из них до тысячи светочувствительных клеток. Эти пятна наполовину погружены в пигментную чашку. Свет падает лишь на верхнюю половину пятен, не прикрытую пигментом, и это позволяет животному определить, где находится источник света. При желании можно назвать ресничного червя "животным с двумя глазами".

Постепенно глазное пятно ещё глубже вдавливалось в эпителий. Образовался желобок - "глазной бокал". Подобным органом зрения обладают, например, речные улитки. Его чувствительность заметно зависит от направления взгляда. Однако улитка видит всё вокруг себя расплывчатым, словно глядит сквозь матовое стекло.

Острота зрения повышалась по мере того, как сужалось наружное отверстие глаза. Так появился глаз с точечным зрачком, напоминавший камеру-обскуру. Им смотрит на мир моллюск наутилус, родич давно вымерших аммонитов. Толщина глаза у наутилуса - около сантиметра. На его сетчатке имеется до четырёх миллионов светочувствительных клеток. Однако этот орган зрения улавливает слишком мало света. Поэтому мир для наутилуса выглядит мрачно.

Итак, на каком-то этапе эволюция привела к появлению двух различных органов зрения. Один - назовём его "глаз оптимиста" - позволял видеть всё в светлых красках, но очертания предметов были смутными, неясными, расплывчатыми. Другой - "глаз пессимиста" - видел всё в чёрных тонах; мир казался грубым, изломанным, резко очерченным. Именно от него и происходит наш человеческий глаз.

Позднее над зрачком нарастает прозрачная плёнка; она защищает его от попадания грязи и в то же время меняет его преломляющую способность. Теперь всё больше частиц света попадает внутрь глаза, к его светочувствительным клеткам. Так возникает первый примитивный хрусталик. Он фокусирует свет. Чем больше хрусталик, тем острее зрение. Для обладателя такого органа зрения - а именно он и называется "глазом" - окружающий мир становится ярким и отчётливым.

Глаз оказался таким совершенным органом зрения, что природа "изобрела" его дважды: он появился у головоногих моллюсков, а позднее у нас, позвоночных, причём у обеих групп животных выглядит он по-разному, да и развивается из различных тканей: у моллюсков - из эпителия, а у человека сетчатка и стекловидное тело возникают из нервной ткани, а хрусталик и роговица - из эпителия.

Добавим, что у насекомых, трилобитов, ракообразных и некоторых других беспозвоночных животных сформировался сложный - фасеточный - глаз. Он состоял из множества отдельных глазков - омматидиев. Глаз стрекозы содержит, например, до тридцати тысяч таких глазков.

На все лишь полмиллиона лет

Шведские биологи Дан-Эрик Нильсон и Сюзанна Пелгер из Лундского университета смоделировали на компьютере историю эволюции глаза. В этой модели всё началось с появления тонкого слоя клеток, чувствительных к свету. Над ним лежала прозрачная ткань, сквозь которую проникал свет; под ним - непрозрачный слой ткани.

Отдельные, незначительные мутации могли менять, например, толщину прозрачного слоя или кривизну светочувствительного слоя. Они происходили случайно. Ученые лишь внесли в свою математическую модель правило: если мутация улучшала качество изображения хотя бы на один процент, то она закреплялась в последующих поколениях.

В конце концов, "зрительная плёнка" превратилась в "пузырёк", заполненный прозрачным студнем, а затем и в "рыбий глаз", снабжённый настоящим хрусталиком. Нильсон и Пелгер попробовали оценить, сколько времени могла длиться подобная эволюция, причём они выбрали худший, самый медленный вариант развития. Всё равно результат оказался сенсационным. Краткая история глаза насчитывала всего… чуть более полумиллиона лет - сущий миг для планеты. За это время сменилось 364 тысячи поколений животных, наделённых различными промежуточными типами органов зрения. Путём естественного отбора природа "проверила" все эти формы и выбрала лучшую - глаз с хрусталиком.

Подобная модель наглядно доказывает, что как только первые примитивные организмы открыли саму возможность "запечатлевать" мир - моментально копировать одним из своих органов расположение окружающих предметов и их форму, - тут же этот орган начал совершенствоваться, пока не достиг высшей формы развития. История глаза, в самом деле, оказалась краткой; она была "молниеносной войной" за возможность "видеть всё в истинном свете". В победителях числятся все - и человек, и рыбы, и насекомые, и улитки, и даже эвглена, порой получше нас, "амбивалентных", различающая, где чёрное, а где белое.

Позднее немецкий биолог Вальтер Геринг выяснил, что ген под названием Pax-6 формирует органы зрения у человека, мышей и плодовых мушек дрозофил. Если он имеет дефект, глаз не развивается вовсе или остаётся в зачаточном виде. В свою очередь, при встраивании гена Pax-6 в определённые участки генома у животного появлялись дополнительные глаза.

Опыты показали, что ген Pax-6 отвечает лишь за развитие органов зрения, а не за их тип. Так, с помощью гена, принадлежавшего мыши, учёный запускал механизм развития глаз у дрозофил, причём у них появлялись дополнительные органы зрения - тоже фасеточные - на ногах, крыльях и усиках. "С их помощью насекомые также могли воспринимать свет, - отмечает Вальтер Геринг, - ведь нервные окончания тянулись от дополнительных органов зрения к соответствующему участку головного мозга".

Позднее тот же генетик сумел вырастить на голове лягушки дополнительные глаза, манипулируя геном Pax-6, взятым у дрозофилы. Его коллеги обнаружили тот же самый ген у лягушек, крыс, перепелов, кур и морских ежей. Исследование гена Pax-6 показывает, что все известные нам типы органов зрения могли возникнуть благодаря генетическим мутациям одного и того же "первоглаза".

Впрочем, есть и другие мнения. Ведь, например, у медуз нет гена Pax-6, хотя органы зрения есть. Возможно, этот ген лишь на каком-то этапе эволюции стал управлять развитием зрительного аппарата.

Вот что говорит по этому поводу Д. Э. Нильсон:

У простейших организмов ген Pax-6 отвечает за формирование передней части тела, а поскольку она лучше всего приспособлена для размещения здесь органов чувств, этот ген позднее стал отвечать и за развитие органов зрения.

Орган зрения представлят собой один из важнейших органов чувств, доступных человеку, ведь около 70% информации о внешнем мире человек воспринимает через зрительные анализаторы. Орган зрения или зрительный анализатор - это не только глаз. Собственно глаз - это периферическая часть органа зрения.

Информация, полученная при помощи аппарата глазного яблока, передается по зрительным путям (зрительный нерв, перекрест зрительных нервов, зрительный тракт) сначала в подкорковые центры зрения (наружные коленчатые тела), затем по зрительной лучистости и зрительному пучку Грациоле в высший зрительный центр в затылочных долях головного мозга.

Периферическая часть органа зрения это :

Глазное яблоко,

Защитный аппарат глазного яблока (верхнее и нижнее веки, глазница),

Придаточный аппарат глаза (слезная железа, ее протоки, а также глазодвигательный аппарат, состоящий из мышц).

Глазное яблоко

Глазное яблоко занимает основное место в орбите или глазнице, которая является костным вместилищем глаза и служит также для его защиты. Между глазницей и глазным яблоком находится жировая клетчатка, которая выполняет амортизирующие функции и в ней проходят сосуды, нервы и мышцы. Глазное яблоко весит около 7 грамм.

Глазное яблоко представляет собой сферу диаметром около 25 мм, состоящую из трёх оболочек. Наружная, фиброзная оболочка состоит из непрозрачной склеры толщиной около 1 мм, которая спереди переходит в роговицу.

Снаружи склера покрыта тонкой прозрачной слизистой оболочкой - конъюнктивой . Средняя оболочка называется сосудистой . Из её названия понятно, что она содержит массу сосудов, питающих глазное яблоко. Она образует, в частности, цилиарное тело и радужку. Внутренней оболочкой глаза является сетчатка.

Мышцы глаз

Глаз имеет также придаточный аппарат , в частности, веки и слёзные органы. Движениями глаз управляют шесть мышц - четыре прямые и две косые. По своему строению и функциям глаз можно сравнить с оптической системой, например, фотоаппарата. Изображение на сетчатке (аналог фотоплёнки) образуется в результате преломления световых лучей в системе линз, находящихся в глазу (роговица и хрусталик) (аналог объектива). Рассмотрим, как это происходит подробнее.

Строение переднего отрезка глаза

Свет, попадая в глаз, сначала проходит через роговицу - прозрачную линзу, имеющую куполообразную форму (радиус кривизны примерно 7,5 мм, толщина в центральной части примерно 0,5 мм). В ней отсутствуют кровеносные сосуды и имеется много нервных окончаний, поэтому при повреждениях или воспалении роговицы развивается так называемый роговичный синдром, (слезотечение, светобоязнь и невозможность открыть глаз).

Передняя поверхность роговицы покрыта эпителием, который обладает способностью к регенерации (восстановлению) при повреждении. Глубже располагается строма, состоящая из коллагеновых волокон, а изнутри роговица покрыта одним слоем клеток - эндотелием, который при повреждении не восстанавливается, что приводит к развитию дистрофии роговицы, то есть к нарушению её прозрачности.

Роговица и радужка

Роговица - это линза, на долю которой приходится 40 диоптрий из всех 60 диоптрий общей преломляющей силы глаза. То есть, роговица - самая сильная линза в оптической системе глаза. Это является следствием разницы показателей преломления воздуха, находящегося перед роговицей, и показателя преломления её вещества.

Выйдя из роговицы, свет попадает в заполненную жидкостью так называемую переднюю камеру глаза - пространство между внутренней поверхностью роговицы и радужкой.

Радужка представляет собой диафрагму с отверстием в центре - зрачком, диаметр которого может меняться в зависимости от освещения, регулируя поток света, попадающего в глаз.

Периферия роговицы по всей окружности практически соединяется с радужкой, образуя так называемый угол передней камеры, через анатомические элементы которого (шлеммов канал, трабекула и другие образования, имеющие общее название - дренажные пути глаза), происходит отток жидкости, постоянно циркулирующей в глазу, в венозную систему. За радужкой располагается хрусталик - ещё одна линза, преломляющая свет. Оптическая сила этой линзы меньше, чем у роговицы - она составляет примерно 18-20 диоптрий. Хрусталик по всей окружности имеет похожие на нити связочки (так называемые цинновые), которые соединяются с цилиарными мышцами, располагающимися в стенке глаза. Эти мышцы могут сокращаться и расслабляться. В зависимости от этого цинновы связки могут также расслабляться или натягиваться, в результате чего радиус кривизны хрусталика меняется - поэтому человек может видеть чётко как вблизи, так и вдали.

Эта способность, называемая аккомодацией, с возрастом (после 40 лет) теряется из-за уплотнения вещества хрусталика - зрение вблизи ухудшается.

Хрусталик

Хрусталик по своему строению похож на имеющую одну косточку ягоду- в нём есть оболочка - капсульный мешок, более плотное вещество - ядро (напоминающее косточку), и менее плотное вещество (напоминающее мякоть ягоды) - хрусталиковые массы. В молодости ядро хрусталика мягкое, однако, к 40-50 годам оно уплотняется. Передняя капсула хрусталика обращена к радужке, задняя - к стекловидному телу, а границей между ними служат цинновы связки. Вокруг экватора хрусталика, по всей его окружности располагается цилиарное тело, являющееся частью сосудистой оболочки. Оно имеет отростки, которые вырабатывают внутриглазную жидкость. Эта жидкость через зрачок попадает в переднюю камеру глаза и через угол передней камеры удаляется в венозную систему глаза. Баланс между продукцией и оттоком этой жидкости очень важен, так как его нарушение приводит к развитию глаукомы.

Строение заднего отрезка глаза

Стекловидное тело

За хрусталиком располагается стекловидное тело . Основными функциями стекловидного тела являются поддержание формы и тонуса глазного яблока, проведение света, участие во внутриглазном обмене веществ. Как преломляющая среда оно слабое. При исследовании в проходящем свете нормальное стекловидное тело кажется абсолютно прозрачным.

Оно имеет желеобразную структуру в большинстве случаев, однако иногда оно может разжижаться. С другой стороны, в нем могут появляться уплотнённые участки в виде нитей или глыбок, наличие которых пациент ощущает в виде "мушек" и плавающих точек. В некоторых местах стекловидное тело тесно спаяно с сетчаткой, поэтому при образовании в нём уплотнений, стекловидное тело может тянуть на себя сетчатку, иногда вызывая ее отслойку.

Сетчатка глаза

После прохождения через все вышеперечисленные структуры свет попадает на сетчатку, играющую в глазу роль фотоплёнки. Состоящая из десяти слоёв, сетчатка предназначена для преобразования световой энергии в энергию нервного импульса. Трансформация световой энергии в сетчатке осуществляется благодаря сложному фотохимическому процессу, сопровождающемуся распадом фотореагентов с последующим восстановлением и при участии витамина А и других веществ.

Миллионы маленьких клеток сетчатки, называемые фоторецепторами (палочки и колбочки), превращают световую энергию в энергию нервных импульсов и посылают её в мозг. Общее число колбочек в сетчатке человеческого глаза равно 7 млн, палочек - 130 млн. Палочки обладают очень высокой световой чувствительностью, обеспечивают сумеречное и периферическое зрение. Колбочки выполняют тонкую функцию: центральное форменное зрение и цветоощущение. Наивысшими зрительными функциями обладает центральная часть сетчатки, называемая желтым пятном (macula lutea). Такое название происходит от желтой окраски ямки желтого пятна (fovea).

Центральное углубление (foveola), диаметр которого равен 0,2-0,4 мм - самое тонкое место сетчатки, не более 0,18 мм толщиной. Сетчатка здесь состоит почти исключительно из одних зрительных клеток.

Нервные импульсы собираются с сетчатки зрительным нервом, который состоит примерно из 1 миллиона нервных волокон. Таким образом, информация передаётся в затылочную долю мозга, где анализируется зрительное изображение.

Повреждение, травма или сдавление зрительного нерва на любом уровне приводят к практически необратимой потере зрения даже при нормальном функционировании остальных анатомических структур глаза и прозрачности глазных сред.

Исходя из выше изложенного можно сказать, что орган зрения это тончайшая система, все звенья которой функционируют в тесном взаимодействии друг с другом и нарушение в работе хотя бы одного из них ведет к снижению зрения.



Понравилась статья? Поделитесь ей
Наверх